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Burhan Baha Bilgilioğlu 1,2,*, Esra Erten 3 and Nebiye Musaoğlu 3
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Abstract: As one of the largest hypersaline lakes, Lake Tuz, located in the middle of Turkey, is a
key waterbird habitat and is classified as a Special Environmental Protection Area in the country. It
is a dynamic lake, highly affected by evaporation due to its wide expanse and shallowness (water
depth <40 cm), in addition to being externally exploited by salt companies. Monitoring the dynamics
of its changes in volume, which cause ecological problems, is required to protect its saline lake
functions. In this context, a spatially homogeneous distributed gauge could be critical for monitoring
and rapid response; however, the number of gauge stations and their vicinity is insufficient for the
entire lake. The present study focuses on assessing the feasibility of a time-series interferometric
technique, namely the small baseline subset (SBAS), for monitoring volume dynamics, based on
freely available Sentinel-1 data. A levelling observation was also performed to quantify the accuracy
of the SBAS results. Regression analysis between water levels, which is one of the most important
volume dynamics, derived by SBAS and levelling in February, April, July and October was 67%, 80%,
84%, and 95% respectively, for correlation in the range of 10–40 cm in water level, and was in line
with levelling. Salt lake components such as water, vegetation, moist soil, dry soil, and salt, were also
classified with Sentinel-2 multispectral images over time to understand the reliability of the SBAS
measurements based on interferometric coherence over different surface types. The findings indicate
that the SBAS method with Sentinel-1 is a good alternative for measuring lake volume dynamics,
including the monitoring of water level and salt movement, especially for the dry season. Even
though the number of coherent, measurable, samples (excluding water) decrease during the wet
season, there are always sufficient coherent samples (>0.45) over the lake.

Keywords: InSAR; Sentinel; wetland; water level; Lake Tuz

1. Introduction

In providing a productive ecosystem and suitable habitat for a wide variety of plant
and animal species, wetlands are vital ecological and important social-economic areas [1,2].
It is important to protect and monitor wetlands, which feed groundwater resources, increase
the agricultural soil fertility, regulate the water cycle, and reduce carbon emissions, among
other functions [3,4]. Policies aiming at the management of wetlands strive to monitor
their physical, chemical, and biological characteristics by measuring variations in water
level/area/volume, pollutant factors, input–output, and the impact of the surrounding
industries on the lake [5]. Among these variations, volume dynamics is an important
parameter that directly affects the population of plant and animal communities in this
habitat; climate change and human activities are the main drivers of this change [6–8]. In
this context, information on deformation in the lake surface and its water levels, with a
high temporal and spatial resolution (frequency of gauge stations), plays an important role
in wetland monitoring [9]. However, many lakes do not have gauge stations or they are
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not sufficient in frequency and number to extract hydrological information for the entire
lake [10]. In addition to the low spatial resolution of these stations, there may be difficulties
in acquiring data from institutions and organizations that manage and trade the data
gathered by gauge stations [11]. In this regard, remote sensing (RS) instruments developed
in parallel with technological advances are an ideal platform for solving such current
problems and are highly utilized in assessing the volume dynamics of wetlands [12].

Since the United States Geological Survey (USGS) began to provide data freely to all
users following a data policy change in 2008, it was easier for researchers to access RS (new
and archived Landsat) data [13]. Additionally, the European Commission’s Copernicus
program, which launched its first satellite in 2014, started to offer alternatives free of
charge for users. This program, created by the European Space Agency (ESA), is the
European Union’s Earth Observation (EO) program, which aims to monitor our planet and
its environment. It provides freely available information services to its users via satellites
and in situ data such as ground stations, airborne sensors, and seaborne sensors. Since the
launch of the Sentinel-1A SAR satellite in 2014, EO data have been actively used in many
research areas, such as agriculture, climate change, the environment, marine observation,
insurance, disaster management, and the blue economy [14]. Sentinel-1 SAR images with
a high spatial resolution (5 m × 20 m on the ground) provide dual-polarization (VV and
VH) backscatter coefficients in the C-band. Their high temporal resolution (12- and 6-day
repeat cycle option) and their day, night, and all-weather imaging capability have excellent
application prospects in the field of environmental monitoring [15,16]. The short revisit
time is especially advantageous for observing dynamic areas with rapid changes, such as
wetlands, landslide zones, and sinkhole areas [17–20].

