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Abstract: River discharge and width, as essential hydraulic variables and hydrological data, play
a vital role in influencing the water cycle, driving the resulting river topography and supporting
ecological functioning. Insights into bankfull river discharge and bankfull width at fine spatial
resolutions are essential. In this study, 10-m Sentinel-2 multispectral instrument (MSI) imagery and
digital elevation model (DEM) data, as well as in situ discharge and sediment data, are fused to extract
bankfull river widths on the upper Yellow River. Using in situ cross-section morphology data and
flood frequency estimations to calculate the bankfull discharge of 22 hydrological stations, the one-to-
one correspondence relationship between the bankfull discharge data and the image cover data was
determined. The machine learning (ML) method is used to extract water bodies from the Sentinel-2
images in the Google Earth Engine (GEE). The mean overall accuracy was above 0.87, and the mean
kappa value was above 0.75. The research results show that (1) for rivers with high suspended
sediment concentrations, the water quality index (SRMIR-Red) constitutes a higher contribution; the
infrared band performs better in areas with greater amounts of vegetation coverage; and for rivers in
general, the water indices perform best. (2) The effective river width of the extracted connected rivers
is 30 m, which is 3 times the image resolution. The R2, root mean square error (RMSE), and mean
bias error (MBE) of the estimated river width values are 0.991, 7.455 m, and −0.232 m, respectively.
(3) The average river widths of the single-thread sections show linear increases along the main stream,
and the R2 value is 0.801. The river width has a power function relationship with bankfull discharge
and the contributing area, i.e., the downstream hydraulic geometry, with R2 values of 0.782 and 0.630,
respectively. More importantly, the extracted river widths provide basic data to analyze the spatial
distribution of bankfull widths along river networks and other applications in hydrology, fluvial
geomorphology, and stream ecology.

Keywords: Sentinel-2 imagery; bankfull discharge; downstream hydraulic geometry; machine
learning; Google Earth Engine; river width

1. Introduction

Currently, water resource availability is severely deficient, and the protection of water
source areas and estimation of changes in runoff are receiving considerable attention.
Rivers and streams are essential parts of the global hydrologic cycle; 90% of the water
flux transported from continents to the ocean (approximately 37% of the total terrestrial
precipitation) is carried by rivers [1,2]. River discharge and width are essential hydraulic
variables and hydrological data needed to inform river management and restoration efforts.
Bankfull discharge is morphologically critical because it represents the link between within-
bank processes and floodplain processes, and bankfull discharge is frequently used to
estimate the channel forming or dominant discharge of alluvial rivers [3,4]. Therefore,
understanding the dynamics of bankfull discharge and bankfull river width at fine spatial

Remote Sens. 2021, 13, 2650. https://doi.org/10.3390/rs13142650 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5444-4366
https://orcid.org/0000-0003-2551-6727
https://orcid.org/0000-0002-6474-2826
https://orcid.org/0000-0002-7149-0276
https://doi.org/10.3390/rs13142650
https://doi.org/10.3390/rs13142650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13142650
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13142650?type=check_update&version=1


Remote Sens. 2021, 13, 2650 2 of 21

resolutions is essential for applications in hydrology, fluvial geomorphology, and stream
ecology [5].

Remote sensing is an effective method for extracting open-surface inland water bodies
over a variety of spatiotemporal scales compared with other field survey methods em-
ployed in the past decades [6–13]. Among all the extraction methods, the water index
method is widely used to detect open-surface water bodies. In particular, the modified
normalized difference water index (mNDWI) proposed by Xu [14] has been used by many
researchers to extract global water bodies [15,16]; however, this technique produces errors
in mixed pixels with water bodies and other land-cover types [17]. To reduce the effects of
other land-cover types on the successful identification of water bodies, researchers have
improved the accuracy of water detection by simultaneously utilizing several water body
indices [18–20]. Wang et al. combined the mNDWI, land surface water index (LSWI), and
two greenness-based vegetation indices (enhanced vegetation index (EVI) and normalized
difference vegetation index (NDVI)) to detect open-surface water bodies [21]. Many re-
searchers have conducted large-scale, rapid river extraction, and detected river channel
changes based on the Google Earth Engine (GEE) platform [16,21–24]. GEE integrates many
open source satellite images and various derivative products, providing strong support for
efficient water body extraction [20]. However, for rivers with high suspended sediment
concentrations, the existing methods are usually less accurate in river width extraction.
The Yellow River has the highest suspended sediment concentration in the world. To
extract water bodies from the Yellow River with high accuracy, new data and algorithms
are needed to improve upon previously implemented methods.

River width datasets of various spatial resolutions, ranging from the global scale to
the basin scale, have recently been provided by many researchers. Allen and Pavelsky
provided the Landsat-derived North American River Width (NARWidth) dataset, which
contains river width at mean annual discharge and extrapolates the strong relationship
observed between the river width and its total surface area [25]. Allen and Pavelsky
provided the first global river width database under mean annual discharge conditions
based on Landsat imagery and found that rivers and streams likely play a great role
in controlling land–atmosphere fluxes [26]. Li et al. extracted small and open-surface
river information in the upper Yellow River by fusing a digital elevation model (DEM)
and Sentinel-2 imagery corresponding to the average discharge during the summer flood
season [20]. Gleason et al. extracted instantaneous cross-sectional flow widths during mean
daily flow conditions from Landsat imagery and used these measurements to approximate
the at-many-stations hydraulic geometry (AMHG) of the area; then, an ensemble of genetic
algorithms was used to retrieve the instantaneous river discharge for each satellite image
acquisition date [27]. Bankfull discharge is often used as a surrogate for channel forming
or dominant discharge, which is the morphologically significant discharge that shapes
the river [3,28]. Bankfull river width is one of the fundamental measures of stream size,
and it is also a key parameter in the study of river geomorphology. However, most
existing river width datasets were not acquired under bankfull discharge conditions due
to (1) the limited number of high-quality images constrained by the satellite revisitation
periods and the influence of snow and clouds; and (2) limited in situ measurement data
can be used to calculate bankfull discharge. Therefore, attention should be given to river
width extraction under bankfull discharge to better understand the river morphology and
sediment transport spatial distributions, such as in the northeast Qinghai-Tibetan Plateau
(QTP) region.

