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Abstract: Interferometric synthetic aperture radar (InSAR) has become an increasingly recognized
remote sensing technology for earth surface monitoring. Slow and subtle terrain displacements can be
estimated using time-series InSAR (TSInSAR) data. However, a substantial increase in the availability
of exclusive time series data necessitates the development of more efficient and effective algorithms.
Research in these areas is usually carried out by solving complicated optimization problems, which
is very computationally expensive and time-consuming. This work proposes a two-stage black-box
optimization framework to jointly estimate the average ground deformation rate and terrain digital
elevation model (DEM) error. The method performs an iterative grid search (IGS) to acquire coarse
candidate solutions, and then a covariance matrix adaptive evolution strategy (CMAES) is adopted
to obtain the final local results. The performance of our method is evaluated using both simulated
and real datasets. Both quantitative and qualitative comparisons using different optimizers support
the reliability and effectiveness of our work. The proposed IGS-CMAES achieves higher accuracy
with a significantly fewer number of objective function evaluations than other established algorithms.
It offers the possibility for wide-area monitoring, where high precision and real-time processing
is essential.

Keywords: InSAR; TSInSAR; grid search; deformation estimation; stochastic optimization

1. Introduction

Over the years, there has been an increasing interest in interferometric synthetic
aperture radar (InSAR) techniques. An InSAR interferogram represents the phase difference
between two SAR images, taken at different temporal times looking at the same ground
location on Earth. It has provided significant advances in measuring the Earth’s surface
deformation and creating precise digital elevation models (DEM). In early studies, most
InSAR applications focused on analyzing a single interferogram derived from a pair of SAR
images [1,2]. Later, researchers noted that some radar targets’ backscattering characteristics
could maintain stability for a long period [1]. Hence, involving the analysis of multiple
acquisitions in time could reduce the effects of temporal and geometric decorrelation
and atmospheric disturbances. Since then, time-series InSAR (TSInSAR) techniques have
emerged as a powerful strategy to monitor slow and subtle terrain displacements [3].
Several studies [4–7] have investigated the signal model of interferometric phase and have
shown that observed interferometric phases are affected by different factors—imaging
geometry, topography, atmospheric delay and ground deformation. Among these factors,
the deformation and topography components are the valuable contributors because they
contain information to monitor the ground movement and describe surface height. When
an external DEM is adopted to remove the phase created at the Earth curvature step,
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DEM error should be estimated to revise the external DEM model in order to reduce the
topography effects. Unfortunately, deformation and DEM error are also known to be more
challenging to be estimated than other types of signals [8]. In general, TSInSAR techniques
use SAR images acquired for the same ground area on different dates to construct a stack
of N interferograms. The signal phase of single-referenced (aka master) images’ resolution
cell on the ground is a function of multiple-phase contributors, and the signals of interest
can be estimated from the same resolution cell, taken at separate times [4]. However, each
cell is represented as a wrapped phase, and the estimation with phase cycle ambiguities
makes this task very challenging. There are inevitably lots of calculations, especially when
processing wide-area regions [9]. Moreover, a range of processing methods requires manual
inspection and specialist interpretation [10] to achieve quality control and could limit the
timely dissemination of monitoring. Therefore, it is crucial to have an accurate, efficient
and robust algorithm.

Estimating ground deformation and DEM error is usually defined as an ill-posed
optimization problem by its very nature. One commonly cited difficulty is that temporal
signals may be incoherent and impossible to derive any useful information due to the
temporal decorrelation in a real-world scenario. One way of resolving this issue is to
estimate temporal coherence and then only study the temporally coherent targets on the
ground. Ferretti et al. [5,11] proposed permanent scatterer interferometry (PSI) in the early
2000s; it estimates the deformation parameters lying on the identified permanent scatters
that are coherent over the temporal stack. Under PSI’s scope, Werner et al. [12] applied
interferometric point target analysis (IPTA) with a two-dimensional regression algorithm to
model the relations between the perpendicular baseline and temporal baseline. It estimates
the terrain height and deformation using linear regression analysis. Another integer least
squares-based technique—Spatio-Temporal Unwrapping Network (STUN) [13]—was pro-
posed to solve the phase ambiguity problem via the least-squares ambiguity decorrelation
adjustment (LAMBDA) method followed by a sequential least-squares search. However,
both approaches require extensive search or complex transform computation to resolve
the phase ambiguities. Persistent scatterer pairs InSAR (PSP) [14] and quasi-persistent
scatterer (QPS) [15] avoided the complex parameter modeling by directly searching the
parameters in the solution space. Although these algorithms are simple and flexible, they
have a trade-off on accuracy. Especially for the large and complex deformation scenarios,
their estimates are prone to be trapped in a local optimal solution [9].

