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Abstract: Deep-learning technologies, especially convolutional neural networks (CNNs), have achieved
great success in building extraction from areal images. However, shape details are often lost during
the down-sampling process, which results in discontinuous segmentation or inaccurate segmentation
boundary. In order to compensate for the loss of shape information, two shape-related auxiliary tasks
(i.e., boundary prediction and distance estimation) were jointly learned with building segmentation
task in our proposed network. Meanwhile, two consistency constraint losses were designed based
on the multi-task network to exploit the duality between the mask prediction and two shape-related
information predictions. Specifically, an atrous spatial pyramid pooling (ASPP) module was ap-
pended to the top of the encoder of a U-shaped network to obtain multi-scale features. Based on the
multi-scale features, one regression loss and two classification losses were used for predicting the
distance-transform map, segmentation, and boundary. Two inter-task consistency-loss functions were
constructed to ensure the consistency between distance maps and masks, and the consistency between
masks and boundary maps. Experimental results on three public aerial image data sets showed that
our method achieved superior performance over the recent state-of-the-art models.

Keywords: building extraction; convolutional neural network; multi-task learning; consistency
constraints; multi-scale features

1. Introduction

Automatic building extraction from high-resolution remote-sensing images has im-
portant implications in urban planning, disaster monitoring, and 3D building reconstruc-
tion [1,2]. Due to the diversity of building characteristics (e.g., shape and size) and the
interference of complicated backgrounds in aerial images (e.g., roads and parking lots), it
is difficult to achieve intra-class unification and inter-class discrimination simultaneously
when extracting buildings automatically [3,4]. Therefore, it is still a challenging task to
extract satisfactory buildings from aerial images in an automatic fashion.

Deep convolutional neural networks (DCNNs) have achieved remarkable success,
owing to their great capabilities in learning representative features, which significantly
promote the accuracy of semantic segmentation [5,6]. Pooling or convolution striding
operations are repeated in DCNNs to increase the receptive field and obtain global-level
semantic features; however, the down-sampling process dramatically decreases the initial
image resolution, carrying the risk of losing important spatial details, which may result in
unsatisfactory segmentation results with inaccurate edges. To alleviate the loss of spatial
details and produce accurate segmentation results, computer vision researchers have
designed various encoder–decoder structures for better integration of high-level semantic
information and low-level spatial information [7–10]. The idea to fuse feature maps
generated from the encoder is also widely applied in DCNN-based building extraction
methods, helping to preserve rich spatial details [11,12].
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The multi-level features extracted from various encoder–decoder structures are com-
plementary to semantic segmentation. However, low-level features such as edge infor-
mation directly extracted from a stand-alone mask-segmentation task are redundant and
inaccurate, which may clutter dense pixel-wise classification maps. Recently, researchers
have begun to look into the potential of joint learning of the semantic segmentation task
and shape-related auxiliary tasks. For example, boundary information learned from an
individual network or a unified network is used to improve semantic segmentation perfor-
mance [13–18]. Some studies improve the performance via a multi-task network, including
a mask-segmentation task and a distance-prediction task that describe the geometric shape
of buildings [19,20]. Boundaries reinforce spatial edge information and help produce fine-
grained building-extraction results. The distance-transform map measures how far each
pixel is from the closest building edge. Its values change smoothly in space, providing the
benefit of capturing supplement relationship between neighboring pixels, which are largely
ignored by binary boundary maps. Thus, both of the two sources of auxiliary information
are helpful to compensate for the loss of shape information for building segmentation. In
addition, most existing studies designed various multi-task networks to predict geomet-
ric features and segmentation in a parallel manner without consideration of their dual
relationship. In fact, distance and boundary maps can be derived from existing building
masks for the same image, implying that duality between the mask prediction and two
shape-related information predictions can be modeled explicitly if they are put into a joint
learning framework.

In this paper, we propose a multi-task convolutional network with distance–mask–
boundary consistency constraints (named DMBC-Net) for building extraction from aerial
images. The proposed network considered a consistency constraint between distance maps
and building masks, and the other constraint between building masks and boundaries.
Specifically, an atrous spatial pyramid pooling (ASPP) module [8] was appended to the top
of the encoder of the U-shaped network [7] to obtain contextual information at multiple
scales. Based on the multi-scale features, we performed one regression task and two classi-
fication tasks, which generated distance transform maps, building masks, and boundary
maps, respectively. After obtaining the three predicted maps, two consistency-loss func-
tions were designed: one for modeling the duality between distance maps and building
masks, and the other one for modeling the dual relationship between building masks and
boundary maps. In order to build the distance–mask consistency, a smooth Heaviside
function was utilized to convert the predicted distance map into a building mask. To build
the mask–boundary consistency, an edge-detection operator was implemented to transform
the predicted building mask into a boundary map. DMBC-Net achieved state-of-the-art
performance on three public remote-sensing datasets. The main contributions of this paper
are as follows:

(1) A multi-scale and multi-task network is proposed for building extraction, consisting
of a primary task for building-mask segmentation and two auxiliary tasks for distance
and boundary prediction. The proposed network has the advantage of compensating
for the loss of shape information by capturing specific geometric features (i.e., distance
and boundary information).

(2) The consistency constraints crossing the three tasks (i.e., distance, mask, and boundary
predictions) for building information are considered and constructed in the proposed
multi-task network. Such consistency constraints exploit the duality between the
mask prediction and two shape-related information predictions, and further improve
the building segmentation performance.