Yamazaki et al. developed the Global Width Database for Large Rivers (GWD-LR) for
rivers wider than 183 m by applying a new algorithm to the SRTM Water Body Database
and the HydroSHEDS flow direction map [29]. Pavelsky provided a river width dataset of
Tanana for rivers wider than 150 m and calculated the power law relationship between the
river widths and discharge amounts [30]. Allen and Pavelsky proposed the NARWidth
dataset, which contains measurements of >2.4 × 105 km for rivers wider than 30 m. The
researchers extrapolated the strong relationship observed between river width and the
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total surface area measured at different river widths (r2 > 0.99 for 100–2000 m widths)
to narrower rivers and streams [25]. Pekel et al. mapped the global surface water and
global hydromorphic features observed by Landsat satellites with a 30-m resolution over
the past 32 years [15]. Allen and Pavelsky provided the first detailed global river width
database for rivers wider than 90 m [26]. Based on the classification of river size proposed
by Meybeck et al. [31], most of the existing river width datasets focus on medium to large
rivers (small, medium, and large rivers have widths of 40–200, 200–800, and 800–1500 m,
respectively). Very few studies have focused on small to medium river width estimations
in mountainous areas using high-resolution satellite images [32–35]. As the headwaters
of many large rivers, there is an abundance of small rivers with widths less than 200 m
and smaller rivers with widths less than 40 m in the QTP. Therefore, a bankfull river width
dataset with a finer resolution (river width < 90 m) for the QTP is necessary to facilitate
research on fluvial geomorphology and hydrological modeling.

To date, there are no in-depth studies of the river network structure and runoff
characteristics of the QTP, which is known as the “Asian Water Tower”, containing the
headwaters of ten major rivers across the Asian continent, and related research has just
begun [19,34–36]. With the development of global climate change, the QTP has received
more attention, and there is an urgent need for high-precision extraction of small rivers to
understand the dynamic changes and hydraulic geometric relationships of rivers in this
mountainous area. However, most river discharge and width observations are measured at
ground-based gauges in the QTP region [36], which may limit a deeper understanding of
river morphology, sediment transport, and flood routing, as well as their ecological impacts
on the QTP.

In terms of the aforementioned research gaps, regarding the low width extraction pre-
cision of rivers with high suspended sediment concentrations, the less established physical
meaning of the extracted river widths at annual mean discharge and mean discharge of
summer flood season conditions, and the fact that the minimum extracted river widths
are usually >90 m, the following objectives are proposed in this research: (1) obtain the
river widths in the upper Yellow River Basin under bankfull discharge, combining a DEM,
in situ hydrological data, and Sentinel-2 images with high temporal (5 days) and spatial
resolutions (10 m); and (2) detect open-surface water bodies and monitor the downstream
dynamic changes of river width under bankfull discharge conditions on the upper Yellow
River Basin. A detailed technical flowchart is shown in Figure 1.

Figure 1. The technical flowchart of river extraction under bankfull discharge.

Considering the classification results of Meybect et al. [31] and the measured data
from hydrological stations in the upper Yellow River Basin, rivers with widths smaller
than 90 m are seen as small rivers in this study. It is anticipated that this research can close
gaps in areas lacking hydrological data and assist in understanding the changes in river
geometry within river networks.
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2. Study Area and Data Preprocessing
2.1. Study Area

The study area is in the upper Yellow River (upstream from the Anningdu hydrological
station) on the northeastern margin of the QTP. The total drainage area is approximately
250,944.65 km2 (Figure 2). This area is composed of a series of alternating mountains,
valleys, and hills with an elevation range of 1344–6295 m. The elevation shows a decreasing
trend from more than 6200 m in the source area to less than 1400 m in the northeastern
area. There are abundant river landforms and erosional types and many river canyons. A
series of cascade reservoirs, such as Longyangxia, Laxiwa, Liujiaxia, and Lijiaxia, are built
on the mainstream.

Figure 2. Geographical location of the study area and distribution of the hydrological stations and training samples.
Subregions are marked as “First”, “Second”, and “Third”. Hydrological stations are marked with yellow triangles. Water
samples are marked with blue crosses, and nonwater samples are marked with green crosses.

The upper Yellow River is in the mid-latitude area, which has a typical plateau
continental climate with little rain in winter and concentrated precipitation in summer.
Controlled by the southwest and southeast air currents, the distribution of precipitation
during the year is uneven, with large interannual variability. Approximately 60–80% of
precipitation is concentrated from June to September, with the least precipitation occurring
in December and January. Climate changes with terrain height lead to differences in
precipitation and temperature throughout various regions, with small annual temperature
differences, large daily temperature differences, long sunshine hours, and strong solar
radiation days.

