& emote sensing

Article

A Regional Model for Predicting Tropospheric Delay and
Weighted Mean Temperature in China Based on
GRAPES_MESO Forecasting Products

Liying Cao !, Bao Zhang ¥, Junyu Li ?>*{, Yibin Yao 1%, Lilong Liu ?, Qishun Ran ! and Zhaohui Xiong !

check for

updates
Citation: Cao, L.; Zhang, B,; Li, J.;
Yao, Y,; Liu, L.; Ran, Q.; Xiong, Z. A
Regional Model for Predicting
Tropospheric Delay and Weighted
Mean Temperature in China Based on
GRAPES_MESO Forecasting
Products. Remote Sens. 2021, 13, 2644.
https:/ /doi.org/10.3390/rs13132644

Academic Editor: Roeland
Van Malderen

Received: 15 May 2021
Accepted: 2 July 2021
Published: 5 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China;
2018102140024@whu.edu.cn (L.C.); sggzb@whu.edu.cn (B.Z.); ybyao@whu.edu.cn (Y.Y.);
rgs@whu.edu.cn (Q.R.); cehui_xiong@whu.edu.cn (Z.X.)

College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China;
lllong99@glut.edu.cn

*  Correspondence: junyu_li@whu.edu.cn; Tel.: +86-133-0783-5838

Abstract: Accurate tropospheric delay (TD) and weighted mean temperature (Tm) are important for
Global Navigation Satellite System (GNSS) positioning and GNSS meteorology. For this purpose,
plenty of empirical models have been built to provide estimates of TD and Tm. However, these
models cannot resolve TD and Tm variations at synoptic timescales since they only model the
average annual, semi-annual, and/or daily variations. As a result, the existed empirical models
cannot perform well under extreme weather conditions. To address this limitation, we propose
to estimate Zenith Hydrostatic Delay (ZHD), Zenith Wet Delay (ZWD), and Tm directly from the
stratified numerical weather forecasting products of the mesoscale version of the Global/Regional
Assimilation and PrEdiction System (GRAPES_MESOQO) of China. The GRAPES_MESO forecasting
data has a temporal resolution of 3 h, which provides the opportunity to resolve the synoptic variation.
However, it is found that the estimated ZWD and Tm exhibit apparent systematic deviation from in
situ observation-based estimates, which is due to the inherent biases in the GRAPES_MESO data.
To solve this problem, we propose to correct these biases using a linear model and a spherical cap
harmonic model. The estimates after correction are termed as the “CTropGrid” products. When
validated by the radiosonde data, the CTropGrid product has biases of 1.5 mm, —0.7 mm, and
—0.1 K, and Root Mean Square (RMS) error of 8.9 mm, 20.2 mm, and 1.5 K for ZHD, ZWD, and
Tm. Compared to the widely used GPT2w model, the CTropGrid products have improved the
accuracies of ZHD, ZWD, and Tm by 11.9%, 55.6%, and 60.5% in terms of RMS. When validating the
Zenith Tropospheric Delay (ZTD) products (the sum of ZHD and ZWD) using the IGS ZTD data,
the CTropGrid ZTD has a bias of —0.7 mm and an RMS of 35.8 mm, which is 22.7% better than the
GPT2w model in terms of RMS. Besides the accuracy improvements, the CTropGrid products well
model the synoptic-scale variations of ZHD, ZWD, and Tm. Compared to the existing empirical
models that only capture the tidal (seasonal and/or diurnal) variations, the CTropGrid products
capture well the non-tidal variations of ZHD, ZWD, and Tm, which enhances the tropospheric delay
corrections and GNSS water vapor monitoring at synoptic timescales. Therefore, the CTropGrid
product is an important progress in GNSS positioning and GNSS meteorology.

Keywords: GNSS positioning; GNSS meteorology; tropospheric delay; weighted mean temperature

1. Introduction

Global Navigation Satellite System (GNSS) radio signal suffers delay and bending
when passing through the neutral atmosphere. This effect becomes a major error source
in GNSS positioning and is known as the tropospheric delay. The magnitude of the
tropospheric delay increases from ~2 m at the zenith to ~20 m at elevation angle 0° [1].
Therefore, the tropospheric delay must be corrected. In geodesy, the tropospheric delay is
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usually modeled as the product of the delay in the zenith direction (ZTD) and a mapping
function [2]. The ZTD is generally divided into two parts: the zenith hydrostatic delay
(ZHD), which is caused by the atmosphere in hydrostatic equilibrium, and the zenith wet
delay (ZWD), mainly caused by water vapor [3]. The ZWD contains important information
about the water vapor in the atmosphere and can be used to monitor the water vapor
in the atmosphere [4,5]. Askne and Nordius [6] found that the precipitable water vapor
(PWV) can be determined from ZWD using a conversion factor that depends on the
weighted mean temperature (Tm), which means we can use GNSS to monitor PWV with
the presence of Tm. Tregoning and Herring [7] demonstrated that the uncertainty of the
empirical tropospheric delay feeding into the positioning model has considerable impacts
on the parameter determination, including coordinates and tropospheric delays. If the
tropospheric delay is not accurate, the GNSS PWV determination will not be accurate
either. Therefore, accurate tropospheric delay products benefit GNSS positioning and PWV
monitoring. Furthermore, accurate Tm is a premise for PWV monitoring.