(3) Compared with existing methods, the proposed method achieves superior perfor-
mance on both mask- and boundary-based accuracy metrics. Meanwhile, the con-
structed consistency constraint model can be readily plugged into existing basic
segmentation networks.
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2. Related Works
2.1. DCNN-Based Semantic Segmentation

Semantic segmentation refers to assigning a class label to each pixel of an image. In
recent years, deep convolutional neural networks (DCNNs) have been widely used in
semantic segmentation (e.g., the fully convolutional network (FCN) [21]). Down-sampling
operations are repeated in DCNN-based segmentation methods, helping to obtain global-
level semantic features, but carrying the risk of losing important spatial details. In order to
integrate information from different spatial scales, coarse and fine convolutional features
are combined together via channel-wise addition or concatenation operation (e.g., UNet [7],
hourglass networks [22], and RefineNet [10]). In order to extract targets with different
sizes, multi-scale contexts are integrated through multi-dilated convolutions or multi-scale
pooling layers (e.g., DeepLabv3 [23], DeepLabv3+ [24], and PSPNet [25]). Overall, the inte-
gration of multi-level features significantly increases semantic segmentation performance.
In our work, enhanced multi-scale features were generated by combining the ASPP module
with a U-shaped network, and were used for sequential predictions.

2.2. Shape-Aware Segmentation

In addition to designing various DCNN-based networks for multi-scale feature in-
tegration, some researchers have also explored shape-related auxiliary tasks to improve
segmentation performance, such as learning boundary and distance representations.

Applying deep DCNN for boundary detection has been proved to be an effective
solution. CEDN [26] formulates the detection of object boundaries as an image-labeling
task and uses a fully convolutional encoder–decoder network to detect boundaries in an
end-to-end manner. HED [27] and RCF [28] improve boundary-detection performance
by combing hierarchical features extracted from DCNN. Learned boundaries can be used
to refine segmentation. In [13], boundaries were predicted via an additional network.
Then the predicted boundaries were concatenated with images features as inputs for
another segmentation network. In addition, some multi-task learning networks have been
developed to learn boundary maps and segmentation masks simultaneously. Boundary
information was learned using shared semantic features, and was used to construct an
edge-aware optimizer to refine segmentation results in [14,29]. A new two-stream CNN
structure was developed in [30,31] that consisted of a main stream for segmentation and
a shape stream for processing boundary information via attention layers. An auxiliary
edge task was added in the head of Mask R-CNN to improve instance-level segmentation
performance in [32,33].

Distance representations can also be used to supplement shape information for se-
mantic segmentation. In [34], a signed distance representation was introduced for building
extraction. This novel representation with fine-grained labels embeds object boundaries
into a high dimensional space, with the benefit of discriminating regions with different
spatial relations. Some works [35,36] replaced common region maps with distance represen-
tations for segmentation to better preserve object shapes. Ref. [37] introduced a multi-task
network to predict a segmentation mask and a distance map simultaneously, and then
leveraged the shape prior (i.e., object skeleton) reconstructed from the distance map to
refine segmentation masks. The binary boundary map reinforced spatial edge information,
while the gray distance map captured the relationship between neighboring pixels. Thus,
these two shape-related information (i.e., the boundary and distance information) are
helpful to compensate for the lack of shape information for semantic segmentation.

2.3. Building Extraction from Aerial Images

Building extraction from aerial images has been extensively researched in remote
sensing over the past decade. Traditionally, shallow features such as color, spectrum,
edges, shapes, and shadow are extracted from aerial images. Then one or combination of
these features are used to segment buildings via unsupervised technologies (e.g., building
hypotheses [38], region growing [39,40], or supervised classifiers such as support vector
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machine (SVM) [41,42]. Because of the high complexity of building structures in aerial
images and confusion with other ground objects like roads, manual features need to be
carefully designed and tuned in traditional building-extraction methods, often leading to
poor generalization capability.

Recently, most state-of-the-art methods for building extraction are based on deep-
learning technologies, especially DCNN due to its capability of learning highly discrim-
inative features. Earlier DCNN-based building extraction methods [43,44] were based
on patch classification; i.e., labeling a pixel by classifying a patch around the pixel. The
patch-classification process needs to be repeated many times to categorize each pixel in the
whole image, which results in high computational cost. To tackle this problem, some FCN-
based methods [45,46] have been developed to directly handle images of arbitrary size. In
order to alleviate the loss of spatial details and produce accurate building-segmentation
results, a series of networks were designed to integrate multi-scale features based on
U-shape networks [11,47] or a spatial pyramid pooling strategy [48]. Recently, an atten-
tion mechanism [49] was proposed to enhance feature representation for segmentation by
capturing rich contextual dependencies in spatial and channel dimensions. Thus, some
researchers introduced it into segmentation networks to strengthen learned features for
building representation [50,51].

The aforementioned building-extraction methods focus on designing various network
structures with only one segmentation task to capture multi-scale features. Recently,
some works have been proposed by designing shape-related auxiliary tasks to improve
segmentation performance. In [3,4,16,18], researchers develop a multi-task network in
which segmentation masks and boundaries were both deeply supervised for building
segmentation from remote-sensing images. In [19,20], a distance map was combined
with the segmentation map in different encoder–decoder networks in a parallel manner
to improve building-segmentation performance. In these works, either boundaries or
distance maps were integrated with building masks in a parallel manner without explicit
consideration of their relationship. However, in our proposed multi-task network, these
three tasks (i.e., distance-map estimation, building-mask segmentation, and boundary
extraction) were learned jointly to utilize complementary shape information for building
extraction; furthermore, the consistency constraints between the three tasks were explicitly
enforced during training, which helped to generate accurate building-segmentation results.

3. Methodology
3.1. Preliminaries
3.1.1. Different Output Representations

A multi-task learning network was constructed in our method that supplements
shape information for building semantic segmentation during network learning. Figure 1
shows an example of three different representations of building output results, which were
building mask, building boundary, and signed distance map, respectively:

(1) Building mask: The most essential building output representation is the building
mask, in which the class value of a building pixel is labeled as 1, and the value of a
non-building pixel is labeled as 0 (see Figure 1b).

(2) Building boundary: The boundary map is one typical type of building-output rep-
resentation that encodes shape information. The boundary map describes the boundaries
of building. As displayed in Figure 1c, the value of building-boundary pixels was assigned
1, and otherwise was 0 in the boundary map.