The suspended sediment concentrations of the different river sections in the study
area are quite different; these conditions directly affect the extraction accuracy of river
width. From June to October 2017, the suspended sediment concentration in the main
stream of the Yellow River increased from 0.0456 kg/m3 at the HHY4 hydrological station
at the source to 0.5552 kg/m3 at the TNH station; the concentration dropped rapidly to
0.0596 kg/m3 at the GD2 station, and then gradually increased to 1.3898 kg/m3 at the
exit of the AND station. The reasons we use the suspended sediment concentration from
June to October 2017 are (1) this time period corresponds to the Sentinel-2 image selection
period, and the SSCs of the other time periods have no effects on the remote sensing images
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selection; and (2) the sediment transport of the upper reaches of the Yellow River is mainly
concentrated in June to October, accounting for 89–100% of the annual sediment transport.

The study area was divided into three subregions mainly on the basis of the surface
features and river-suspended sediment concentrations. The cloud and snow cover con-
ditions and mountain shadows were also considered (Figure 2). The underlying surface
features and river-suspended sediment concentrations are the main criteria for subregional
classification. The former is based on the national land-use cover change (LUCC2015)
dataset collected in 2015, and the latter is based on the Annual Hydrological Reports of
the People’s Republic of China (2017) [37]. The main underlying surface types and river
suspended sediment concentrations of the three subregions are shown in Table 1.

Table 1. Underlying surface types and water suspended sediment concentrations of the three subregions.

Regions Elevation (m) NHS 1 LUCC2015 2 SSC 3 (kg/m3) CSC 4

First 2177–6295 4 32, 33, 61, 62, 63, 65, 66, 67 0.046–0.556 <20%
Second 1344–4453 4 12, 32, 33, 51, 52, 65 0.199–1.390 <5%
Third 1629–5334 14 12, 22, 31, 32, 33, 52, 64, 67 0.055–0.818 <5%

1 NHS—Number of hydrological stations; 2 LUCC—Land-use cover change; 3 SSC—Suspended sediment concentration; 4 CSC—Cloud and
snow coverage; 12—Dryland, 22—Shrubland, 31/32/33—High/moderate/low coverage grassland, 51—Urban land, 52—Rural residential
land, 61—Sandy land, 62—Gobi land, 63—Saline and alkaline land, 64—Wetland, 65—Bare land, 66—Bare rock land, and 67—Other
unused land.

2.2. Hydrological Data Collection and Processing
2.2.1. Hydrological Data Collection

The data used in this study were acquired from the Annual Hydrological Reports
of the People’s Republic of China (1967–2019), and these data include river width, flow
depth, flow velocity, flow discharge, suspended sediment concentration, and cross-section
information. Referring to the research of Qin et al. [38], detailed information (river names,
where the rivers flow to, longitude, latitude, altitude, contributing area, distance to estuary,
cross sections selected to extract river widths, cross sections of the mainstream without
reservoir effects, and annual peak discharge used to calculate flood frequency) of all 68 in
situ-measured cross sections are presented in Table S1. The locations of the hydrological
stations are represented with yellow triangles in Figure 2.

2.2.2. Bankfull Discharge Calculation

Bankfull river width is one of the basic channel geometry parameters associated with
bankfull discharge. Therefore, the river width under the condition of bankfull discharge is
the most significant in the river width extraction. In situ cross-sectional data (2007–2017)
and in situ discharge data (1967–2019) from the upper Yellow River were used to determine
the bankfull discharge of the main stream and its tributaries (Table S1).

Calculation of Bankfull Discharge Based on Cross-Section Morphology

In this study, cross sections that were less influenced by human activities (e.g., no
hydropower stations or artificial diversions 10 km upstream or downstream of the mea-
sured cross section and located outside the backwater zone of a dam) and extreme events
(e.g., glacial outbursts and landslides) were selected to maximize removal of external
disturbances. The morphology of each cross section was determined based on in situ
measurement data during 2007–2017.

The surveyed bankfull-stage indicator and its corresponding water level were detected
for each cross section. Figure 3a shows a typical cross section of the main stream of the
upper Yellow River at the Mentang (MT) hydrological station. The bankfull stage was
obtained from the bankfull-stage indicator (red dot in Figure 3a) and the bankfull width
was estimated from the surveyed cross-section geometry during 2007–2017. The bankfull
discharge that corresponded to bankfull stage was obtained from either the measured data
or stage–discharge relation (Figure 3b).
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Figure 3. Cross-section morphology of the year 2015 (a) and the water level-discharge rating curve (b) of a typical cross
section at the Mentang hydrological station.

Calculation of Bankfull Discharge Based on Flood Frequency

At many sections, the bankfull indicator is not available on mountainous river reaches,
so bankfull discharges were determined based on flood frequency analysis. The annual
maximum peak discharge of these cross sections was selected, and the Pearson III (P-III)
curve was used to estimate the flood frequencies and corresponding discharges.

Two cases were used to determine the flood frequency and bankfull discharge. For
the first case, there are more than two cross sections located within the same river reach.
The morphology of each cross section was first depicted to see whether there is bankfull
turning points (red point in Figure 3a). Then, the flood frequencies of all cross sections were
estimated with P-III curves. For those cross sections that have no bankfull turning points,
the flood frequencies of these cross sections were assumed to be the same as those cross
sections with bankfull turning points. Lastly, the hydraulics (river widths and discharges)
of the cross sections with no bankfull turning points under bankfull conditions were
estimated through their shared flood frequency.

The second case occurs when there is only one cross section in the same river reach
and when the cross section has no bankfull turning point. The flood frequency of the cross
section was assumed to be the same as those cross sections with bankfull turning points
within the same steam order. Then, the river width and discharge of the cross section were
estimated under bankfull conditions through the shared flood frequency.