Since in situ observations required to estimate tropospheric delay and Tm are not al-
ways available [8-10], great efforts have been made to model empirical tropospheric delay
and Tm. This is important for real-time GNSS applications. Empirical tropospheric delay
models can be divided into two categories, i.e., the meteorological data-dependent models
and the meteorological data free models. The former first model the necessary meteoro-
logical parameters and then use them to estimate tropospheric delay by the Saastamoinen
model [11] or the Hopfield model [12]. This kind model including the UNB3 model [13], the
GPT models [14-17], the TropGrid models [17-19], etc. [20,21]. The latter directly model the
tropospheric delay according to its temporal characteristics, including the IGGtrop mod-
els [5,22], the GZTD models [23,24], the CTrop model [25], etc. [9,26]. Among these models,
the GPT2w model is a canonical model to estimate the tropospheric delay [16,25,27,28]. The
superiority of the GPT2w is benefited from that it takes into account the semi-annual and
annual variations of meteorological parameters and provides the model’s coefficients with
a high resolution (1°). As for estimating Tm, most empirical models belong to the meteoro-
logical data free models. For example, the GTm models [29-31], the GPT2w model [14],
the TropGrid models [17-19], the GGTm model [32], etc. [25,33-36]. The GPT2w model is
one of the most widely used models, with the admirable performance [8,28,37]. However,
these empirical models typically only consider the mean annual, semi-annual, and/or daily
variations in meteorological parameters or tropospheric delay and Tm. These models can
resolve the mean seasonal and/or daily variations of interested parameters, but they all
have a crucial limitation, they cannot resolve the variations at synoptic timescales, resulting
in decreased performance in severe weather conditions. The continuously updating of
Numerical Weather Prediction (NWP) data provides a new way to estimate tropospheric
delay and Tm [1,38-41]. The widely used forecast data are from the European Centre for
Medium-Range Weather Forecasts (ECMWF) and the National Centre for Environmental
Prediction (NCEP). The ECMWF prediction data has been used to determine the Vienna
Mapping Function 1 forecast data (VMF1-FC) [39]. Some studies have suggested that the
NWP data outperformed empirical models in estimating tropospheric delay due to that
the forecasting data can better describe the current tropospheric status than empirical
models [38,39].

In this study, we use the mesoscale version of the Global/Regional Assimilation
and PrEdiction System (GRAPES_MESO) forecasting data from the China Meteorological
Administration to estimate and provide ZHD, ZWD, and Tm in China and its surrounding
areas with a spatial resolution of 0.1° and temporal resolution of 3 h. The new products
address empirical models’ limitation in modeling synoptic variations of ZHD, ZWD, and
Tm and thus provide better tropospheric delay and Tm estimates to assist GNSS positioning
and meteorological applications in China.
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2. Experiment Description and Data Retrieval

Figure 1 shows the scheme for generating ZHD, ZWD, and Tm in China and its
surrounding areas using GRAPES_MESO forecasting products. We first retrieve ZHD,
ZWD, and Tm (labeled as GRAPES ZHD, ZWD, and Tm) at each GRAPES_MESO grid node
using the GRAPES_MESO forecasting products and then interpolate them to radiosonde
stations. The method for retrieval and interpolation are elaborated in Sections 2.2 and 2.3.
Then, we analyze the biases in GRAPES ZHD, ZWD, and Tm and reveal their systematic
biases and propose to correct these biases using a linear model like Equation (9) and a
spherical cap harmonic model like Equation (10), and finally generate the CTropGrid ZHD,
ZWD, and Tm.

( )
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Figure 1. Flowchart of the main steps of generating ZHD, ZWD, and Tm in China and its surrounding
areas using GRAPES_MESO forecasting products.

2.1. Data Description

The research area is 15° N to 55° N and 70° E to 135° E, covering the whole of
mainland China and its surrounding areas. The GRAPES_MESO data, radiosonde data, and
International GNSS Service (IGS) data in the research area are used to generate tropospheric
delay and Tm estimates.
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The GRAPES_MESO is a new generation of numerical weather forecast system for
mesoscale weather prediction developed by the China Meteorological Administration,
which covers the period from 29 December 2015 to the present [42]. The GRAPES_MESO
assimilates GNSS PWV, FY-2E Cloud-Derived Wind, Constellation Observation System for
Meteorology Ionosphere and Climate (COSMIC) data, ground-based radar observations,
etc. The GRAPES_MESO forecast profiles have a horizontal resolution of 0.1° x 0.1°, a
vertical resolution of 8 levels from 1000 hPa to 100 hPa, and a temporal resolution of 3 h.
There are 261,051 grid points in the research area and all available vertical profiles at these
points are used. The forecast dataset is provided at 00:00 UTC and 12:00 UTC daily for
the coming 72 h (with an interval of 3 h). Meteorological profiles of pressure, temperature,
water vapor pressure, and geopotential height in 2017 are used to calculate ZHD, ZWD,
and Tm in this study.