(3) Signed distance map: Recently, the distance-transform map has been used as an
alternate of building-output representation to capture geometric properties of building
shapes [34–36]. The distance-transform map measures the distance of each pixel to the
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nearest object boundary in an image. We adopted a variant of the distance-transform map
(i.e., the signed distance map, D(p)) in [33], which is defined as follows:

D(p) =


min
∀q∈∂S

d(p, q) p ∈ Sbuild

0 p ∈ ∂S

− min
∀q∈∂S

d(p, q) p ∈ Sbackground

(1)

where p and q are two different pixels in the building mask; Sbuild and Sbackground denote
the building pixel set and the non-building pixel set, respectively; and ∂S represents the
pixel set of the building boundary. d(p, q) calculates the Euclidean distance between pixel
p and pixel q. In our work, D(p) was normalized to the range of [–1, 1]. The normalization
was implemented via dividing D(p) by the maximum positive value of building pixels or
by the absolute value of minimum negative number for non-building pixels. Figure 1d
shows an example of the signed distance map.
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3.1.2. Consistency Constraints

In this study, building information in terms of three output representations (i.e.,
distance, mask, and boundary maps) were predicted simultaneously through a multi-
task learning network. The different building-output representations could be converted
to each other. Accordingly, the consistency constraints across different tasks should be
considered for the multi-task learning problem. Arguably, explicit enforcement of cross-task
consistencies during training has the potential to promote performance of the predicted
results for all tasks [52]. Take a two-task learning problem as an example: we use x to
denote the input RGB image, y = {y1, y2}, to denote output representations of two different
tasks, and Fx→y =

{
fx→y1(x), fx→y2(x)

}
to denote learned functions to map x onto y. Next,

we give a brief description of the cross-task consistency constraint between y1 and y2. As
described in [52], the triangle loss is the elementary consistency unit, which is defined as
follows:

Ltri
xy1y2

=
∣∣ fx→y1(x)− y1

∣∣+ ∣∣ fx→y2(x)− y2
∣∣+ ∣∣ fy1→y2

(
fx→y1(x)

)
− fx→y2(x)

∣∣ (2)

where |.| denotes the distance function such as L1 norm, and fy1→y2 denotes a function
transforming y1 to y2. The first two terms in the right-hand side are direct losses for training
two tasks. The third term is the consistency term, which enforces that the transformed y2
out of predicted y1 is consistent with directly predicted y2 out of x. With the consistency
term, the multi-task learning of y1 and y2 are not independent, and the duality between
them is exploited. Figure 2a shows the derivation of Ltri

xy1y2
. The convolutional neural

networks are hardly perfect estimators, meaning that the transform function fy1→y2(x)
cannot guarantee perfect mapping y1 onto y2. In order to relax the requirement of an perfect
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mapping function fy1→y2(x) in the consistency term of the triangle loss, the following
triangle inequality is constructed similar to the perceptual loss used in [52]:∣∣ fy1→y2

(
fx→y1(x)

)
− fx→y2(x)

∣∣ ≤ ∣∣ fy1→y2

(
fx→y1(x)

)
− y2

∣∣+ ∣∣ fx→y2(x)− y2
∣∣ (3)∣∣ fy1→y2

(
fx→y1(x)

)
− y2

∣∣ ≤ ∣∣ fy1→y2

(
fx→y1(x)

)
− fy1→y2(y1)

∣∣+ ∣∣ fy1→y2(y1)− y2
∣∣ (4)

Applying the triangle inequality for Equation (2), an inequality can be written as
follows:

Ltri
xy1y2

≤
∣∣ fx→y1(x)− y1

∣∣+ 2
∣∣ fx→y2(x)− y2

∣∣+ ∣∣ fy1→y2

(
fx→y1(x)

)
− fy1→y2(y1)

∣∣+ ∣∣ fy1→y2(y1)− y2
∣∣ (5)

In this inequality, both sides are greater than or equal to 0. We can get the same minimum
value when fx→y1(x) = y1 and fx→y2(x) = y2, thus the upper bound of Equation (5) can
replace Ltri

xy1y2
for optimization. Considering that

∣∣ fy1→y2(y1)− y2
∣∣ is constant and closes to 0,

and
∣∣ fx→y1(x)− y1

∣∣+ ∣∣ fx→y2(x)− y2
∣∣+ ∣∣ fy1→y2

(
fx→y1(x)

)
− fy1→y2(y1)

∣∣ also obtains the
same minimum value with the upper bound when fx→y1(x) = y1 and fx→y2(x) = y2, we
can get a relaxed consistency constraint as follows:

Lrelax
xy1y2

=
∣∣ fx→y1(x)− y1

∣∣+ ∣∣ fx→y2(x)− y2
∣∣+ ∣∣ fy1→y2

(
fx→y1(x)

)
− fy1→y2(y1)

∣∣ (6)

The first two terms in the right-hand side in Equation (6) are direct losses for training
y1 and y2. The third term denotes the consistency term, which measures the consistency
between y1 and y2. Compared with Equation (2), the consistency term in Equation (6)
does not require transforming y1 into y2 strictly using the transforming function fy1→y2 .
Figure 2b shows the derivation of Lrelax

xy1y2
.