Referring to former studies of our research group [38,39] and comprehensively con-
sidering the remote sensing images coverage, we set up a criteria for hydrological data
screening: (1) the completeness of the hydrological dataset (river width, discharge, and
cross-section morphology); (2) have had relatively low anthropogenic influence (e.g., no
hydropower station and artificial diversion 5 km upstream and downstream of the mea-
sured cross section, and located outside the backwater zone of a dam); (3) act as a natural
riverway with perennial drainage; and (4) the quality and coverage of Sentinel-2 images
under bankfull conditions. According to the above criterion, 22 hydrological stations (12 on
the main stream and 10 on the tributaries) were ultimately selected from all 68 stations eval-
uated in this study (see Table S1). All 22 stations are located at single-thread river reaches
though multi-thread reaches do exist in the upper Yellow River Basin. The bankfull dis-
charges, calculation methods, and corresponding flood frequencies of the 22 hydrological
stations are shown in Table 2.
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Table 2. Bankfull discharges, river widths, and flood frequencies of 22 hydrological stations.

Type Station Name Bankfull
Discharge (m3/s)

Bankfull
River Width (m)

Flood Frequency
(%) Method

Mainstream

Huangheyan4 (HHY4) 54.5 87.5 48.8 CSM 1

Jimai4 (JM4) 419.0 149 87.0 CSM
Mentang (MT) 592.0 143 87.0 CSM
Maqu2 (MQ2) 1098.0 269.8 95.2 Flood frequency
Jungong (JG) 1208.5 179 95.2 Flood frequency

Tangnaihai (TNH) 1385.2 150.5 96.2 Flood frequency
Guide2 (GD2) 1460.4 200 84.0 Flood frequency

Xunhua3 (XH3) 1680.0 127.5 74.1 CSM
Xiaochuan (XC) 1660.0 146 83.3 CSM

Shangquan6 (SQ6) 1510.0 231.4 87.0 Flood frequency
Lanzhou (LZ) 1880.0 206 87.0 CSM

Anningdu (AND) 1720.0 162.5 87.0 Flood frequency

Tributary

Qingshui (QS) 22.0 29.1 49.5 CSM
Jiuzhi (JZ) 54.7 46.6 89.6 CSM

Huangyuan (HY) 48.9 34 38.8 CSM
Shuangcheng (SC) 79.5 42.1 78.9 CSM

Luqu (LQ) 155.7 38.9 20.6 Flood frequency
Tangke (TK) 168.2 242 91.6 Flood frequency

Minxian4 (MX4) 408.4 171.2 50.9 Flood frequency
Xining (XN) 161.1 30.5 42.7 Flood frequency

Minhe3 (MH3) 264.7 34.8 42.7 Flood frequency
Tongren (TR) 98.3 34.4 69.9 Flood frequency

1 CSM—Cross-section morphology.

2.3. Sentinel-2 Images Selection and DEM Processing
2.3.1. Sentinel-2 Images Selection under Bankfull Discharge

In order to be as close as possible to the time when the satellite passed through the
hydrological stations, we chose the average discharge between 10 a.m. and 2 p.m. as
the daily discharge (DD). To best represent the bankfull conditions, the dates on which
the daily discharge falls within the bankfull discharge (BD × 1 ± 15%) interval were
extracted from the in situ data of each of the 22 hydrological stations from June to October
in 2017–2019. Then, Sentinel-2 multispectral instrument (MSI) images that can completely
cover the contributing area of each hydrological station on the corresponding dates were
selected. A website (https://scihub.copernicus.eu/userguide/, accessed on 21 February
2021) provides in-depth descriptions of the products and algorithms of Sentinel-2, as well
as their performances. For individual hydrological stations with incomplete image cover
or large amounts of cloud cover, the selection range of DD was expanded to BD × 1 ± 25%
(Figure 4). Figure 4 shows the ratio relationship between the DD of the Sentinel-2 image
cover and the BD of the 22 hydrological stations.

Figure 4 shows that 81.25% of the images have DD values within BD × 1 ± 15%. The
images located in the range of BD × 1 ± 15% to BD × 1 ± 25% are mostly used to
supplement the corner position of the control basins. The left side of the red line in the
figure consists of images of the mainstream of the upper Yellow River, while the right side
comprises images of the tributaries. The DD along the mainstream is closer to the BD than
the tributaries.

2.3.2. River Network Extraction from DEM

Drainage network extraction plays an important role in geomorphologic analyses and
hydrologic modeling studies, among other applications. Bai [40] and Wu et al. [41] used an
enhanced flow enforcement method without elevation modification towards accurate and
efficient drainage network extraction. In this study, the Drainage Network Extraction Tool
(DNET) developed by Wu et al. [41] and Bai [40] was used to extract a total of seven orders

https://scihub.copernicus.eu/userguide/
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of river networks from the SRTM 90-m DEM according to the minimum confluence area of
7.29 km2.

In addition to the rivers, there are other ground features in the study area, such as
roads, buildings, vegetation, and bare land, which directly affect the efficiency and accuracy
of river extraction. River networks with orders of 3–7 were used to construct buffer zones
for the river networks according to a fixed distance, and the Sentinel-2 images under
bankfull discharge conditions were masked using buffer zones. Through this operation, all
the information outside the buffer zone of the river networks can be removed to reduce
the impact of other noise. In this study, based on the measured river widths from the
hydrological data and Google Earth, the buffer distance of the river networks with orders
of 3–4 was set to 1000 m, and the buffer distance of the river networks with orders of
5–7 was set to 3000 m.

Figure 4. The ratios of the daily discharges to bankfull discharges.