Integrated Global Radiosonde Archive (IGRA) launches radiosonde twice daily at
00:00 UTC and 12:00 UTC from 1958 to present, which means the temporal resolution of
the radiosonde is 12 h. The radiosonde carries sensors to measure profiles of temperature,
humidity, wind speed, etc. Radiosonde profiles are accurate and important data for
evaluating other observations or model estimates. Radiosonde profiles often have a height
resolution of 21 levels from 1000 hPa or surface pressure in hPa to 1 hPa. Radiosonde
profiles of pressure, temperature, relative humidity, and geopotential height at 146 IGRA
stations in 2017 are employed to compute ZHD, ZWD, and Tm for the purpose of validation.

GNSS ZTD data at 17 IGS stations in the research area are used to validate the tropo-
spheric delay estimates. Figure 2 gives the topography of the research area as well as the
used radiosonde stations and GNSS stations.
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Figure 2. Research area with topography and distribution of radiosonde stations and IGS stations.

2.2. Retrieval of ZHD, ZWD, and Tm Using GRAPES_MESO and Radiosonde Data

To start with, we use stratified pressure, temperature, and relative humidity profiles
provided by radiosonde data to calculate water vapor pressure according to [43]. The top
pressure level (100 hPa) of GRAPES_MESO and radiosonde data is usually above 16 km,
above which almost no water vapor is present. This means that the atmosphere above the
top level of the GRAPES_MESO and radiosonde data has no contribution to ZWD or Tm.
Therefore, we retrieve the ZWD and Tm using Equations (1)—(3) [3,4] based on only the
GRAPES_MESO and radiosonde profiles.

ZWD =106 /h Nuwdh (1)
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where N, indicates wet refractivity, k, = 64.79 K/hPa, k3 = 377,600 K%/hPa, e and T
indicate the water vapor pressure (hPa) and the temperature (K) [44].

When computing ZHD, we need to consider the ZHD above the top level since the
whole neutral atmosphere contributes to ZHD. Since the Saastamoinen method
(Equation (4)) [11] has good accuracy in computing ZHD, we use it to compute the ZHD
above the top pressure layer. ZHD below the top level is computed by integrating the
hydrostatic refractivity using Equations (5) and (6) [45]. We obtain the complete ZHD by
summing the results from Equations (4) and (5).

0.0022767 - Py
1— 0.002667 - cos(2¢) — 0.00000028 - /1o,

ZHDtop = 4

where ¢ refers to the latitude (radian), 110y is the height of the top pressure level (m), and
Ptop is the top pressure level (hPa).

ZHD =10"° /h N, - dh (5)

Nh:k1X(P—6)/T (6)

where Nj, is hydrostatic refractivity, ky = 77.604K/hPa, and P represents the atmospheric
pressure (hPa) [44].

Using the above method, we calculate the ZHD, ZWD, and Tm at the lowest pressure
level from GRAPES_MESO forecast products at 00:00 UTC, 03:00 UTC, 06:00 UTC, 09:00
UTC, 12:00 UTC, 15:00 UTC, 18:00 UTC, and 21:00 UTC in the research area in 2017. The
GRAPES_MESO ZHD, ZWD, and Tm (GRAPES product hereafter) have a horizontal
resolution of 0.1° x 0.1° and a temporal resolution of 3 h. We also calculate ZHD, ZWD,
and Tm based on radiosonde profiles at the 146 stations, and ZTD at 17 GNSS stations.

2.3. Interpolating GRAPES Products to Any Location

Since the GRAPES products are provided at regular grid nodes, we need to do interpo-
lation to obtain ZHD, ZWD, and Tm at any location and height. The interpolation includes
vertical and horizontal interpolation. As for horizontal interpolation, we use a bilinear
interpolation method to interpolate interested parameters to the interested location from
the nearest four grid nodes. As for vertical interpolation, we adopt the Gaussian function
(Equation (7)) to do height correction for ZHD and ZWD [46] and the second-order Fourier
function (Equation (8)) for Tm height correction [47] since they have desirable performance

by far.
2 2

Tmy = Tmg + a1 - (cos(w X hy) — cos(w X hy)) + by - (sin(w x hg) — sin(w X hy))
+ap - (cos(2 x w x hg) —cos(2 X w x ht)) + by - (sin(2 x w x hy) —sin(2 X w X hy))

where TD; represents the ZHD or ZWD at target height h;, TDy is the ZHD or ZWD at
grid point height hg, b and c are the Gaussian coefficients to be solved by fitting the TD
profiles to Equation (7); Tm; represents the Tm at target height h;, Tmy is the Tm at grid
point height, a3, by, a3, by, and w are the second-order Fourier coefficients to be deduced by
fitting Tm profiles to Equation (8).