Berardino et al. [16] introduced a small baseline subset (SBAS) algorithm to produce
a mean deformation map of multilooked coherent pixels. However, it obtains deforma-
tion parameters using least square (LS) optimization from the unwrapped phase [17,18],
while PSI-based methods [6,9,19] can process both the wrapped and unwrapped phases.
Although integrated PS-SBAS methods [3,20,21] have been proposed, they reply on the
unwrapped phase and, assuming the small enough baselines and arcs to avoid phase
ambiguity of the phase gradient between two permanent scatterers. The main limitation
of SBAS-based methods is their dependency on phase unwrapping, which is very time-
consuming on its own and requires a previous known displacement pixel as a reference,
which may introduce errors for subsequent parameter estimation [17]. It is worth mention-
ing that the wrapped phase can cause a non-continuous searching space. Hence, retrieval
of each absolute phase contribution from wrapped measures that are ambiguous by integer-
multiples of 2π is a very challenging task [22]. Searching the solution in the unwrapped
phase is more straightforward than in the wrapped phase. However, phase unwrapping
itself is a computation-consuming step that ideally should be avoided in time-sensitive
applications. Moreover, those methods are just doing a 2D phase unwrapping without
considering any temporal information, which can be very error prone and lead to large
unwrapping errors and inability when measuring fast motion in subsequent processing.

A new direction has recently emerged in this topic. In [9], the authors tried to tackle
parameter estimation by a stochastic optimizer—simulated annealing (SA). SA is a ran-
dom search-based black-box optimizer that works on a given acceptance criterion (object
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function) to guide the search direction in a solution space. Following the traditional direct
search methods, it avoids complex signal modeling and, at the same time, borrows the ad-
vantages of SA to reduce the local extremum effects when dealing with the wrapped phase.
This work shows promising and better results compared to conventional gradient-based or
direct grid searching algorithms by deploying a novel gradient-free optimization technique.
However, SA is still a local optimizer, similar to many other stochastic optimizers, that
is not guaranteed for global convergence. Note that, in real scenarios, the value range
of estimated signals can be broad, e.g., mining sites and urban infrastructure, which can
easily generate hundreds of meters DEM error due to open-pit mining. It also holds for the
deformation rate because the ground is continuously disturbed, and pit walls tend to sag.
To the best of our knowledge, most previous works have not considered such a large range
of values. Hence, when target areas have large-scale deformation and DEM error, those
methods could become inefficient and not robust to precisely estimate the results because
of the increasing searching space.

Investigations in [9] have demonstrated that it is feasible to use gradient-free optimiza-
tion for deformation rate and DEM error estimation on a set of PS locations in TSInSAR.
Their work’s main objective is to explore further the potential of using another advanced
stochastic optimizer—covariance matrix adaptation evolution strategy (CMAES)—for this
task. Moreover, we also demonstrate a global optimization strategy to enable a broad
range of possible deformation rates and DEM error estimation. Our main contributions
are: (1) We reformat the task as a two-stage two-dimensional black-box optimization task.
At the first exploration stage, an iterative grid search (IGS) policy is proposed to obtain
coarse candidate solutions, which have a high chance to be close to global optima. Next,
we employ CMAES for a fast local optimization at the second exploitation stage. (2) We
present a hybrid benchmark simulation dataset that combines synthetic motion signals and
DEM errors to real-world baseline parameters. Our proposed IGS-CMAES method has
been assessed on both simulated data and real-world satellite data. We also compared our
IGS-CMAES with various local and global optimization methods. The comparison results
demonstrate the effectiveness and robustness of our method.

In this paper, we first briefly review the mathematical phase model and definition
of our optimization problem. Then, the CMAES algorithm is introduced, followed by a
detailed explanation of the proposed IGS-CMAES method. Lastly, experimental results
and discussion are presented before the conclusion.

2. Materials and Methods
2.1. Mathematical Modelling for InSAR Phase

Interferometric phase modeling has been investigated in the literature [4–7]. In-
terferometric phase measurements are affected by various factors—imaging geometry,
topography, atmospheric delay and ground deformation. For a given pixel location l in
TSInSAR, interferometric phase can be represented in a differential interferogram [23] as
follows:

φl = φde f ,l + ∆φtopo,l + ∆φatmo,l + ∆φorbit,l + φnoise,l

φ̂l = arctan2(sin(φl), cos(φl))
(1)

where φde f represents phase components related to ground deformation motion, φtopo is
the topographic phase contribution (DEM error when applied external DEM), φatmo refers
to the differences of atmospheric distortion between two single-look-complex (SLC) scenes,
φorbit denotes imprecise satellite orbit data when forward modeling the contributions of
the Earth’s ellipsoidal surface, and φnoise describes decorrelation noise. The observed
phase is also wrapped as φ̂l . A general PSI processing chain eventually removes the flat-
earth phase using satellite orbit data, and a collection of spatial and temporal filtering
routines are adopted to reduce noise and remove other contaminant signals that are not
deformation or DEM error [24–26]. Several established techniques are also described
to mitigate the atmospheric phase contribution by deploying the toolbox for reducing
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atmospheric InSAR noise (TRAIN) [27,28]. It is known that both φorbit and φatmo could
create long-scale correlated signals in the spatial domain. Hence, those phase contributions
can be further reduced by giving double difference phase between two neighborhood PS
pixels [9] as follows:

∆φk
i,j = ∆φk

topo,(i,j) + ∆φk
de f ,(i,j) k = 1, ..., N (2)

It describes the arc’s double difference phase constructed by a pair of PS pixels i, j in in-
terferogram k from a time-series stack with a length of N. In interferogram k, ∆φk

topo,(i,j) is the

relative height between pixel i and j, and ∆φk
de f ,(i,j) is the relative deformation, respectively.

Furthermore, for each PS pixel, its topographic phase component can be modeled
as a linear function of the spatial perpendicular baseline (B⊥) according to the geometry
relation of InSAR for each interferogram as:

φk
topo = −

4π

λ

Bk
⊥

R · sinθ
· h = convtopo · Bk

⊥ · h (3)

where λ is the transmitted radar wavelength, R is slant range distance, θ denotes satellite
incidence angle. Here, h is the orthometric height between two SLCs. We use convtopo to
denote the unit conversion factor for a given stack. Similar to average ground deformation
rate (mr), which is used for the modeling deformation phase as follows:

φk
de f = −

4π

λ
(d f irst − dsecond)k ·mr

= −4π

λ
∆daysk ·mr

= convde f · ∆daysk ·mr

(4)

where ∆days is the temporal baseline between two acquisitions on distinct days (d f irst, dsecond)
used to form the interferogram, and convde f is unit conversion factor. We can substitute
Equations (3) and (4) into Equation (2), and then add an extra integer variable w to handle
phase ambiguity between pixel i and j because of phase wrapping:

∆φk
i,j = convde f · ∆daysk · ∆mk

r(i,j) + convtopo · Bk
⊥ · ∆hk

(i,j) + 2π · wk
i,j k = 1, ..., N (5)

Due to the nature of microwave, the observed phase is wrapped as in Equation (1),
there is an extra integer variable w that refers to phase ambiguity. It leads to N equations
with more than N parameters that have to be resolved. That is why Equation (5) cannot
be solved efficiently by a simple matrix inversion. As aforementioned, conventional PSI
techniques consider this parameter fitting task as a two-dimensional regression problem or
an integer optimization problem. Those methods try to map the integer least square (ILS)
and two-dimensional solution search to the wrapped phase domain [14,15,29]. However,
algorithms based on direct search are straightforward and do not require any complex
modeling. They suffer from inefficient computation and are easily affected by local optima
when dealing with complex baseline situation.

2.2. Proposed Method
2.2.1. Definition of Optimization Problem

In PSI frameworks such as DePSI (Delft PSI processing package) and StaMPS (Stanford
method for persistent scatterers) [30,31], signal separation is one of the essential steps in
the whole processing pipeline. Parameters estimation is applied in an iterative manner
combined with a collection of spatial and temporal filtering routines to obtain a precise final
estimate. A more efficient and accurate parameter estimation algorithm could accelerate
the whole processing pipeline by reducing iterates. Detailed descriptions of PSI method-
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ologies can be found in [1,23]. Our main focus is studying parameter estimation of linear
deformation rate and DEM error upon PS time series, for the following reasons. (1) There
are many state-of-the-art methods for filtering random noise and suppressing atmosphere
components from a stack of interferograms [25,27,32–34]. (2) Recently, satellite facilities can
provide accurate enough orbits for practical usage [35–37]. (3) It is very common to divide
a complicated optimization problem into sub-problems, which are easier to be solved than
the original problem [38,39]. (4) Arc-based methods have to apply prior knowledge to pick
reference points and then resolve each coherent pair’s parameters [17]. The main limitation
of these methods is that it only gives the relative signal estimation between two PS points,
which requires prior known deformation information of at least one PS point to derive the
final estimations. It might not be feasible in real scenarios, where there is no information
about the monitoring area. Moreover, it may potentially introduce accumulated error when
a poor reference point is selected.