3. Method of River Extraction

The underlying surface and suspended sediment concentrations of water bodies di-
rectly affect the river extraction accuracy and the data postprocessing workload [20]. Some
problems exist when using the water body index threshold method to extract water bodies.
When the threshold is too large, despite achieving basically complete water body extraction,
too many noise points exist, and the data postprocessing workload is considerable; when
the threshold is too small, there are fewer noise points, and the postprocessing workload is
less intense, but the water body cannot be completely extracted. To improve the accuracy
of the river extraction while also reducing the workload of data postprocessing, a machine
learning (ML) random forest (RF) algorithm was used to extract the water bodies according
to different underlying surface features and river-suspended sediment concentrations
(Table 1). ML involves the use of data or past experiences to optimize the performance
standards of computer programs. RF is a classification tree-based algorithm proposed by
Breiman [42]. RF is essentially an extension of the traditional decision tree algorithm, and
it improves the classification accuracy of models by combining multiple decision trees.

3.1. Training Samples Selection

Based on Sentinel-2 images under bankfull discharge in the control basin of 22 hy-
drological stations determined in Section 2.3, water and nonwater samples (including
vegetation, residential land, roads, farmland, bare land, and snow) were manually se-
lected from the land-cover images on the GEE platform. The first subregion has a total
of 713 samples (400 water bodies, 313 nonwater bodies); the second subregion has a total
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of 409 samples (202 water bodies, 207 nonwater bodies); and the third subregion has
608 samples (302 water bodies, 306 nonwater bodies) (Figure 2).

3.2. Features Extraction

Considering the characteristics of high altitude, a complex underlying surface, and
a high suspended sediment concentration in the study area, three types of features were
extracted from the DEM and Sentinel-2 imagery. These features are listed as follows:

• Basic information of the DEM and the band reflectivity of Sentinel-2 images (10 features)
are provided, including elevation, aspect, slope, and hillshade derived from the DEM
and the band reflectivities of B2, B3, B4, B8, B11, and B12 from the Sentinel-1 imagery.

• The gray level cooccurrence matrix (GLCM) is employed to derive certain textural
features (180 features). GEE provides a total of 18 matrices, of which 14 are from
Haralick et al. [43] and 4 are from Conners et al. [44]. Please refer to these two papers
for the meaning of each feature and their detailed calculation formulas, as this study
will not explain these features in detail. For the 10 basic features obtained in the first
step, the 18 texture features were extracted from the GEE platform.

• The spectral indices of the Sentinel-2 images (49 features) were constructed based
on the apparent reflectance of the B2, B3, B4, B8, B11, and B12 bands (see Table 3).
Most of the spectral indices originate from the remote sensing index database (https:
//www.indexdatabase.de/, accessed on 21 February 2021).

Table 3. Spectral indices of the Sentinel-2 images.

Spectral Indices Formula Reference

Normalized Difference Water Index NDWI = (B3 − B8)/(B3 + B8) [45]

Modified Normalized Difference Water Index MNDWI = (B3 − B11)/(B3 + B11) [46]

Normalized Difference Water Index 3 NDWI3 = (B8 − B11)/(B8 + B11) [47]

Automated Water Extraction Index
1© AWEIsh = B2 + 2.5 × B3 − 1.5 × (B8 + B12) −

0.25 × B11 [9]
2© AWEInsh = 4 × (B3 − B12) − (0.25 × B8 +

2.75 × B11)

Enhanced Water Index EWI = (B3 − B8 − B12)/(B3 + B8 + B12) [48]

Water Index 2015 WI2015 = 1.7204 + 171 × B3 + 3 × B4 − 70 × B8 −
45 × B11 − 71 × B12 [49]

Revised Normalized Difference Water Index RNDWI = (B12 − B4)/(B12 + B4) [50]

Shadow Water Index SWI = B2 + B3 − B8 [51]

Enhanced Shadow Water Index ESWI = (B2 + B3)/(B8 + B8) [52]

New Comprehensive Water Index NCWI = (7 × B3 − 2 × B2 − 5 × B8)/(7 × B3 + 2
× B2 + 5 × B8) [53]

New Water Index NWI = ((B2 − (B8 + B11 + B12))/(B2 + (B8 + B11 +
B12))) × 100 [54]

Normalized Difference Building-up Index NDBI = (B12 − B8)/(B12 + B8) [55]

Normalized Difference Vegetation Index NDVI = (B8 − B4)/(B8 + B4) [56]

https://www.indexdatabase.de/
https://www.indexdatabase.de/
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Table 3. Cont.

Spectral Indices Formula Reference

Green Normalized Difference Vegetation Index GNDVI = (B8 − B3)/(B8 + B3)

https://www.
indexdatabase.de/,

accessed on 21
February 2021

Ratio Vegetation Index RVI = B8/B4

Enhanced Vegetation Index EVI = 2.5 × (B8−B4)/((B8 + 6.0 × B4−7.5 × B2)
+ 1.0)

Difference Vegetation Index DVI = B8 − B4

Green Difference Vegetation Index GDVI = B8 − B3

Weighted Difference Vegetation Index WDVI = B8 − 0.460 × B4

Renormalized Difference Vegetation Index RDVI = (B8 − B4)/(B8 + B4) × 0.5

Pan Normalized Difference Vegetation Index PNDVI = (B8 − (B3 + B4 + B2))/(B8 +
(B3 + B4 + B2))

Red-Blue Normalized Difference Vegetation Index RBNDVI = (B8 − (B4 + B2))/(B8 + (B4 + B2))

Blue-Normalized Difference Vegetation Index BNDVI = (B8 − B2)/(B8 + B2)

Blue-Wide Dynamic Range Vegetation Index BWDRVI = (0.1 × B8 − B2)/(0.1 × B8 + B2)