We use the solved coefficients of Equations (7) and (8) to correct the ZHD, ZWD, and
Tm of GRAPES to the heights of the radiosonde profile. Then, we interpolate the corrected
ZHD, ZWD, and Tm to the vertical direction of the site through bilinear interpolation.

®)
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Figure 3 shows an example of interpolated GRAPES product in the vertical direction
at a station (38.47° N, 106.20° E) at 12:00 UTC on 14 January 2017. It can be seen from
Figure 3 that the GRAPES ZHD performs the best agreement with the reference data.
GRAPES Tm does slightly worse, while GRAPES ZWD exhibits the worst performance.
This may be possibly because ZWD/Tm is difficult to calculate accurately due to the high
spatiotemporal variation in water vapor. Given the relatively poor accuracy of calculating
ZWD/Tm, we propose a further analysis of the GRAPES ZWD and Tm.

Radiosonde CTropGrid ‘

10

Height(km)
(o]
=

0.5 1 1.5 2 0 20 40220 240 260 280
ZHD(m) ZWD(mm) Tm(K)

Figure 3. The radiosonde ZHD (a), ZWD (b), and Tm (c) profile and the interpolated ZHD (a), ZWD
(b), and Tm (c) from GRAPES product.

3. Biases in ZWD and Tm

Since the radiosonde based ZHD, ZWD, and Tm have reliable accuracy and are usually
used to assess other estimates [37,43,48-50], we take the radiosonde based ZHD, ZWD,
and Tm as the reference values to validate the GRAPES ZHD, ZWD, and Tm in 2017. After
interpolating the GRAPES ZHD, ZWD, and Tm from the coming 00:00 UTC and 12:00 UTC
to the 146 radiosonde stations using the methods described in Section 2.2, we first calculate
the mean bias, STD, and RMS of the site-specific of the differences between GRAPES-
based and radiosonde-based ZHD, ZWD, and Tm (GRAPES products minus radiosonde
products). Then, we average all the mean bias, STD, and RMS of the sites-specific to get the
station mean bias, standard deviation (STD), and RMS. Three times standard deviation is
used as a criterion to remove outliers. Statistical results demonstrates that GRAPES ZWD
has a bias of 10.5 mm and Tm has a bias of —1.0 K, which are very large biases given the
RMSs of ZWD and Tm are only 25.5 mm and 1.9 K. While GRAPES ZHD has a very small
bias, only 1.5 mm, considering the RMS is 8.9 mm. Besides, the STD of GRAPES ZHD,
ZWD, and Tm is 5.2 mm, 21.2 mm, and 1.5 K, respectively. To investigate the biases in
ZWD and Tm, we calculate daily biases (spatial average of differences between GRAPES
ZWD (Tm) and radiosonde ZWD (Tm) in the same day) and show them in Figure 4. We
also calculate the temporal average of differences at the same station to obtain the spatial
variations of biases, which is shown in Figure 5.
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Figure 4. Daily biases from GRAPES ZWD (a) and Tm (b) in 2017. The dashed red lines indicate the values 0. The dashed
green lines represent the mean bias.
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Figure 5. Spatial distribution of biases of GRAPES ZWD (a) and Tm (b) at 146 radiosonde stations.

Figure 4a displays that the GRAPES ZWD has positive biases nearly every day of
2017 and its bias has clear seasonal pattern, i.e., greater in summer and smaller in winter,
fluctuating around 10 mm. It means that the GRAPES ZWD tends to be larger than the
radiosonde ZWD. Figure 4b presents that the GRAPES Tm has negative biases in the
whole 2017 ranging between —1.5-—0.5 K, suggesting that the GRAPES Tm is always
smaller than the radiosonde Tm. Tm bias does not show any seasonal pattern as the
ZWD bias does. These are because the water vapor pressure has a small negative bias
(—1.7 hPa), and the temperature has a significant negative bias (—8.9 K) (see Figure Al
in Appendix A). Moreover, Figure 5 reveals that the biases in GRAPES ZWD and Tm are
not even in space. Therefore, we need to correct the system biases in GRAPES ZWD and
Tm before we use them. We prefer to make corrections directly to ZWD and Tm rather
than to the meteorological data since the latter are stratified data which means we need to
correct them layer by layer.

4. Bias Correction
4.1. Correcting Systematic Biases between GRAPES-Based and Radiosonde-Based ZWD(Tm)

A linear model has been used to describe the systematic bias between two datasets
in [51] and has also been used to calibrate the tropospheric products provided by the
Technische Universitdt Wien [52]. This method is expressed as Equation (9) in which Y
is the reference value and X is the value to be calibrated. Parameters a and b are used to
quantify the proportional bias and constant bias. In this study, we treat radiosonde ZWD
(Tm) as the reference values and use them to calibrate the GRAPES ZWD (Tm).