With the launch of the Sentinel-2A in 2015, Copernicus made both SAR and optical
satellite images available free of charge. The purpose of the Sentinel-2 mission is to create
an operational multispectral EO system that ensures sustainability and works in harmony
with the Landsat and Spot satellites [21]. Sentinel-2 has some advantages over Landsat.
It has higher spatial resolution and higher spectral resolution in the near-infrared region
and also has three vegetation red-edge bands. The Sentinel-2 sensor, the EO satellite
of the Copernicus program, has 12 bands with spatial resolutions of 10 m (four visible
and near-infrared bands), 20 m (six red-edge and shortwave infrared bands), and 60 m
(three atmospheric correction bands) [22–24]. It is also important, especially for long-term
monitoring, that the Sentinel missions are guaranteed to continue until 2030 [25].

In this context, the high temporal resolution, coupled with free availability, achieved
by optical Sentinel-2 and SAR Sentinel-1 images paves the way for new hydrological
applications aimed at the identification and monitoring of wetlands [26,27].

The Single Look Complex (SLC) imaging mode of Sentinel-1, with high temporal
resolution across large areas, makes it possible to use large stacks of interferometric SAR
(InSAR) data to monitor surface displacements on the Earth’s surface over time [28]. In
this context, many different studies have been conducted on interferometric Sentinel-1
data coupled with the persistent scatter interferometry (PSInSAR) method [29], specifi-
cally in urban monitoring, such as in reclamation areas [30], dams [31], bridges [32], and
buildings [33]. The popularity of the PSInSAR technique lies in the fact that it obviates the
need for time-consuming and costly geodetic surveying methods, and provides detailed
information about surface displacement. However, when it comes to surfaces in rural
settings, as opposed to urban ones, PSInSAR implementation is challenging due to the
lack of persistent scatters in high coherence targets [34]. In this context, another powerful
time-series InSAR method, namely small baseline subsets (SBAS), offers not only unique
surface change (deformation) information but also information related to the dielectric
constant and structure of the surface [35]. When determining the main and dependent pairs
for interferograms in the SBAS network, they are selected according to the average base-
line parameters for the signal of interest, without considering the temporal baseline [36].
The SBAS technique provides highly sensitive information about surface deformations
in urban centers and open areas for determining land subsidence [37,38]. However, in
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highly complex situations, such as monitoring water level changes and salt movement,
ignoring the temporal separation of interferograms results in poor coherence. In wetlands,
INSAR measurements and water level determinations are related to the characteristics
of the region [39]. Nevertheless, there are distinct seasonal deformation features in areas
close to the water body [40]. For this reason, the temporal baseline should be as small as
possible in the determination of volume dynamics, such as cases in which the water level
of wetlands is being monitored [41].

In this study, we aimed to monitor the volume dynamics, including water level and
salt movement, in one of the largest hypersaline lakes in the world [42], namely Lake
Tuz (Turkey), using EO satellites of the Copernicus program. For this purpose, the SBAS
method, an advanced interferometric technique, was applied to Sentinel-1 SAR data from
November 2017 to January 2019. We have compared the levelling measurements conducted
in the field with those calculated using SBAS in terms of water level accuracy. Additionally,
the consistency and applicability of the SBAS methodology have been evaluated with mete-
orological and optical Sentinel-2 data to understand whether SBAS meets the requirements
of water level information in the salt lake area, where there is a dynamic transition among
the salt lake components, namely water, vegetation, salt, moist soil, and dry soil.