Simple Ratio Red/NIR Ratio Vegetation-Index SRRed_NIR = B4/B8

Simple Ratio MIR/Red Eisenhydroxid-Index SRMIR_Red = B12/B4

Soil-Adjusted Vegetation Index mir SAVImir = (B8 − B12) × (1.0 +
0.401)/(B8 + B12 + 0.401)

Adjusted Transformed Soil-Adjusted
Vegetation Index

ATSAVI = 1.22 × (B8 − 1.22 × B4 − 0.03)/(1.22 ×
B8 + B4 − 1.22 × 0.03 + 0.08 × (1.0 + 1.22 × 2.0))

Transformed Soil Adjusted Vegetation Index TSAVI = (0.743 × (B8 − 0.743 × B4 − 0.323))/(B4 +
0.743 × (B8 − 0.323) + 0.413 × (1.0 + 0.743 × 2.0))

PRWI = (B3 + B8)/(B3 − B8)

Soil Composition Index SCI = (B11 − B8)/(B11 + B8)

Ratio Drought Index RDI = B12/B8

Moisture Stress Index 2 MSI2 = B11/B8

Tasselled Cap-wetness WET = 0.1509 × B2 + 0.1973 × B3 + 0.3279 × B4 +
0.3406 × B8−0.7112 × B11−0.4572 × B12

Normalized Burn Ratio NBR = (B8 − B12)/(B8 + B12)

Simple Ratio 520/670 SR520_670 = B2/B4

Simple Ratio 550/800 SR550_800 = B3/B8

Simple Ratio 800/2170 SR800_2170 = B8/B12

Simple Ratio 800/550 SR800_550 = B8/B3

Simple Ratio 833/1649 MSIhyper SR833_1649 = B8/B11

Difference 678/500 D678_500 = B4 − B2

Visible Atmospherically Resistant Index Green VARIgreen = (B3 − B4)/(B3 + B4 − B2)

Iron Oxide IO = B4/B2

Ferric iron, Fe2+ Fe2 = B12/B8 + B3/B4

Ferric iron, Fe3+ Fe3 = B4/B3

Shape Index IF = (2.0 × B4 − B3 − B2)/(B3 − B2)

Coloration Index CI = (B4 − B2)/B4

Redness Index RI = (B4 − B3)/(B4 + B3)

Color Rendering Index 550 CRI550 = B2 × (−1.0) − B3 × (−1.0)

Alteration Alteration = B11/B12

B2—Blue; B3—Green; B4—Red; B8—NIR; B11—MIR; B12—SWIR.

https://www.indexdatabase.de/
https://www.indexdatabase.de/
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3.3. ML-RF Features Selection and Water Extraction

In this study, we first tested for multicollinearity between variables and removed
variables with a Pearson’s r > 0.85 to reduce the redundancy. However, the noise in the
water body extraction results was much more than that of the extraction results without
removing any variables, so we did not remove any variables in the end. The feature
variables that substantially contributed to the model’s accuracy were sorted according to
the mean decrease accuracy (MDA) method in the RF algorithm (http://blog.datadive.
net/selecting-good-features-part-iii-random-forests/, accessed on 21 February 2021). The
MDA method directly measures the impact of each feature on the accuracy of the model.
The main idea of this method is to disrupt the order of the features and measure the impact
of order changes on the accuracy of the model. The order of the feature variables sorted
from top to bottom is shown in Figure 5. The first 6 features were selected to represent all
239 features to construct a feature subset for ML modeling.

Figure 5. Ranking of the importance of the feature variables in three subregions. (a–c) ranking of MDA for the first, second,
and third region; (d–f) ranking of MDG for the first, second, and third region.

http://blog.datadive.net/selecting-good-features-part-iii-random-forests/
http://blog.datadive.net/selecting-good-features-part-iii-random-forests/
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The RF model was used to reorder the feature subsets of the three subregions according
to the value of MDA and the impact of each feature on the Gini node impurity. The six
features of the three subregions in order of importance are aweish, ewi, wi2015, B8, WDVI,
and B11 in the first region; SRMIR_Red, B2, rndwi, B2_diss, CRI550, and Fe2 in the second
region; and B8, B11, wi2015, WDVI, aweish, and GDVI in the third region.

The model-feature ranking shows that for the first region where the river-suspended
sediment concentration is lowest, the underlying surface is mainly bare land (rocks, sandy
land) with low-to-medium grassland coverage, and the top three contributing characteris-
tics are the water body indices. For the second region, where the river-suspended sediment
concentration is highest and the underlying surface features are mainly urban and rural
land, arable land, and low-to-medium grassland coverage, the largest contribution is the
water quality index-SRMIR_Red, followed by the blue band and water body index. This
finding shows that the water quality index greatly contributes to this area with a high
suspended sediment concentration and more bare yellow land. For the third region where
the river suspended sediment concentration ranks in the middle and the underlying surface
is mainly high-coverage grasses and shrubs, the two infrared bands (B8 and B11) contribute
the most, which further supports the sensitive response of the infrared band to water
and vegetation.

3.4. Model Evaluation

The overall accuracy (OA) and kappa coefficient were calculated from the confusion
matrix to characterize the accuracy of the ML modeling classification. The kappa coefficient
is a ratio that represents the error reduction between an evaluated classification and a
completely random classification. In general, the minimum allowable discrimination
accuracy of the kappa coefficient is 0.7 [57]. The formula is shown below:

K =
N·∑r

i xii − ∑(xi+·x+i)

N2 − ∑(xi+·x+i)
(1)

where K is the kappa coefficient, r is the number of rows in the error matrix, xii is the value
on row i and column i (main diagonal), xi+ and x+i are the sum of the i-th row and the i-th
column, respectively, and N is the total number of samples. In most cases, kappa statistics
are used to evaluate the classification effect. Landis and Koch [58] determined that when
the statistical kappa value is within the range of 0.60–0.80, the strength of agreement is
substantial, and when the statistical kappa value is above 0.8, the strength of agreement is
nearly perfect.