Y=a-X+V )

We first interpolate GRAPES ZWD and Tm to the 146 radiosonde stations at 00:00
UTC and 12:00 UTC, thereby forming GRAPES-radiosonde ZWD (Tm) pairs, which are
then used to fit and solve Equation (9) for a and b yearly using the method of least squares.
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We do not change them with time until we re-estimate them. We also perform the t-Test [53]
on the estimates of @ and b to check their statistical significance. The results in Figure A2
show that 100%, 70.0%, 100%, and 62.3% of the stations have p values smaller than 0.05
for ZWD —a, ZWD — b, Tm — a, and Tm — b. This demonstrates the estimated 2 and b
are statistically significant overall. After calibration, the biases of GRAPES ZWD and Tm
are close to zero. Figure 6 shows examples of ZWD and Tm time series before and after
calibration in comparison with the radiosonde result at BAGUIO, WENJIANG, LUCKNOW,
and KASHI stations (see Figure 2) in 2017. Figure 6a,c,e,g show that the calibrated GRAPES
ZWD agrees better with the radiosonde ZWD after calibration. Figure 6b,d,f,h demonstrate
that the calibrated GRAPES Tm has a better agreement with the radiosonde Tm than the
GRAPES Tm. After calibration, the ZWD and Tm biases are largely mitigated and even
eliminated. These suggest clearly that Equation (9) is effective in calibrating the biases in
GRAPES ZWD and Tm.

—— GRAPES —— Radiosonde —— GRAPES_Calibrated

©
~

o
(N

290
280

270 A

300

290

Figure 6. ZWD (a,c,e,g) and Tm (b,d,f h) time series from GRAPES, radiosonde, and calibrated GRAPES at BAGUIO,
WENJIANG, LUCKNOW, and KASHI stations in 2017.

4.2. Interpolating a and b Using a Spherical Cap Harmonic (SCH) Model

To convert the systematic biases correction to any location of GRAPES data (from
point to surface), we propose to use spherical cap harmonic (SCH) functions to fit 4 and
b over all of China using the a and b at 146 radiosonde stations obtained in Section 4.1,
then establish some SCH models for systematic bias correction. The SCH analysis has been



Remote Sens. 2021, 13, 2644

9 of 20

used to represent the geomagnetic fields [54-56], the regional gravity fields [57,58], the
ionospheric total electron content [59,60], the sea level [61], and the PWYV fields [62], etc. In
this study, we use a SCH model to represent the fields of systematic bias embodied by a
and b. The expression of the SCH model is as follows:

1
C= Y T gae %)™ (cos) - (g cos(mA) + W' sin(mA)} (10)

where, C represents a or b. a, is the radius of the earth, which is set as 6,378,137 m.7, 0, A
refer to the radial distance, the colatitude, and the longitude of a point in the spherical
cap coordinate system. Pgi(m) is the associated Legendre function. ny(m) and m denote
the degree and order of the SCH model, respectively. N represents the maximum degree
of the expansion for a or b. g;' and I} are the coefficients of the spherical cap harmonic
expansion to be determined.

In this study, the ny(m) and P::,Z((m) are determined based on the methods presented
in [62]. When we feed a (b), P;’;(m) and spherical cap coordinates into Equation (10), we
obtain linear equations in which ¢/ and hj' are coefficients to be determined. We use a
least-square method to solve these linear equations.

To ensure the reliability of the SCH models, only the reliable a (b) sets are used. The
reliable a (b) is identified by two criteria: i. the GRAPES data and radiosonde data used to
calculate a (b) must have a correlation coefficient greater than 0.8; ii. among the calculated
a (b) sets, reliable a (b) should be within the triple STD of a (b). Moreover, to avoid edge
effects, we add some virtual stations outside mainland China, at which 2 and b are set to 1
and 0.

To determine the best degree and order for the SCH model, we fit the SCH model
with degrees that increase from 0 to 12. Note that the maximum order always equals the
maximum degree in this work. We fit 2 and b for ZWD (Tm) using the SCH models with
increasing degrees, and we calculate the misfit RMS, which is then used to assess the fitting
accuracy. Figure 7 shows the misfit RMS of 2 and b versus degrees of the SCH model for
ZWD. It demonstrates that the misfit RMS of a keeps small when the degree increases from
1 to 10 but sharply increases after degree 10. Figure 7b shows that the misfit RMS of b
decreases when the degree increases from 1 to 11 but sharply increases after degree 11.
This suggests degree 10 or 11 may be optimal for a and b. Figure 8 shows the fitting map
of a and b, in which Figures 6d and 8c exhibit some distortions (marked by red ellipses).
This indicates we overfitted a and b. When we set the degree to 9, the main distortions
disappeared. Therefore, to balance the fitting accuracy and the number of distortions, we
use degree 9 to fit a and b for ZWD. The misfit RMS of a and b versus degrees (see Figure 9)
and the fitting map (see Figure 10) of the SCH model for Tm have a similar phenomenon
to that for ZWD. Thus, we employ degree 7 to fit a and b for Tm.