2. Materials and Methods
2.1. Study Region

Lake Tuz, located in the middle of Turkey, is one of the largest hypersaline lakes in the
world and the second-largest lake in Turkey. It is mainly fed by underground water. With
specific kinds of flora and fauna, it was declared a Special Environmental Protection Area
(SEPA) by Turkey’s Cabinet of Ministers in 2000. This type of lake is generally shallow
and saline, with its salinity being about 35%. Lake Tuz covers an area approximately
1500 km2, with a length of 80 km and a width of 50 km (Figure 1). Its bright visibility
from space, strong reflection, and flatness make it one of the EO’s eight calibration sites
in the world. The lake is categorized as a wetland, and its salinity varies seasonally with
the water level, being at its lowest in the wet season and highest in the dry season, due
to evaporation [43,44]. In the winter, it spreads over a large area due to the effect of
precipitation and dissolves the salt particles, while, in the summer approximately 95% of
the lake dries up and turns into a salt flatland [45,46]. More than half of Turkey’s salt needs
are covered by salt pans in the lake [47]. It is known that approximately 1200 km2 of the
Lake Tuz area is a salt region. The lake’s salt reservoir totals approximately 210 million
tons. With this reserve potential, the lake is the second-largest source of salt production
in the world [48]. The water level, and hence the salt pans, are particularly influenced by
industrial activities, as salt lakes are the main areas where the salt industry operates.

In the lake, industrial salt production starts around mid-April by drawing water from
the lake to the salt pan. This continues for four or five months depending on weather
conditions, as high temperatures are required for evaporation. Salt formation starts in
August and continues until October. In October, underground waters emerge from numer-
ous crevices to feed the lake bed and thus the salt production cycle continues. There are
four meteorological stations and two dams around Lake Tuz, as shown in Figure 1. The
dams were built on the Melendiz and Pecenek streams, which feed the lake. Moreover, the
beds of the Degirmenozu and Insuyu streams were modified to feed other lakes that were
about to dry out. It is worth noting that the channel of the General Directorate of State
Hydraulic Works (DSI), located in the southwest region where seasonal floods occur every
year, is the only source that directly feeds Lake Tuz. The lake system is well represented on
the eastern side, where detailed field work (electronic moisture measurement, spectrora-
diometer measurement, and levelling measurement) was carried out. Eleven points of the
Turkish National Fundamental GPS Network (TUTGA) are homogeneously distributed in
the study area, and GPS measurements taken from the salt pans in the Lake Tuz are used
as calibration data for SBAS results in the interferogram calibration stage; these data were
obtained from the General Directorate of Mapping (HGM).
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Figure 1. Geographic location of Lake Tuz overlaid on the hillside background, as well as the spa-
tial distribution of the meteorological and hydrological stations and in situ areas used in this 
study. The reference area where the levelling measurement was carried out is enlarged. 
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Figure 1. Geographic location of Lake Tuz overlaid on the hillside background, as well as the spatial
distribution of the meteorological and hydrological stations and in situ areas used in this study. The
reference area where the levelling measurement was carried out is enlarged.

2.2. Methodology

Figure 2 depicts the general framework of the methodology used in this work, which
is based on Sentinel-1/-2 and field survey data. An interferometric stack of Sentinel-1
data acquired over Lake Tuz was used first to obtain information on the volume dynamics
by the SBAS method using ENVI SARscape software [49,50]. Sentinel-2 and field survey
data (GPS, temperature, moisture, and levelling measurements) were used subsequently
to evaluate the feasibility of the method for Lake Tuz in terms of the temporal dynamics
among its components: water, vegetation, salt, moist soil, and dry soil.

In the study, Sentinel-1 and Sentinel-2 satellite data obtained freely from the EO
Copernicus program were used. Short revisit time, which is an important feature in
monitoring areas with rapid changes, was available in both the SAR and optical satellite
data (Table 1). The Copernicus Open Access Hub has provided Level-2A products of
Sentinel-2 imagery data over Europe from 28 March 2017 [51]. Sentinel-2 Multispectral
Instrument Level 2A (S2-MSIL2A) imagery was used; this delivered atmospherically and
geometrically corrected bottom-of-atmosphere (BOA) reflectance images.
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Table 1. Properties of Sentinel-1/-2. Text highlighted in * refers to the chosen features.

Satellite (Optical) Spectral Res. (µm) Spatial Res. (m) Rad. Res. (bit) Temp. Res. (Day)

Sentinel 2 MSI 13 Bands
(0.44–2.20)

* B2, B3, B4, B8:10 m
* B5, B6, B7, B8a, B11,

B12:20m
B1, B9, B10: 60 m

12 5

Satellite (SAR) Polarization * Spatial Res. (m) Incidence Angle (◦) Temp. Res. (Day)

Sentinel-1
(C band)

HH, HV,
* VV, VH

5 (ground range) × 20
(azimuth) 29.1◦–46.0◦ 6

The Sentinel-1 Interferometric Wide (IW) swath mode with C-band (radar frequency
of 5.4 GHz) SAR sensors were considered for applying the SBAS method and determining
the water level. Thirty-four ascending VV polarized Sentinel-1 (orbit no 87) images were
used, covering the period from 30 November 2017 to 12 January 2019. VV polarization
was preferred out of the two polarization options because it produces better results in
wetlands [52]. Since the use of ascending and descending tracks in flat basins such as Lake
Tuz gave consistently similar results, a single track was preferred in this study [53].