A total of 10 repeated models were executed, and the repeated 3-fold cross-validation
results are shown in Table 4.

Table 4. The results of the 3-fold cross-validation.

Region ID OA
Min

OA
Max

OA
Mean

OA
SD

Kappa
Min

Kappa
Max

Kappa
Mean

Kappa
SD

First 0.8654 0.8942 0.8788 0.0101 0.7292 0.7823 0.7530 0.0192
Second 0.8559 0.928 0.8993 0.0245 0.7095 0.8554 0.7978 0.0496
Third 0.8895 0.9379 0.8998 0.0189 0.7791 0.8749 0.8049 0.0292

Combining the information in Table 4 with Landis and Koch’s [58] classification, the
classification results of the three subregions are very good, and the classification OA is in
the order of third > second > first; the kappa average value of the third subregion is >0.8.

4. Results
4.1. River Extraction Results

Although the drainage network from the DEM is used to constrain the image and
remove most of the background noise, there is still strong background noise present in
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certain areas. The extracted river raster results are converted into vectors using ARCGIS
10.2, and then, the individual areas with noise are edited manually. The final editing results
are shown in Figures 6 and 7. Figure 6 shows the result of the extracted connected rivers
above 30 m and the drainage network above order 3 from the DEM; Figure 7 shows the
result of all the extracted rivers (connected + disconnected) and the drainage network
above order 2.

Figure 6. Comparisons between the extracted connected rivers with a width over 30 m and river networks above order
3 that were generated from a 90-m resolution DEM.

Figure 6 shows that all rivers (excluding areas A and B) above order 4 and nearly half
of the order 4 rivers were extracted. The effective connected width of the extracted rivers is
greater than 30 m, which is 3 times the image resolution. Figure 7 also shows that the rivers
extracted by the ML method basically cover all the river networks above order 3 and most
of the order 3 rivers in the 10-m Sentinel-2 images under bankfull discharge. Among them,
area C was not successfully extracted; thus, the original satellite image was checked, and
the area contained a township road. In and around area A, in the northern part of area B,
and on the right side of area C, some rivers of orders 3 and 4 were not successfully extracted.
Based on a check of the satellite images, one reason that this extraction was unsuccessful
was that some river sections were too narrow (river width < 20 m); the other reason was
due to image losses caused by cloud removal processing; and the third explanation was
that the extraction result was too noisy to distinguish the boundary of the river and directly
delete it.
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Figure 7. Comparisons between all the extracted rivers and drainage networks above order 2 that were generated from a
90-m resolution DEM.

4.2. Estimation Accuracy of River Width

Three indicators, i.e., R2, root mean square error (RMSE), and mean bias error (MBE) [20],
were used to quantitatively evaluate the estimated river width. The boundary of the
extracted river vectors in Figure 6 was considered to be the bank of the river. First, the river
center lines were extracted from the final edited river results, and then, the perpendicular
lines of the river center lines were established [26]. There are two intersections between the
perpendicular line and the two banks of the river. For a single-thread river, the distance
between the intersections of the two banks of the river is the river width. For a multiple-
thread river, the river width is the sum of the width of each flow. For each measured cross
section, the resolution of the remote sensing image is 10 m; therefore, 5 m is taken as the
step length, and the average of three consecutive measurements is taken as the final river
width. Figure 8 shows the linear regression between the estimated bankfull river width
and the measured river width from 22 hydrological stations.

The in situ river widths of 22 hydrological stations were used to evaluate the estimated
river widths extracted from remote sensing images (Figure 8). The estimated river width
results are satisfactory. The R2, RMSE, and MBE results are 0.991, 7.455 m, and −0.232 m,
respectively (Figure 8). The RMSE is calculated within one pixel, and the overall river
width is underestimated. The results indicate that the estimated river widths of the single
channel of the mainstream reaches are basically within 300 m.
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Figure 8. Comparison between the estimated river width and in situ-measured data.

4.3. River Width Distribution along the Mainstream of the Upper Yellow River

The machine learning method was used to extract the rivers in the upper Yellow River
from the Sentinel-2 images through the GEE platform. Excluding some small headwaters
at the source of the Yellow River, the main stream of the upper Yellow River is completely
extracted. Within a distance of 2000+ km from the source of the extracted main stream to
the exit of Anningdu station (AND), 5 km was taken as the step length to extract the river
widths along the main stream, excluding lakes and reservoirs. The results are shown in
Figure 9.

Figure 9 shows the distribution characteristics of the estimated bankfull river width
along the main stream of the Yellow River (Figure 9a), as well as the increase in the
contributing area and discharge of each hydrological station (Figure 9b). The single-thread
river reaches and multithread river reaches are staggered. There are four single-thread
river reaches (gray area, Figure 9a) and three multithread river reaches (light blue area,
Figure 9a), though all 12 hydrological stations are in single-thread reaches.

Based on the estimated bankfull river width along the main stream, the mean and
standard deviation (SD) of the river widths of the two river types were calculated with
single threads and multiple threads in different river reaches. The average river width of
the single-thread river reaches shows a stronger linear relationship along the main stream,
with an R2 of 0.801 (Figure 9a). The contributing area and discharge also gradually increase
along the mainstream, and there are positive correlations between the bankfull river width
and the contributing area and discharge. The average river widths of the multithread river
reaches vary greatly and have no obvious regularity.