From Equations (2) and (6), it can be observed that the transforming function fy1→y2 is
the key to construct consistency constraint, which should be differentiable for the backprop-
agation of network training. In our network, we constructed two differentiable functions
to achieve the conversions between the three different tasks (i.e., distance-map estimation,
building segmentation, and boundary extraction) and incorporate the consistency term∣∣ fy1→y2

(
fx→y1(x)

)
− fy1→y2(y1)

∣∣ of Equation (6) into training.
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3.2. Overall Architecture

Figure 3 illustrates the overall framework of the proposed DMBC-Net, which consists
of one regression head for the distance prediction task and two classification heads for
the building-mask-prediction task and the boundary-prediction task, respectively. DMBC-
Net employs an enhanced encoder–decoder structure for multi-scale feature extraction,
which combines a U-shaped network and an ASPP module. Specifically, the ASPP module,
which encodes multi-scale contextual information via parallel atrous convolutions, is
plugged into the top of U-shaped network-based encoder to enhance convolutional feature
representation. Based on the extracted multi-scale features, DMBC-Net simultaneously
predicts distance maps, building masks, and boundary maps via three prediction heads for
an input image. As distance and boundary maps can be derived from existing building
masks, distance and boundary-prediction tasks should be consistent with the building-
segmentation task. In our work, two inter-task consistency constraints were designed
based on the three predicted maps (i.e., predicted distance, segmentation, and boundary
maps): one inter-task consistency constraint was developed to align the predicted distance
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and building masks, and the other for guaranteeing the correspondence between predicted
masks and boundary maps. To enforce the consistency constraint between the distance
and segmentation tasks, a smooth Heaviside function was used to transform distance
maps to building masks in a differential way (i.e., D→M transforming layer). Similarly,
the M→B transforming layer transforms building masks to boundary maps via a simple
image-difference function, which constructs a mask–boundary consistency constraint. In
the following subsections, the two inter-task consistency constraints will be described in
detail, and the overall loss function for building extraction with consistency constraints
will be introduced.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 22 
 

 

building-segmentation task. In our work, two inter-task consistency constraints were de-
signed based on the three predicted maps (i.e., predicted distance, segmentation, and 
boundary maps): one inter-task consistency constraint was developed to align the pre-
dicted distance and building masks, and the other for guaranteeing the correspondence 
between predicted masks and boundary maps. To enforce the consistency constraint be-
tween the distance and segmentation tasks, a smooth Heaviside function was used to 
transform distance maps to building masks in a differential way (i.e., D→M transforming 
layer). Similarly, the M→B transforming layer transforms building masks to boundary maps 
via a simple image-difference function, which constructs a mask–boundary consistency 
constraint. In the following subsections, the two inter-task consistency constraints will be 
described in detail, and the overall loss function for building extraction with consistency 
constraints will be introduced. 

 
Figure 3. Overall framework of the proposed method. 

3.3. Distance–Mask Consistency Constraint 
In order to generate a predicted building mask, a classification head was applied via 

an 1 ×  1 ×  1 convolutional layer along with a sigmoid activated layer after obtaining 
multi-scale features. To predict the normalized signed distance map, a 1 ×  1 ×  1 con-
volutional layer, along with a tanh activated layer, was applied based on multi-scale fea-
tures. The ground truth of the normalized signed distance map could be derived from the 
ground truth of building masks using Equation (1). To integrate the two predicted maps 
(i.e., normalized signed distance map and building mask) and explore the consistency 
constraints between them, a smooth Heaviside function was introduced to transform the 
predicted distance map to the building mask. The smooth Heaviside function ensured 
that the values of 𝑆௕௨௜௟ௗ were assigned to 1 and the values of 𝑆௕௔௖௞௚௥௢௨௡ௗ were assigned 
to 0 for transformed building masks. It is defined as follows: 𝑓ௗ→௠(𝑥) = 11 + 𝑒ି௫×௞ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑘𝑥) (7)

where 𝑥 represents values in the predicted distance map, and 𝑘 controls the proximity 
of the smoothed function curve to the exact Heaviside function curve; it was set to 1500 in 
our study. 𝑓ௗ→௠(𝑥) can be regarded as a sigmoid function with the input 𝑥 multiplied 
by a factor of k. This function is differentiable and thus could be included in training. 

Figure 3. Overall framework of the proposed method.

3.3. Distance–Mask Consistency Constraint

In order to generate a predicted building mask, a classification head was applied via
an 1× 1× 1 convolutional layer along with a sigmoid activated layer after obtaining multi-
scale features. To predict the normalized signed distance map, a 1× 1× 1 convolutional
layer, along with a tanh activated layer, was applied based on multi-scale features. The
ground truth of the normalized signed distance map could be derived from the ground truth
of building masks using Equation (1). To integrate the two predicted maps (i.e., normalized
signed distance map and building mask) and explore the consistency constraints between
them, a smooth Heaviside function was introduced to transform the predicted distance
map to the building mask. The smooth Heaviside function ensured that the values of Sbuild
were assigned to 1 and the values of Sbackground were assigned to 0 for transformed building
masks. It is defined as follows:

fd→m(x) =
1

1 + e−x×k = sigmoid(kx) (7)

where x represents values in the predicted distance map, and k controls the proximity of
the smoothed function curve to the exact Heaviside function curve; it was set to 1500 in
our study. fd→m(x) can be regarded as a sigmoid function with the input x multiplied by a
factor of k. This function is differentiable and thus could be included in training.

Examples of the predicted distance maps and corresponding transformed building
masks are displayed in Figure 4. The transforming function fd→m(x) aligned the prediction
space of the distance task with the space of the mask-segmentation task. The transformed
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mask map would contain wrongly labeled pixels when the predicted distance map had
wrong signs, thus a task-level prediction difference was introduced for the distance and
mask-prediction tasks. To enforce the consistency between the transformed building mask
of the predicted distance map and the predicted building mask, a distance-mask consistency
loss Ldmc was designed to minimize the difference between them; it is defined as follows:

Ldmc
(

Dpre
)
=
∣∣ fd→m

(
Dpre

)
−Mpre

∣∣ = ∣∣ fd→m
(

Dpre
)
− fd→m

(
Dgt
)∣∣ (8)

where Dpre represents the predicted distance map, Mgt represents the predicted building
mask, and Dgt represents the ground truth of the distance map. In order to avoid the noise
caused by approximate transformation, the distance–mask loss Ldmc is measured using
the consistency term of Equation (6), where the mask ground truth Mgt is derived from
the ground truth of the normalized signed distance map using the transforming function
fd→m(x).
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3.4. Mask–Boundary Consistency Constraint

Boundaries encode critical building-shape information and can be utilized to refine
building masks. In our work, the predicted boundary map generated from the 1× 1× 1
convolutional layer was attached to multi-scale features. In order to model the consistency
constraint between the mask- and boundary-prediction tasks, predicted building masks
were transformed to boundary maps via a difference function. The transformed function
calculated the maximum difference between the predicted building mask and its neighbor-
ing pixels, ensuring that the values of building boundaries were assigned to 1 and other
values were assigned to 0 for the transformed boundary map. The transformed function is
defined as follows:

fm→b(x) = x−minPooling(x; kernel size = 3, stride = 1) (9)

where x represents the probability values of buildings in the predicted building mask. The
kernel size and the stride of minimum pooling operation were respectively set to 3 and 1 to
ensure that the size of the output map was the same as that of the predicted building mask.
This function could also be included in training.