The SBAS technique is a DInSAR approach that uses a large number of SAR acqui-
sitions, based the increase in the quantity of existing data sets and the developments in
interferometric processes, thus minimizing the potential for negative data features such as
decorrelation, atmospheric propagation delay, and topographic errors. SBAS uses singular
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value decomposition (SVD) to connect independent interferograms in time, correcting for
atmospheric and topographic effects. TUTGA points in the region and salt pans in the lake
were used as distributed scatterer (DS) candidates. These DS candidates add an advantage
to the study area compared to other lakes. Interferogram pairs were generated with a
0.45 coherence parameter threshold and then removed to the topographic phase using the
shuttle radar topographic mission (SRTM) height as the topographic reference data, then
the Wavelet functionality atmospheric correction was applied. The interferogram stack
was unwrapped and the slant range was defined as multi-look. Ground control points
were selected to refine the orbits and remove possible phase ramps from the unwrapped
phase stack. Temporal coherence, calculated on the random motion of scatterers within a
resolution cell, was considered as one univariate exponential function of time. It ranged
from 0 (without reliable information) to 1 (reliable information without noise). A thresh-
old was used to ensure that the selected SAR pixels give reliable and consistent results.
Therefore, reliable SAR pixels were selected by setting a threshold value of 0.45 to remove
unreliable pixels from the SBAS results derived from the Sentinel-1 data [54,55]. The SBAS
inversion kernel was then applied to determine the initial displacement results and the
residual topography. In the second inversion stage, the SBAS inversion kernel was applied
to generate the displacement time series. By applying the geometric correction, the results
were transformed on the earth coordinate system (see Figure 2).

In order to reduce the temporal decorrelation and increase the number of coherent
samples, SAR images were selected according to their spatial and temporal baselines. As a
result, a total number of 128 interferograms were generated, and time series was produced
from all images in the stated period, using a perpendicular baseline below 100 meters and
temporal baseline below 60 days (Figure 3).
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Figure 3. Temporal (x-axis) and perpendicular (y-axis) baseline of the Sentinel-1 acquisitions (red
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ent points.

To analyze the potential of the SBAS methodology for water level monitoring in
the Lake Tuz environment, Sentinel-2 images were used to understand the dynamics of
the salt lake components and their impact on the SBAS measurements. Four Sentinel-2
images with 10 m and 20 m resolutions were selected to represent seasonal variations:
2 February, 17 April, 10 August and 29 October, 2018. The water withdrawal periods and
salt harvesting were also taken into consideration.
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2.3. Field Surveys

As shown in highlighted part of Figure 1, field work was conducted in the northeast
region of Lake Tuz, which has reflective features characteristic of the entire lake [56–58].
The field surveys were carried out in October, when the region was in the driest season;
February, when the region was at its wettest; and in the transition months between these
two seasons: April and July. Thus, optimum reference data were obtained by performing
measurements with levelling and GPS for comparison with the SBAS results when the
water was at a minimum and maximum level.