s b
© a
= |
0.08
2 6@ (b)
O]
o
= 0.04
.L"i‘
2
= 0
© 2 4 6 8 10 12 Ll 2 4 6 8 10 12
g Degree Degree
o

Figure 7. The variation of the RMS of fitting a (a) and b (b) for the GRAPES ZWD at each degree.
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Figure 8. a (a,c) and b (b,d) fields represented by the SCH models with different degrees for the
GRAPES ZWD. Circles mark the radiosonde stations. Red ellipses mark the distortions.
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Figure 10. The distribution of a (a,c,e,g) and b (b,d,fh) for the GRAPES Tm expanded by the
SCH models with different degrees. Circles mark the radiosonde stations. Red ellipses mark the
distortions.

When the degrees are determined, we solve the SCH models by computing ¢;* and
h! for a and b of ZWD and Tm. We then use the obtained SCH models to interpolate a
and b to each GRAPES grid point with a high spatial resolution (0.1° x 0.1°), by which
we correct the GRAPES ZWD and Tm over all of China. The corrected gridded ZWD and
Tm together with the ZHD are provided online and named CTropGrid product. When
using CTropGrid product, users need to do spatial and temporal interpolation. For spatial
interpolation, the vertical interpolation and horizontal interpolation methods in Section 2.3
are recommended, and height correction parameters are provided with the CTropGrid
products. For temporal interpolation, a cubic spline interpolation [39] is advised.
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5. Results
5.1. Validation with Radiosonde Data
5.1.1. Overall Performance

ZHD, ZWD, and Tm derived from radiosonde data at 146 stations in 2017 are em-
ployed to validate the CTropGrid ZHD, ZWD, and Tm in comparison with the GPT2w
model (1° version). Table 1 presents the accuracy information quantified by bias, STD, and
RMS. Comparing the statistical results in Section 3 and Table 1, the CTropGrid ZWD and
Tm have much smaller biases than the GRAPES ones (—0.7 mm vs. 10.5 mm for ZWD,
—0.1 Kvs. —1.0 K for Tm), indicating the bias correction method effectively mitigates the
bias in ZWD and Tm. Due to this, the RMS is also improved (20.2 mm vs. 25.5 mm for
ZWD and 1.5 K vs. 1.9 K for Tm).

Table 1. Statistics of the mean bias, STD, and RMS for ZHD, ZWD, and Tm derived from the CTropGrid and the GPT2w
model at radiosonde stations in the year 2017. The numbers in the square brackets indicate the range of bias, STD, or RMS.

ZHD (mm) ZWD (mm) Tm (K)
Method N ; N
Bias STD RMS Bias STD RMS Bias STD RMS
CTropGrid 1.5 5.2 8.9 —0.7 19.0 20.2 —0.1 1.5 1.5
[—15.8, 35.8] [0.7,7.3] [3.0,35.9] [—24.1,26.2] [7.9,38.3] [10.2,38.7] [—2.2,1.3] [0.7,2.5] [0.7,2.6]
0.6 9.3 10.1 -7.0 43.8 455 -0.7 35 3.8
GPT2w [—4.0,45.4] [4.0,21.0] [4.4,45.8] [—61.8,20.5] [13.8,78.1] [13.8,79.0] [-7.1,3.8] [1.4,5.7] [1.4,7.7]

Table 1 also shows that the CTropGrid ZHD has a slightly larger bias than that of the
GPT2w model (1.5 mm vs. 0.6 mm) but a much smaller mean STD (5.2 mm vs. 9.3 mm)
and RMS (8.9 mm vs. 10.1 mm). The total improvements measured by RMS are 11.9%. The
CTropGrid ZWD and Tm have much smaller biases than the GPT2w ones (—0.7 mm vs.
—7.0 mm for ZWD, —0.1 K vs. —0.7 K for Tm), and the improvements exceed 90.0% for
ZWD and 85.8% for Tm. Moreover, the CTropGrid ZWD and Tm have better STD and
RMS than the GPT2w ZWD and Tm. The CTropGrid ZWD improves the total accuracy
by 55.6% compared to the GPT2w model measured by RMS. The CTropGrid Tm has an
accuracy improvement of 60.5% in terms of RMS against the GPT2w model. Overall, all
the CTropGrid products exhibit apparent superiority to the GPT2w model in estimating
ZHD, ZWD, and Tm.