As displayed in Figure 5, the transformed boundary maps were generated based on the
input building masks using the fm→b(x) function, which mapped the predicted building
mask to the boundary map. To enforce the consistency between the transformed boundary
map derived from the predicted building mask and the directly predicted boundary map,
a mask–boundary consistency loss was designed to minimize the difference between them:

Lmbc
(

Mpre
)
=
∣∣ fm→b

(
Mpre

)
− Bpre

∣∣ = ∣∣ fm→b
(

Mpre
)
− fm→b

(
Mgt

)∣∣ (10)

where Mpre represents the predicted building mask, Bpre represents the predicted boundary
map, and Mgt represents the ground truth of the building mask. In order to avoid the noise
caused by approximate transformation, the mask–boundary loss Lmbc was measured using
the consistency term of Equation (6), where the mask ground truth Bgt was derived from
the ground truth of the building mask using the transforming function fm→b(x).
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3.5. Overall Training Loss Function

As displayed in Figure 3, distance, mask, and boundary prediction tasks were jointly
learned with the consideration of their consistency constraints.

The distance-regression task was optimized by two types of loss functions. First, the
smoothL1 loss function was formulated on the predicted normalized signed distance map Dpre:

Ld
(

Dpre
)
= smoothL1

(
Dpre − Dgt

)
(11)

where Dpre denotes the predicted distance map and Dgt denotes the ground truth of the
distance map. Dgt can be automatically generated from the segmentation ground truth
using Equation (1). To penalize the predicted distance map for having wrong signs, the
distance–mask consistency loss as described in Section 3.2 also was constructed. The total
loss for the distance task is formulated as follows:

LD = Ld
(

Dpre
)
+ Ldmc

(
Dpre

)
(12)

For the building-mask-classification task, its loss also consists of two types of loss
functions. One is a common binary cross entropy loss based on the predicted building
mask Mpre, which is defined as follows:

Lm
(

Mpre
)
= −(Mgt × log Mpre +

(
1−Mgt

)
× log

(
1−Mpre

)
) (13)

where Mpre denotes the predicted building mask and Mgt denotes the mask ground truth.
The other loss function is the mask–boundary consistency loss, as defined in Section 3.3,
which was used to improve the learning of boundary in the predicted building mask. The
total loss for the segmentation task is written as:

LM = Lm
(

Mpre
)
+ Lmbc

(
Mpre

)
(14)

For the boundary-classification task, a weighted cross entropy was formulated based
on the predicted boundary map Bpre:

Lb
(

Bpre
)
= −

(
β× Bgt × log Bpre + (1− β)×

(
1− Bgt

)
× log

(
1− Bpre

))
(15)

where Bpre denotes the predicted boundary map and Bgt denotes the boundary ground
truth. β is the proportion of non-boundary pixels in the boundary ground truth, and is
used to alleviate the boundary class imbalance problem.
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Putting the distance loss LD, the mask loss LM, and the boundary loss Lb together,
the overall training loss function for the joint learning of the three tasks is minimized via
back-propagation, which is defined as follows:

Loverall = Ld
(

Dpre
)
+ Ldmc

(
Dpre

)
+ Lm

(
Mpre

)
+ Lmbc

(
Mpre

)
+ Lb

(
Bpre

)
(16)

4. Experimental Results and Discussion
4.1. Datasets and Implementation Details

The proposed DMBC-Net was evaluated on three public aerial image data sets, namely
the WHU aerial building data set [11], the ISPRS Vaihingen data set [53], and the Inria
Aerial Image Labeling data set [54].

The WHU aerial building data set was specially designed for building extraction
from high-resolution aerial images. The data set was collected from Christchurch, New
Zealand, covering an area of more than 450 km2, containing about 187,000 buildings of
different appearance and sizes. It consists of 8189 cropped images sized 512 × 512 pixels
with a down-sampled ground resolution of 0.3 m. The whole images in this data set were
further divided into a training subset including 4736 images, a validation subset including
2416 images, and a test subset including 1036 images. Our experiments were conducted
based on this fixed split data set.

The ISPRS Vaihingen data set is an open benchmark data set for the extraction of
various urban targets, including buildings. The data set contains 33 patches with large
sizes at a ground sampling distance of 9 cm. Each patch consists of a color infrared
orthophoto, a corresponding DSM, and labeled ground truth. In this data set, 16 patches
were divided into a training sub-set, and the remaining 17 patches formed a test sub-set.
We only utilized the orthophotos and corresponding ground truth for our experiments.
Considering computational efficiency, the images in the training set were cropped into
512 × 512 sub-images with an overlap ratio of 0.5. As a result, a new training data set was
reconstructed that contained 1046 sub-images and their corresponding ground truths.

The Inria Aerial Image Labeling data set was collected from 10 cities with different
urban settlements, ranging from densely populated areas to alpine towns. It consists of
180 orthographic aerial RGB images with public label for training and 180 images without
public label for testing. The ground resolution of each image is 0.3 m, and the image
size is 5000 × 5000. Similar to the exiting work in [48,55], the first five images of each
city in training subset were selected for testing, and the remaining images were used for
training. In our experiment, all the images were further divided into 512 × 512 sub-images
during training.