Spectroradiometer measurements were carried out to better classify the satellite images
and to provide the correlations between the ground and satellite data simultaneously with
the satellite pass time on 17 April 2018, when information on all the salt lake components
could be obtained. The spectra of the salt lake components were obtained by a handheld
spectroradiometer, an Analytical Spectral Device (ASDInc., Boulder CO, USA) with a
spectral range of 325–1075 nm, which were used as ground-truth reference spectra for
temporal Sentinel-2 image classification. Reflectance calibration was done with white
reference material, and spectral measurements were conducted at 15 sample points for each
class, enabling the extraction of the average radiance of the components for the wavelength
in the range of 325–1075 nm. At each sample point, the temperature and moisture of the
soil was also recorded with a KCB-300 Portable Soil Survey Instrument and a moisture
PH meter. Figure 4 shows the mean spectral reflectance curve and the wavelength ranges
corresponding to the Sentinel-2 bands. The graph shows Sentinel-2 bands (excluding
SWIR bands) with 10 m and 20 m spatial resolution covering the wavelength range of the
spectroradiometer.
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The precise geometric levelling technique was performed in four field surveys to
investigate the potential of the SBAS method used in determining the lake volume dy-
namics. The geometric levelling sought to obtain control data with mm precision. The
loop is a line measuring approximately 15 km, 8.8 km of which is inside Lake Tuz and
6.2 km outside. While these surveys were being made, 2 measurements with 2 different
rods were made in same each point with only one topographer and the average was taken.
In the measurements made in this lake, where the slope is very low, there was very little
difference between the 2-point measurements that were averaged. Geometric levelling
measurement results, consisting of north-south and east-west directions, were obtained
for a total of 250 points were recorded among 356 benchmarks. Thanks to GPS/Leveling
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measurements, the positions of each rod measurements were recorded. Measurements
were made from the same places in subsequent field surveys. In addition, safeguarded and
stable benchmarks were taken as reference outside the lake. As a result of this technique,
the network was closed with a 2 cm error limit below the tolerance limit of 5.8 cm. Figure 5
shows two images taken from the area close to the shore of the lake. In addition, it was
seen that it would be more appropriate and faster to take geometric leveling measurements
with a barcoded invar rod. The water-covered area in the image on the left turned into
a salt-covered area in the dry period due to evaporation, as can be seen in the image on
the right.
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Figure 5. Examples of levelling measurements during wet and dry season (The left picture shows a
9 cm water depth; the right picture shows the salt surface.).

3. Results
3.1. Analysis of Sentinel-1 SBAS Measurement

The LOS direction velocity map, derived from 128 interferograms with SBAS, is
shown in Figure 6a. Pixels having a coherence value less than 0.45 are masked out in
the final displacement map, which mainly sows water and moist saline lands. Velocities
in the positive direction are shown in green with a maximum of 2.75 cm/year, while
velocities in the negative direction are shown in red with a minimum of −2.75 cm/year.
Significant surface variation was evident around Lake Tuz, especially in the middle of the
lake and where the salt pans are located. Although there were a limited number of samples
from the inner part of the lake, there were enough to see surface variation trends due to
salt-related activities.

In general, one of the most difficult challenges of InSAR in wetland monitoring is
decorrelation, due to the complex interaction of microwaves, the morphology of the canopy
and the water. However, in the context of salt lakes, the high salt content of the water
makes interferometry measurements more stable. The photographs taken in the field in
Figure 6c show the main surface characteristics of the lake. The first surface, shown in
photograph P1, had the highest volume of salt density suspended in water, which led to the
limited information from the area. At the P2 point, it is seen that salt masses are collected
and much information was obtained, as can be clearly seen in the area with a water height
of about 10 cm. The dry soil and pure salt surfaces represented by photographs P3 and
P4 respectively, were characterized by high SBAS measurements due to the high amount
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of stable information. Figure 6b shows the spatial distribution of the standard deviations
of the SBAS measurements. While the standard deviation is high in the lake, which has
a dynamic structure, the salt pans in the lake are the opposite, and have high reflectivity.
Although the maximum standard deviation of the measurement reached 4.88 cm/year,
60% of the measurements had a standard deviation less than 1 cm/year, highlighting the
reliability of the measurements.
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Figure 6. SBAS LOS direction velocity map for the 2017–2018 period. The final map is presented
by cutting Lake Tuz and its surroundings (approximately 1900 km2). Positive velocities (in green)
represent the motion of the ground toward the satellite, while negative velocities (in red) represent
motion away from the satellite (a). The spatial distribution of the standard deviation of the SBAS
measurements (b). Photographs taken around Lake Tuz which have different structures (c).