The estimated river widths, contributing areas, and bankfull discharges of the hydro-
logical stations were selected to study their relationships in two situations: (1) single-thread
river reaches, excluding the hydrological stations affected by reservoirs (Figure 10a,b); and
(2) all river reaches, excluding the hydrological stations affected by reservoirs (Figure 10c,d).
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Figure 9. Distribution characteristics of the (a) bankfull river widths and (b) contributing area and bankfull discharge along
the main stream of the upper Yellow River. BRW—Bankfull river width.

Figure 10b shows a regression curve between the estimated river widths and the
bankfull discharges of the single-thread river reaches, representing a good downstream
hydraulic geometry relationship, with an R2 of 0.782. Since there is a positive correlation
between the contributing areas and the bankfull discharges, a regression curve between
the contributing area and river width is created, which is in the form of a power law, as
shown in Figure 10a, and the R2 is 0.630. In addition, the relationships between the river
widths and the contributing areas and bankfull discharges of all hydrological stations less
affected by reservoirs and human activities were determined, as shown in Figure 10c,d,
with R2 values of 0.462 and 0.662, respectively, which are slightly lower than those of the
single-thread river reaches. The R2 of river width versus bankfull discharge is greater than
the R2 of the river width versus contributing area relationship. This finding confirms the
results of Wilkerson et al. [59], who stated that using the contributing area alone does not
yield a reliable river width versus contributing area relationship.
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Figure 10. Regression relationships between the estimated river widths and the contributing areas and bankfull discharges.
(a,b) The regressions of single-thread river reaches, excluding the hydrological stations affected by reservoirs; (c,d) the
regressions of all river reaches, excluding the hydrological stations affected by reservoirs.

5. Discussions

In this study, the main factors that affected the accuracy and completeness of the river
extraction are summarized as follows. First, the spatial resolution of the image directly
determines the effective river width that can be measured. The effective width of the
extracted rivers is 3 times greater than the image resolution. For small and narrow rivers,
higher-resolution images must be used. The second factor is the quality of the satellite
imagery. The cloud and shadow cover on the image directly affect the effective extraction
of rivers. In the future, more effective algorithms must be developed for cloud and shadow
removal. Third, the suspended sediment concentration of rivers and the water quality
environment should be considered. The river’s suspended sediment concentration is too
high, and the water quality environment is complex, making the difference between the
river’s spectral and textural characteristics and the background small, and the extraction
results are too noisy. Suspended sediment concentration and water quality are important
factors affecting the extraction results.

In addition, river width distribution under bankfull discharge was impossible to obtain
from the sparsely distributed hydrological stations, otherwise a remote sensing technique
needs to be used. The study of the morphologies of alternatively distributed single-thread
and multithread rivers can benefit from the extracted bankfull river widths based on the
method developed in this study. Results indicate that the estimated river widths can be used
as substitutes for the in situ-measured river widths when analyzing downstream hydraulic
geometry. The good downstream hydraulic geometry relationship shows the connection of
channel geometry of single-thread river reaches along the river course, though they are
separated by multithread reaches. Both the geological and geomorphic background and
inflow water and sediment contribute to the formation of river morphology. Results of this
study indicate that inflow water and sediment contribute more to the morphology shaping
of single-thread river reaches. By understanding the variation in bankfull river widths
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along river reaches and across river networks, the effects of discharge and sediment on
channel geometry can be predicted.

6. Conclusions

This work developed a method of extracting bankfull river widths on small rivers
(width < 90 m) in mountainous areas based on remote sensing images and DEM, and
preliminary explored the downstream hydraulic geometries of the main stream of the
upper Yellow River. The main conclusions of this study are described as follows:

(1) The ML method exhibits good performance in the extraction of rivers in the upper
Yellow River, and the extraction integrity can reach order 3 and above for the DEM
drainage network. The mean overall accuracy of three subregions was above 0.87,
and their mean kappa values were all above 0.75. The estimated R2, RMSE, and MBE
of the bankfull river width are 0.991, 7.455 m, and −0.232 m, respectively.

(2) Bankfull river widths of the mainstream were extracted with a step length of 5 km from
the source to the exit. The average river widths of the single-thread sections showed
a good linear relationship, with an R2 value reaching 0.801. There are good power
relationships between the river width and the bankfull discharge and contributing
area, with R2 values of 0.782 and 0.630, respectively.

(3) The effective connected river width was 30 m, which was 3 times the image resolution.
The research results could enrich the river channel width database of the upper Yellow
River and provide basic data for applications in hydrology, fluvial geomorphology,
and stream ecology.

(4) The high spatial resolution of the bankfull river width dataset can be used to
(1) compensate for the missing river width data between two traditional hydrologi-
cal stations, and further analyze the channel geometries of alternatively distributed
single-thread and multithread rivers; (2) analyze downstream hydraulic geometry
and estimate bankfull discharge in river sections without hydrological data; (3) pro-
vide additional boundary conditions for distributed hydrological models to improve
the simulation accuracy; and (4) quantify water carbon emissions [60].

The extraction of rivers below 30 m is relatively poor using the 10-m remote sensing
images. In addition, due to the limitation of hydrological data and remote sensing images
under bankfull discharge, only 22 hydrological stations were used in this study, and the
research results had certain limitations. In the future, radar data will be combined with
optical images with resolutions of 2 m or more to explore the automatic extraction of
mountainous rivers with widths less than 30 m under complex terrains, to obtain the river
width parameters of the whole river network. Simultaneously, the nature of the water body
and the influence of substances in the water combined with the hydrological model will be
considered to improve the accuracy of water body extraction in complex environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13142650/s1, Table S1: Basic information of the cross sections located in the upper Yellow
River Basin.
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