The proposed DMBC-Net was implemented on the Keras platform. The backbone
of the encoder part was initialized with pre-trained ImageNet weights using the VGG19
network. All models were trained on a single NVIDIA GTX 2080Ti GPU. The Adam
optimizer was adopted to optimize the network with a learning rate of 0.0001, beta1 of
0.9, and beta2 of 0.999. Random rotation and flipping and scaling were used for data
augmentation. For these data sets, a mini-batch contained 6 images during training, and
the training times were set as 200 epochs until training convergence.

4.2. Evaluation Metrics

Three typical metrics were used to evaluate the accuracy of the predicted building
masks, which were defined as follows:

precision = TP
TP+FP , recall = TP

TP+FN

F1 = 2×precision×recall
precision+recall , IoU = TP

TP+FP+FN

(17)

where TP denotes true predictions on positive samples, FP denotes false predictions on
positive samples, and FN denotes false predictions on negative samples. In our work, pre-
cision was the proportion of correctly predicted buildings to the total predicted buildings,



Remote Sens. 2021, 13, 2656 12 of 22

while recall was the proportion of correctly predicted buildings to the building ground
truth. The F1 score is the harmonic mean of precision and recall. Intersection over union
(IoU) represents the ratio of intersection pixels (i.e., correctly predicted building pixels)
over the union pixels between the predicted and ground-truth buildings.

In addition to above-mentioned metrics, a contour-based metric according to the
previous studies in [30,56] was adopted to evaluate the quality of the extracted building
boundaries. As mentioned in [30], this metric computes the F-score along the boundaries
of predicted masks under a small distance tolerance. In our experiments, the distance
thresholds were set to pixel widths of 1, 3, 5, and 7.

4.3. Comparison with State-of-the-Art Methods

In this section, we report the performance of the proposed DMBC-Net for building
extraction and compare its performance with the state-of-the-art methods on three public
high-resolution aerial data sets.

(1) The WHU aerial building data set: Seven existing methods were implemented for
comparison using this data set, namely FCN [21], UNet [7], DeepLabV3+ [24], SRI-Net [57],
EU-Net [48], MA-FCN [47], and MAP-Net [51]. The first three methods are commonly used
semantic-segmentation models that achieve satisfactory results on semantic segmentation.
The remaining four comparison methods are the most recent building-extraction methods
based on CNN. These existing building-extraction methods focus on alleviating the scale
effects of buildings in aerial images by designing different multi-scale feature-extraction
networks. For SRI-Net, multi-level features are successively fused by a spatial residual-
inception module. EU-Net extracts multi-scale dense features for building extraction by
applying a dense spatial pyramid pooling module with a compact receptive field. MA-FCN
concatenates the output features at different scales in the decoding part. For MAP-Net, a
multi-parallel network is constructed to learn localization-preserved multi-scale features.

Table 1 shows the building-extraction performance on the WHU aerial building data
set. The first three common semantic segmentation models achieved 86.62%, 88.11%, and
88.26% for the building-mask IoU metric and 51.54%, 52.93%, and 54.63% for the boundary
F1-score with a distance threshold of 1 pixel. Compared with the scores for building masks,
the F1-scores for building boundaries were relatively low, but were reasonable because it
was more difficult to detect accurate building boundaries than building masks because
building boundaries have much fewer pixels than masks. By using carefully designed
multi-scale feature-extraction networks, the performance of building extraction was further
improved. MAP-Net improved building-extraction performance (90.75% for the IoU metric
and 58.26% for the boundary F1-score) with the help of an effective multi-scale feature-
extraction module and a channel-wise attention-enhancement module. The proposed
DMBC-Net made full use of auxiliary shape information. This information can be plugged
into any existing encoder–decoder network, such as DeepLabV3+, which will be discussed
in the Section 4.5. As displayed in Table 1, DMBC-Net obtained 91.66% for the IoU metric
and 61.54% for the boundary F1-score, which outperformed the compared methods.

Table 1. Quantitative comparison with state-of-the-art methods on the WHU aerial data set.

Methods
Building-Mask Metric Boundary

Metric

Precision (%) Recall (%) F1-Score (%) IoU (%) F1-Score (%)

FCN [21] 92.33 93.41 92.87 86.62 51.54
UNet [7] 93.64 93.72 93.68 88.11 52.93

DeepLabV3+ [24] 93.23 94.31 93.77 88.26 54.63
SRI-Net [57] 95.21 93.28 94.23 89.09 -
EU-Net [48] 94.98 95.1 95.04 90.56 -

MA-FCN [47] 95.2 95.1 - 90.7 -
MAP-Net [51] 95.62 94.81 95.21 90.86 58.26

DMBC-Net 96.15 95.16 95.65 91.66 61.54
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(2) The ISPRS Vaihingen data set: This data set is a high-resolution aerial dataset of
complex urban scenes. It is classified manually into six common land cover classes, including
impervious surfaces, building, low vegetation, tree, car, and background. In our experiments,
all the objects except buildings were regarded as the background to detect a single building
category. It should be noted that only the TOP images and corresponding ground truths were
utilized for training the proposed network, and the quality metrics of the building-extraction
results were calculated using the ground truths without eroded boundaries.

We compared the proposed DMBC-Net using this data set with three common
semantic-segmentation models (i.e., FCN, UNet, and DeepLabV3+) and a specially de-
signed building-extraction model (i.e., MAP-Net). Table 2 shows the building-extraction
performance on the ISPRS Vaihingen data set. As indicated in Table 2, FCN obtained lower
performance than UNet, DeepLabV3+, MAP-Net, and DMBC-Net, since the multi-scale
features were not fully considered in FCN. The proposed DMBC-Net outperformed the
other methods, with 89.28% for the IoU metric and 51.43% for the boundary F1-score
with a distance threshold of 3 pixels, which was 1.5% and 1.61% higher, respectively, than
MAP-Net, the second-best method. The quantitative comparison in this data set further
demonstrated the effectiveness of the proposed method in building extraction.

Table 2. Quantitative comparison with state-of-the-art methods on the ISPRS Vaihingen data set.