3.2. The Influence of Temporal Variations of the Salt Lake Components on the SBAS Results

To understand the seasonal transition and influence of the salt industry on the salt
lake components (water, salt, vegetation, moist soil, and dry soil), Sentinel-2 images
were classified with a Support Vector Machine (SVM) classifier. The SVM classifier was
chosen due to its simplicity and high performance with few samples in the wetland
environment [59–61]. In the classification process with the SVM, the radial basis function
kernel was preferred, and optimum parameter values were determined by the cross-
validation method. In the field surveys carried out in different parts of the lake, class
information about the region was collected by hand GPS and spectroradiometer; half of this
was used as training data at the classification stage the other half was used as ground truth
data. The classification performance of the SVM models obtained was calculated using the
test data sets. According to the 100 ground truth data, the overall accuracy of the SVM
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classifier was 88.7%, 87.9%, 86.2%, and 87.5% for the February, April, August, and October
images, respectively. Figure 7 shows the SVM classification results and the corresponding
coherence images derived from the closest possible interferogram pairs. It was observed
that August was almost completely dry with no rainfall (see Figure 7). This month saw
the lowest occurrence of water at the site. It continued like that until October, when Lake
Tuz started to be refilled with water. In February, water (~40 cm depth) was the dominant
component of the salt lake. The mean water level and water-covered area decreased until
March, after which the lake entered the dry period again. The consistency between the
classification results and the coherence maps can easily be seen: there is high coherence in
the salt and dry soil classes; this decreases to moderate coherence values in vegetation and
moist soil. The freshwater class, as expected, shows the lowest coherence values.
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Figure 7. (a,b) Sentinel-2 classified images and the corresponding Sentinel-1 coherence images derived from the seasonal
data. Coherence maps of shortest time-based interferograms containing selected Sentinel-2 images.

Overall, apart from water, the mean coherence values for each component are sufficient
(>0.45) for SBAS based monitoring (Figure 8). The vegetation class has values close to
moist soil and shows medium reflectivity. It can be seen that the dry soil and salt classes
show high reflectivity, whereas the water class shows low reflectivity. It was observed
that in August the lake was almost completely dry, and this lasted until October. The
lake started to fill with water after October and reached maximum occupancy levels in
February. After this month, the lake stayed within its natural boundaries until March, after
which it entered a dry period again. The coherence values of all interferogram pairs in
these four periods were examined separately based on LULC classes. The values between
February and March, when the lake was in its natural boundaries, are given in Figure 8a.
The coherence values between March and August, when the lake water started to decrease
and entered the dry period, are shown in Figure 8b. The August to October values, when
Lake Tuz was completely dry and salt production and evaporation were high, are given in
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Figure 8c. Finally, the October to February values, when the lake started to fill with the
onset of rains and reached its maximum levels, are shown in Figure 8d.
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Figure 8 shows the reactions of the coherence values of the classes in seasonal changes.
The water class remained below 0.4 in the winter season and high coherence values seemed
to increase in the summer season, when the amount of salt in the lake increased and
salt formations appeared on the surface. The water class also decreased with increasing
precipitation. It can be seen that the vegetation class values remained stable at 0.4–0.5 in
each season. The reason for this is that the region has weak salty flora and sparse salt-
resistant vegetation that is not affected by seasonal changes. It was observed that the salt
class declined inversely with the increase in evaporation from March to October. It can
be said that the salt class, which increases with the decrease of evaporation, is the class
most affected by evaporation. Similar to the salt class, the moist soil class changes with
the effect of evaporation. The dry soil class started to decline after August with increasing
rains. There was an increase until August as precipitation decreased, and the dry soil class
was at its highest level during this period.

Additionally, to understand the impact of weather conditions on the coherence values,
Figure 9 shows the monthly mean coherence values with monthly precipitation and evapo-
ration, taken from four nearby meteorology stations: Aksaray, Cihanbeyli, Eskil, and Kulu.
(see Figure 1).
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Figure 9. Average monthly precipitation, evapotranspiration and coherence. Meteorological data
were obtained by mean value of Kulu, Cihanbeyli, Eskil and S. Kochisar stations around the lake.

In July, August, and October, when there was almost no rain, a decrease in coherence
values was observed with the increase of evaporation. From November to March, when
evaporation was almost absent, inversely proportional behavior between precipitation
data and coherence data was observed. Even though there are temporal relations among
the coherence, precipitation and evaporation (Figure 9), the meteorological effects on the
temporal decorrelation can be ignored due to the presence of dense scatters satisfying the
coherence condition (>0.45). This shows that the weather conditions had almost no effect
on the C-band SBAS results for the study area, which should be greater on the shorter
wavelength-based SBAS measurements.