5.1.2. Spatial Variations of Accuracy

To analyze the spatial variations of the accuracy of the CTropGrid products, the mean
bias, STD, and RMS of ZHD, ZWD, and Tm are computed at the 146 radiosonde sites
and shown in Figure 11. Figure 11a shows that the CTropGrid ZHD has almost the same
amount of positive and negative bias, and the positive bias tends to appear at middle-
and high-latitude regions while the negative bias mainly appears at the low-latitude
regions. Figure 11b,c present that both STD and RMS of the CTropGrid ZHD are uniformly
distributed overall, demonstrating that the accuracy of the CTropGrid ZHD has spatially
even accuracy in the study area.
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Figure 11. Bias, STD, and RMS of CTropGrid ZHD (a—c), ZWD (d—f), and Tm (g-i) at radiosonde stations.

After calibration, the biases of the CTropGrid ZWD and Tm are small and evenly
distributed (Figure 11d,g), indicating that the proposed calibration method eliminates the
spatially varying biases. Figure 11e,f show that the STD and RMS of the CTropGrid ZWD
have similar spatial patterns, i.e., larger at low latitudes and smaller at middle and high
latitudes. This is attributed to that the water vapor at low latitudes is richer and changes
more rapidly than at high latitudes, which causes more uncertainties in ZWD modeling.
Even so, the largest RMS is still below 40 mm.

Figure 11h,i demonstrates that the STD and RMS of CTropGrid Tm also have similar
spatial patterns, i.e., overall larger in the northwest and smaller in the southeast, but all the
RMSs are below 3.0 K. The above results overall imply that the CTropGrid products have
satisfactory accuracy in the whole research area.

Figure 12 presents the percentage RMS reductions of the CTropGrid products relative
to the GPT2w model. Positive values mean RMS is decreased while negative values mean
RMS is increased. It shows that the RMS of the CTropGrid ZHD is reduced at 93 stations
but increased at 53 stations in the very southern regions. The RMS of the CTropGrid
ZWD is reduced at almost all the stations except for a few in the Qinghai-Tibetan Plateau.
The mean RMS reduction of CTropGrid ZWD reaches up to 51.7%. The RMS is mostly
reduced in eastern China and less reduced in western China. The RMS of the CTropGrid
Tm is reduced at all stations with a percentage reduction of 57.7% in average. Similar to
ZWD, the largest RMS reduction appears in eastern China and less reduction in western
China. These further demonstrate that the CTropGrid products have better accuracy and
spatial representation for describing ZHD, ZWD, and Tm than the GPT2w model in the
research area.
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Figure 12. Percentage RMS reductions of the CTropGrid ZHD (a), ZWD (b), and Tm (c) in comparison with the

GPT2w model.

5.1.3. Temporal Variations of Accuracy

We calculate the spatially averaged bias and RMS of the CTropGrid products and the
GPT2w model output daily to understand the temporal variations of the data accuracy.
The results are shown in Figure 13. Figure 13a,b manifest that the bias and RMS of the
CTropGrid ZHD exhibit much smaller temporal variations than the GPT2w results. The
biases are closer to zero, and the RMS is much smaller than the GPT2w results. The
above indicate again that the CTropGrid provides better ZHD products than the GPT2w
model and mitigate the temporal variations of the accuracy. Figure 13c,d show that the
CTropGrid ZWD has much smaller daily bias (around zero) and RMS (around 20 mm)
than the GPT2w model and the improvement is very apparent. In addition, the seasonal
variation in ZWD bias (Figure 4) is greatly weakened due to the systematic bias correction.
Similar improvements can also be observed in Tm (Figure 13e,f). The above results suggest
that the accuracy of the CTropGrid products is very stable in time and thus further verifies
their superiority in computing ZHD, ZWD, and Tm.
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Figure 13. Time series of the accuracy from ZHD (a,b), ZWD (c,d), and Tm (e,f) derived by the CTropGrid products and the

GPT2w model.
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To investigate how the accuracy is improved, a fast Fourier transform (FFT) analysis
is performed on the daily bias and RMS. Before applying FFT, we use a high-pass filter to
remove the signals whose frequency is lower than half month. Then, we focus on analyzing
the synoptic-scale signals. Figure 14 shows the power spectrums of the bias and RMS from
the GPT2w model and from the CTropGrid products. It is observed that both the bias and
RMS of ZHD, ZWD, and Tm from the GPT2w model have strong power at time scales
of a few days (1-10 days), which is attributed to the unmodeled synoptic variations. In
contrast, the bias and RMS of the three parameters from the CTropGrid products have much
weaker power at the same timescales than the GPT2w model, indicating the CTropGrid
products well model the synoptic variations in ZHD, ZWD, and Tm. This is also reflected
in Figure 13 where the TropGrid products’ uncertainties show much fewer variations at
synoptic timescales than the GPT2w model. This is another main advancement of the
CTropGrid products than the GPT2w model.

GPT2w —— CTropGrid
bias Power RMS Power
1.5 - . 1.0 i :
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Figure 14. Power spectrums of bias and RMS for ZHD (a,b), ZWD (c,d), and Tm (e f) derived by the
CTropGrid products and the GPT2w model.