Methods
Building-Mask Metric Boundary

Metric

Precision (%) Recall (%) F1-Score (%) IoU (%) F1-Score (%)

FCN [21] 93.57 89.43 91.45 84.26 44.41
UNet [7] 93.55 91.24 92.38 85.84 47.28

DeepLabV3+ [24] 93.86 91.83 92.83 86.63 48.86
MAP-Net [51] 94.01 92.98 93.49 87.78 49.82

DMBC-Net 94.78 93.91 94.34 89.28 51.43

(3) The Inria Aerial Image Labeling data set: Using this data set, our proposed net-
work was compared with two popular semantic-segmentation networks (i.e., UNet and
DeepLabV3+) and two carefully designed building-extraction networks (i.e., MCFNN [55]
and EU-Net [48]). As displayed in Table 3, the proposed DMBC-Net obtained 80.93%
for the mask IoU and 39.24% for the boundary F1-score with a distance threshold of 1
pixel. The mask IoU of the proposed network was increased by 4.54%, 3.72%, 1.39%,
and 0.24% compared with those of UNet, DeepLabV3+, MCFNN, and EU-Net, respec-
tively. The boundary F1-score was improved by 3.09% and 2.01% compared with UNet
and DeepLabV3+, respectively. These results also confirmed that our proposed network
with distance–mask–boundary consistency constraints helped improve the performance of
building extraction.

Table 3. Quantitative comparison on the Inria Aerial Image Labeling data set.

Methods
Building-Mask Metric Boundary

Metric

Precision (%) Recall (%) F1-Score (%) IoU (%) F1-Score (%)

UNet [7] 87.07 85.93 86.50 76.20 35.96
DeepLabV3+ [24] 88.23 85.83 87.01 77.02 37.04

MCFNN [55] 88.58 87.91 88.38 79.35 -
EU-Net [48] 90.28 88.14 89.20 80.50 -
DMBC-Net 89.94 88.77 89.35 80.74 39.05

4.4. Ablation Experiments for Inter-Task Consistency Constraints

The proposed network jointly learned the building-mask-segmentation task with two
shape-related auxiliary tasks (i.e., boundary prediction and distance estimation), and the
consistency constraints of the three tasks were modeled in an explicit manner. In order to
investigate the effect of inter-task consistency constraint, three different training networks



Remote Sens. 2021, 13, 2656 14 of 22

were designed and evaluated using the WHU aerial building data set. The three variants
are described as follows:

(1) Mask-Net: Only including the branch for building-mask-prediction task.
(2) DMB-Net (Distance + Mask + Boundary): Including three branches for the distance-,

mask-, and boundary-prediction tasks simultaneously.
(3) DMBC-Net (Distance + Mask + Boundary + Ldmc +Lmbc ): The proposed complete

module with two inter-task consistency constraints.

Mask IoU and boundary F1-score comparisons of the above training modules are listed
in Table 4. As displayed in Table 4, a 1.07% mask IoU improvement was obtained for building
segmentation with the help of the distance task and the boundary task. The inter-task
consistency constraints further improved the segmentation results. The proposed DMBC-Net
with the inter-task consistency constraints obtained the best IoU score of 91.66%, which was
1.96% higher than that of Mask-Net. In addition to the mask IoU metric, boundary F1-scores
with different thresholds also were compared for evaluating boundary alignment. Note that
the boundary F1-score was calculated based on the boundary maps, which were derived by
extracting the contours of the predicted building masks. As shown in Table 4, with the increase
of the distance thresholds, the evaluation region was wider, and the boundary F1-score was
higher. Compared with Mask-Net, a 2.24% improvement of the boundary F1-score with a
distance threshold of 1 pixel was obtained with the help of the distance and boundary tasks.
It also could be also that the use of the inter-task consistency constraints further improved
the boundary F1-score. Compared with Mask-Net, the boundary F1-score achieved a 3.69%
improvement at the most stringent distance threshold.

Table 4. Mask IoU and boundary F1-score comparisons for ablation studies of inter-task consistency
constraints.

Network Mask IoU (%)

Boundary F1-Score (%)

Distance Thresholds (Pixels)

1 3 5 7

Mask-Net 89.70 57.85 82.28 88.82 90.32
DMB-Net 90.77 60.09 84.27 89.36 91.01

DMBC-Net 91.66 61.54 85.83 90.56 92.05

In order to better understand the effect of inter-task consistency constraints, some
visual examples are displayed in Figure 6. In the predicted maps of visual examples,
white pixels represent correctly predicted building pixels, black pixels represent correctly
predicted non-building pixels, red pixels represent falsely predicted building pixels, and
green pixels represent missing building pixels. As shown in Figure 6, the segmentation
results generated from Mask-Net, DMB-Net, and DMBC-Net were compared. It could
be observed that the two shape-related auxiliary tasks helped to generate more complete
building masks by filling the holes and discontinuities of buildings, and more accurate
building boundaries by adjusting the misclassified pixels around building boundaries, and
this effect was further enhanced by the inter-task consistency constraints.
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4.5. Ablation Experiments for Different Base Networks

The proposed inter-task consistency constraints (i.e., distance–mask consistency con-
straint Ld&s and mask–boundary consistency constraint Ls&b ) can be used as plug-and-
play modules and incorporated into existing encoder–decoder networks by inserting two
types of auxiliary supervision (i.e., boundary supervision and distance supervision). The
modules made use of auxiliary information and enhanced the consistencies between the
auxiliary tasks and the primary building-mask-prediction task, thereby improving the
performance of building segmentation.