Although the summer months are dry, there is no a major change in soil moisture
because the lake is fed by underground water sources. In the field surveys, it was observed
that the top layer of the soil was dry when the moisture rate was about 40% at 1.5–2 cm
below the soil. The moisture content of soil samples taken from different parts of Lake Tuz
was calculated. A negative linear correlation was observed between the backscattering
value of Sentinel-1 images and soil moisture. Additionally, increases in soil moisture
content result in a decrease in coherence values. Along with surface roughness, this feature
is a disadvantage in moist areas, such as Lake Tuz, where evaporation occurs due to the
salt concentration.

A brief evaluation of the coherence results can be found in Figure 10, which shows
the total area of the assigned classes for each Sentinel-2 acquisition date. In the figure,
colors distinguish the salt lake components, while the darker shade of each color describes
the total area with a coherence value of greater than 0.45 within each component. These
data produced for four different periods also show how these data were affected by
seasonal changes.

It is seen that approximately 90% of the salt and dry soil classes, 70% of the moist
soil, 65% of the vegetation classes, and 25% of the water class can be used for SBAS-based
volume dynamics monitoring.

Relationships between the meteorological data in Figures 9 and 10 were examined and
a countertrend was observed. It was determined that evaporation mostly affects the salt
class, while the class least affected by evaporation is dry soil. Precipitation mostly affects
the water class negatively. It was observed that the reliable data of the water class, which
was 27.20% in the dry season, decreased to 19.52% despite the increase in total water area
due to precipitation.
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4. Discussions

The joint analysis of SBAS and auxiliary data (in situ) results provides further insight
into how the activities on site have an impact on the measurements from SBAS.

For this purpose, SBAS and levelling measurements were firstly compared in order
to investigate the accuracy and reliability of the water level determination. Afterwards,
the deformation results within the salt pans were analyzed to understand the potential of
Sentinel-1 to seasonally monitor the salt pan volume dynamics. The results, obtained in a
coordinated manner with GPS/leveling measurements and the SBAS results georeferenced
according to GPS measurements, were matched. The displacement results were projected
onto the vertical unit vector using the incident angle (33.86◦). The SBAS results were
then calibrated using the TUTGA points obtained and found homogeneously in the study
area. Thus, the SBAS results were converted into levelling information and compared with
the levelling information obtained in the field work. A total of 50 points were selected
in the field survey area with water along the levelling line. A 20-meter diameter buffer
was applied to each levelling point. The mean SBAS result in this area was compared
with the levelling measurements. The total SBAS area used across the 50 levelling points
was 1275 m2. Figure 11 compares the water level information obtained by the levelling
measurements in four different seasons with water level information obtained from SBAS.
The same points are used every season, and points with a water level of zero were not
included in the process. The standard deviation values obtained from the SBAS accuracy
comparisons in February, April, August and October were calculated as 0.67, 0.80, 0.84,
and 0.95, respectively.

A lower correlation is observed between the two sets of data in February, when the
water level reached a depth of 25 cm. This value increases as the water level decreases and
the salt content in the water increases. When determining the water level at a depth of
25 cm, deviations of up to 7 cm can be seen as a result of SBAS. This difference decreases
to 2–3 cm at 15 cm water depth, and to 0–1 cm at a depth of 8 cm. In addition, statistical
analyses show that the root mean square error (RMSE) decreases as the water level of the
lake decreases. RMSE values were calculated as 2.85 mm in February, 2.5 mm in April,
1.5 mm in July, and 0.5 mm in October (when the water level was the lowest). The salt class
is one of the major dynamic classes among the components of a salt lake. To determine the
volume dynamics in the salt class, the common salt class areas seen in the classifications of
the lake in February, April, August, and October were selected for this study.
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Figure 11. Regression analysis between water levels derived by SBAS that exported vertical units
and levelling.