5.2. Validate the CTropGrid Products with IGS ZTD

We employ the IGS ZTD data to validate the CTropGrid ZTD. IGS ZTD estimates
are produced through Bernese GPS Software 5.0 using the precise point positioning (PPP)
method [63]. IGS Final satellite orbit and clock products are used to determine the position
of the satellites and time [63]. Niell model [64] and GMF mapping functions [65] are used
to provide a priori tropospheric delay. The IGS ZTD has a specified accuracy of 4 mm,
which is commonly used to validate other observations and model ZTD [5,9,22,33,38].
The CTropGrid ZTD is obtained by summing the ZHD and the ZWD. For comparison,
we interpolate the CTropGrid ZTD to the epoch of the IGS ZTD using the cubic spline
interpolation method [39]. For each IGS site, the bias, STD, and RMS of the differences
between IGS ZTD and the CTropGrid ZTD are calculated in 2017. The same processing is
also applied to the GPT2w ZTD. The statistical results are displayed in Table 2. It shows
that the absolute bias of the CTropGrid ZTD is slightly improved compared to that of the
GPT2w model (0.7 mm vs. 1.0 mm). The STD of the CTropGrid ZTD is 11.1 mm (24.6%)
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smaller than that of the GPT2w model, and the site-dependent STDs also have a smaller
range (22.7-49.6 mm vs. 17.5-67.0 mm). The RMS of the CTropGrid ZTD is 10.5 mm (22.7%)
smaller than the GPT2w model, and the range of site-dependent RMSs apparently becomes
narrower. All the above demonstrates that the CTropGrid products provide more accurate
and stable tropospheric delay than the GPT2w model, and the overall improvement reaches
22.7% in terms of RMS.

Table 2. Statistics of bias, STD, and RMS for ZTD from the CTropGrid product and the GPT2w model
at IGS stations in the year 2017.

Model Bias (mm) STD (mm) RMS (mm)
1.0 452 463
GPT2w [—13.9,21.8] [17.5, 67.0] [20.9, 67.2]
. 07 34.1 35.8
CTropGrid [—16.8, 23.6] [22.7,49.6] [24.7,49.8]

To further analyze the temporal variations of the CTropGrid ZTD’s accuracy, we also
calculate the spatially averaged bias and RMS of the CTropGrid and the GPT2w ZTD twice
daily and show them in Figure 15. As observed in Figure 15, during the year 2017, most
of the biases and RMSs of the CTropGrid ZTD are smaller than that of the GPT2w ZTD.
In addition, the bias and RMS of ZTD from the CTropGrid products have weaker sub-
daily and seasonal variations than the GPT2w model. These indicate that the CTropGrid
products are more accurate and stable than the GPT2w model for forecasting ZTD.

|——CTropGrid —— GPT2w|

T T T T T T T

bt

Figure 15. Time series of twice-daily bias (a) and RMS (b) of the CTropGrid and the GPT2w ZTD
tested by IGS ZTD data in 2017.

6. Conclusions

We yield the zenith hydrostatic/wet delay and weighted mean temperature products
based on GRAPES_MESO forecasting products in China but found systematic biases in
ZWD and Tm. We then use a linear model and a spherical cap harmonic model to calibrate
the biases. Finally, we provide calibrated ZHD, ZWD, and Tm products at 0.1° grid nodes
with a temporal resolution of 3 h and term them the “CTropGrid” products.
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Validated by the radiosonde data, the CTropGrid products improve the total accuracy
of ZHD by 11.9% in terms of RMS compared to the GPT2w model. The improvements be-
come 55.6% and 60.5% for the ZWD and Tm. The CTropGrid products also greatly reduced
the biases for ZWD and Tm, the reductions are as high as 90.0% and 85.8%. Validated by
the IGS ZTD data, the absolute bias and RMS of the ZTD from the CTropGrid are 30% and
22.7% smaller than that of the GPT2w model. All these results verify that the CTropGrid
products are more accurate and stable than the GPT2w model in estimating tropospheric
delay and Tm. This great improvement is attributed to the well modeling of the synoptic
variations in the three parameters, which cannot be modeled by the empirical models.

Since the CTropGrid products can provide better forecasted tropospheric delay and
Tm products than the empirical models, it will be a very useful dataset for real-time GNSS
applications and GNSS meteorology. Due to this, the CTropGrid products are a meaningful
contribution to the GNSS community.
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Figure A1. Daily biases from GRAPES water vapor pressure (a) and temperature (b) in 2017. The
dashed red lines indicate the values 0. The dashed green lines represent the mean bias. The reference
values are from radiosonde data.
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Figure A2. The p values of statistical significance from the estimated 2 and b for GRAPES-radiosonde
ZWD (a,b) and Tm (c,d). The statistical significance is tested using t-Test with 95% confidence level.
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