For a more comprehensive evaluation of the inter-task consistency constraints and the
adopted base network (which inserted the ASPP module into the top of U-shape network-
based encoder), quantitative results of common encoder–decoder networks (including
FCN, UNet, and DeepLabV3+) and our proposed base networks with or without the
inter-task consistency constraint were compared, as shown in Table 5. The proposed
base network achieved a region IoU score of 91.66% and a boundary F1-score with a
distance threshold of 1 pixel of 61.54%, which outperformed the compared three common
encoder–decoder networks. Furthermore, the performance was improved with the help
of the inter-task consistency constraints under different encoder–decoder networks. Take
DeepLabV3+ as an example: the IoU and boundary F1-score were improved by 2.03% and
3.74%, respectively. The comparison results demonstrated that the inter-task consistency
constraints, which can be easily plugged into the existing encoder–decoder networks,
helped to generate more accurate segmentation results.
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Table 5. Comparison of different base networks with or without the inter-task consistency constraints.

Base Network
Inter-Task

Consistency
Constraints

Building-Mask Metric Boundary
Metric

Precision (%) Recall (%) F1-Score (%) IoU (%) F1-Score (%)

FCN
8 92.33 93.41 92.87 86.62 51.54
3 93.20 94.54 93.87 88.44 53.51

UNet
8 93.64 93.72 93.68 88.11 52.93
3 94.75 94.84 94.79 90.10 58.25

DeepLabV3+ 8 93.23 94.31 93.77 88.26 54.63
3 94.98 94.82 94.90 90.29 58.37

UNet + ASPP
8 94.93 94.21 94.57 89.70 57.85
3 96.15 95.16 95.65 91.66 61.54

4.6. Efficiency Analysis

In order to verify the trade-off between accuracy and model complexity of our pro-
posed network, the IoU metric, trainable parameters, and floating-point operations (FLOPs)
were compared among different methods using the WHU data set. In these comparison
methods, UNet, PSPNet, and MAPNet were utilized to extract building masks without con-
sideration of shape-related information, while EaNet [17], BARNet [4], and our proposed
DMBC-Net combined this information.

As displayed in Table 6, the model complexity of UNet was the lowest, but its accuracy
was worse than other methods. MAPNet introduced an attention mechanism for building
extraction, which improved accuracy with lower model complexity. Compared with the
first three methods, the last three methods generated more accurate building-extraction
results by making use of auxiliary shape information and carefully designed feature-
extraction networks. EaNet and BARNet had complicated model complexity because that
encoder part of the two networks used ResNet-101 as the backbone for feature extraction.
DMBC-Net adapted the VGG19 network for feature extraction during the encoder part, thus
greatly reducing the complexity of the model. Compared with these methods, our proposed
DMBC-Net generated higher accuracy of building-extraction results while maintaining
relatively low model complexity.

Table 6. Accuracy and model-complexity comparison of different methods using the WHU data set.

Methods Mask IoU (%) FLOPs (M) Parameters (M)

UNet [7] 88.11 43.59 21.80
PSPNet [25] 88.87 93.48 46.72

MAPNet [51] 90.86 48.09 24.00
EaNet [17] 91.11 232.7 100.52
BARNet [4] 91.51 - 67.49
DMBC-Net 91.66 60.01 30.01

4.7. Qualitative Results

In order to qualitatively evaluate the performance of our proposed network, visual
comparisons of building-extraction results using three public aerial data sets are displayed
in Figures 7–9.

The first and last columns in Figures 7–9 represent the input images and correspond-
ing ground truths. In Figure 7, buildings-extraction results obtained by FCN, UNet,
Deeplabv3+, and the proposed DMBC-Net using the WHU building data set are displayed.
Figure 8 compares building-extraction results using the ISPRS Vaihingen data set obtained
by FCN, Deeplabv3+, MAPNet, and DMBC-Net. Figure 9 displays building-extraction
results using the Inria Aerial Image Labeling data set generated by UNet, DeeplabV3+, and
our proposed DMBC-Net. As displayed in Figures 7–9, our proposed method could extract
accurate building results, although the buildings in these images varied in size, shape, and
appearance. As displayed in the first two rows of Figures 7 and 8, the proposed DMBC-Net
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extracted more complete results, especially for large buildings. For example, in the first-row
image in Figure 7, the large buildings extracted by the compared methods were usually
discontinuous, while DMBC-Net extracted relatively complete building results. The images
in the third and fourth rows in Figures 7 and 8 show that the proposed DMBC-Net had
the capability to separate buildings with adjacent similar backgrounds and generate more
accurate building boundaries. For example, in the first-row image in Figure 8, DMBC-Net
distinguished buildings from adjacent impervious surfaces with a similar appearance.
Building-extraction results for different scenes in the Inria data set are presented in Figure
9, which shows that the proposed DMBC-Net could obtain more complete and accurate
building masks with sharp boundaries compared with other methods. For example, in
the first row of Figure 9, more complete buildings were extracted by DMBC-Net. These
qualitative results further demonstrated the advantage of our proposed method.
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5. Conclusions

In this paper, we have proposed a multi-scale and multi-task network with distance–
mask–boundary consistency constraints (i.e., DMBC-Net) for building extraction from
high-resolution aerial images. The proposed network consisted of one main task of building-
mask prediction and two shape-related tasks of boundary extraction and distance-map
estimation. Two inter-task consistency-loss functions were constructed to further improve
the performance of building extraction. One loss function ensured the consistency between
distance maps and building masks, and the other ensured the consistency between building
masks and boundary maps. In order to build the distance–mask consistency, a smooth
Heaviside function was utilized to convert the predicted distance-transform map into a
segmentation-probability map. To build the mask–boundary consistency, an edge-detection
operator was implemented to transform the predicted building mask into a boundary map.
The experiments on three public high-resolution aerial image data sets (i.e., the WHU
aerial building data set, ISPRS Vaihingen data set, and Inria Aerial Image Labeling data
set) showed that the proposed DMBC-Net preserved building shape well with precise
boundaries, and improved building-segmentation performance over several state-of-the-art
baselines. In addition, it was proved that the proposed inter-task consistency constraints
could be incorporated with existing encoder–decoder networks to achieve satisfactory
building-extraction results. Currently, the proposed network is implemented to extract
buildings at the pixel level. In future work, we will research building extraction at the
instance level to delineate each building boundary accurately.
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