After examining the SBAS measurements corresponding to water level changes, SBAS-
based surface changes within the salt pans were analyzed. One of the most important com-
ponents of a salt lake is salt, which contributes to the country’s economy. It can be seen that
salt formation, caused by the effect of evaporation, starts in April and lasts until September.
Subsequently, with the rains, a collapse is observed, depending on the dissolution of the
salt. To calculate the salt reserves in Lake Tuz, the (thickness) x (area) x (density) formula
was used [48]. As shown in Figure 1, there are three active salt pans in the lake. There
are negative and positive movements in saltpans due to the formation movements of salt.
In order to make a more accurate salt yield calculation, DS candidates with coherence
values greater than 0.6 in the vertical unit were determined, and their average values
were calculated. Since these DS candidates were determined in the months before the salt
harvest period, they were not exposed to any external factors. The values obtained from
here were calculated as salt thickness, the total areas of the salt fields, and salt density were
included in the process, and the salt yield was calculated. The salt yield was calculated by
including the values obtained from here as salt thickness, the total areas of the salt fields,
and the salt density.

Yavsan salt pan is located to the west of the lake and has an operating capacity of
approximately 8.5 km2. The salt thickness was determined as 7.69 cm using the mean
value of the SBAS results obtained in approximately 5.2 km2 of this area, and the salt yield
calculation was made, giving a result of 1.438 million tons (Figure 12).
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Kayacık salt pan is located to the east of the lake and has an operating capacity of
approximately 11 km2. Salt thickness was determined as 7.51 cm using the mean value of
the SBAS results obtained in approximately 4.8 km2 of this area and a salt yield calculation
was made, giving a result of 1.838 million tons (Figure 13).
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Kaldırım salt pan is located to the north of the lake and has an operating capacity of
approximately 12 km2. Total salt thickness was determined as 7.81 cm using the mean
value of the SBAS results obtained in approximately 6.1 km2 of this area, and a salt yield
calculation was made, giving a result of 1.95 million tons (Figure 14).
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5. Conclusions

In this study, the potential of freely available interferometric stacks of Sentinel-1 data,
coupled with SBAS methodology, was evaluated as a way to monitor volume dynamics
in a salt lake environment. To achieve this, the interferometric stacking technique was
applied to 34 C-band VV polarized images taken over Lake Tuz in an annual period. SBAS
measurement points, namely distributed scatterers which could be attributed to salt lake
activities were monitored to understand the water-surface movement. These SBAS-based
surface movements were in line with in situ measurements of water level change. The
regression analysis showed a good fit, with an accuracy of 1–5 cm between the SBAS-based
and the in situ measurements which exported vertical units, underlining the potential
of freely available Sentinel-1 data to detect surface water level and salt lake components.
Three salt pans in the lake were investigated to examine the movements of salt, clearly one
of the most important components of salt lakes. It was seen that the thickness of the salt
emerging under the effect of evaporation, starting in April, reached approximately 4 cm.
The amount of salt production was calculated using the thickness of salt, and revealed an
average of 5 million tons throughout the lake. This figure coincides with the number given
by the salt businesses.

The impact of seasonal changes on the SBAS measurements was analyzed, showing
coherence with the methodological data and Sentinel-2 images. A negative correlation was
found between evapotranspiration and coherence values, which determines the quality
of the measurements. Even though the variance of coherence values was high due to the
high evapotranspiration from late August to the end of October, the mean coherence over
the lake was always higher than 0.7, excluding pure water surfaces. The Sentinel-2 images
were then used to study the relationship between the quality of SBAS measurements and
dynamic salt lake components (water, vegetation, moist soil, dry soil, and salt) in the
context of coherence measurements. In the summer season, although the highest decrease
due to evaporation was in the salt and moist soil classes, this value did not fall below 0.7 in
the salt class, or below 0.5 in the moist soil class. On the other hand, in the water class, it
reached higher values with the increase of salt content in water following evaporation.

As a final remark, it should be emphasized that the SBAS method can be used for
observation of the volume dynamics of salt lakes as there is no vegetation and they have
highly reflective classes. It was seen in the study that in order to get good results in
wetlands, the interferogram pairs to be used in the SBAS process were a perpendicular
baseline below 100 meters and a temporal baseline below 30 days. In addition, it was
observed that sufficient data can be obtained to extract information, even in the water
class due to its salt content. The SBAS method has proved suitable for monitoring the
volume dynamics of components, such as water level and salt movements, in salt lakes.
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The NASA–ISRO Synthetic Aperture Radar (NISAR) mission, which will provide data to
its users in both the L band and the S band, will make an important contribution to volume
dynamics and water level for future works.
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