Our preprocessed observed phase is already filtered, and the atmospheric phase and
orbit phase have been removed using 3vGeomatics’s preprocessing chain described in [40].
The pre-removal of these two large spatial correlated signals allows us to work on each PS
signal directly instead of using arcs. To this end, our phase model becomes:

φk = convde f · ∆daysk ·mr + convtopo · Bk
⊥ · he k = 1, · · · , N (6)

Note that, we replace the h (height) with he (DEM error), because we adopt external
DEM to pre-remove the topographic phases. The outcome he will be used to refine external
DEM as DEMre f ined = DEM − he. We define the average deformation rate and DEM
error estimation problem as a two variables optimization task that consists of an objective
function. Please note that DEM studied in this work is in range Doppler coordinates (RDC),
which can be transformed to geographic coordinates by the geocoding step.

The objective of our optimization task is to minimize the residuals between observed
target phase φt and reconstructed phase φr, where φr is calculated using Equation (6) with
estimated mr and he. The typical objective functions for evaluating value difference in
the continuous domain are mean absolute error (MAE) and mean square error (MSE).
However, these Euclidean-based metrics are not suitable in the interferometric phase
domain because of branch cuts. The value range of the wrapped phase is bounded by
[−π,+π), which results in interferometric phase value jumping from negative to positive
or positive to negative π. In this work, we consider the wrapped phase difference with real
and imaginary MSE (RI-MSE) (Equation (7)).

Jβ =
1

2N

N

∑
k=1

((sin(φk
o)− sin(φk

r )
2 + (cos(φk

o)− cos(φk
r )

2) k = 1, · · · , N (7)

As shown in Figure 1, there are two phasors (φt Green, and φr Orange) plotted in a
polar coordinate system. If we treat φr as the reconstructed phasor and φt as the target
phasor, a Euclidean-based metric such as MSE would increase linearly with angle value
difference. In terms of phase, the MSE objective function tends to guide the optimizer to
move φr anticlockwise as shown in Figure 1 (MSE guidance direction), especially when their
difference is close to π. RI-MSE can be interpreted as the distance between two phasors on
the unit polar coordinate circle. During optimization, the optimizer adjusts variables in
order to force the reconstructed phasor close to the target phasor based on the perspective of
projections on two axes. This approach has been commonly deployed as a good indication
of wrapped phase distances in recent InSAR phase filtering studies [24,25,41].
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Figure 1. Illustration of phase jump and compassion real and imaginary MSE (RI-MSE) and mean
square error (MSE) objective functions.

At this point, our signal separation task is formulated as a parameter fitting problem
by optimizing an objective function. As aforementioned, there are still N equations with
more than N interferograms to be estimated for each pixel pair because of the wrapped
phase. That is why Equation (5) cannot be solved efficiently by conventional methods.
Previous studies [14,15,29] point out that although the direct search-based algorithms are
simple without using complicated modeling, they suffer from local optima when dealing
with complex baselines and large solution space.

We propose a two-stage algorithm that combines a global coarse searching followed
by a fine local optimization. As shown in Figure 2, we first adopt an IGS policy to obtain a
set of coarse candidate solutions, which are expected to approximate the global optima.
We then apply CMAES for a fast fine local optimization starting with each candidate
solution. Lastly, the best result with the minimal objective function value is picked as the
final estimate.

Figure 2. Illustration of proposed two-stage iterative grid search with covariance matrix adaptation
evolution strategy (IGS-CMAES) method.



Remote Sens. 2021, 13, 2615 7 of 26

2.2.2. CMAES

In [9], researchers tried to adopt a black-box optimizer—SA algorithm, to solve the
deformation fitting optimization problem. Inspired by it, we propose to use CMAES [42] to
take advantage of using gradient-free optimization for our task. CMAES is an evolutionary-
based stochastic optimization algorithm, which has shown state-of-the-art performance
in derivative-free optimization and performed best among more than 100 classic and
modern optimizers on a wide range of black-box functions [43,44]. According to our phase
model Equation (6), it can been seen that different temporal baselines (convde f ) and spatial
baselines (convtopo) result in very different objective functions. Its robust performance on
optimizing unknown functions of CMAES is the major reason we choose it in our approach.
When dealing with a few objective variables (two in our case), CMAES also obtains better
speed than other methods [42,45,46]. A brief workflow of CMAES optimization is described
as follows:

CMAES is an iterative algorithm, and there are three main steps in each iteration
(t): (1) sample n candidate solutions from a multivariate normal distribution N(mt, σ2

t Ct);
(2) calculate function values for each sampling solution, (3) update the distribution param-
eters (mt, σt, Ct) accordingly. In this work, we use CMAES to minimize our loss function
Jβ (Equation (7)) with two objective variables v̂ = [mr, he] as shown below:

v̂ = argmin
v
Jβ (8)

We first give CMAES an initial solution point as a start searching location
v0 =

[
mr(0), he(0),

]
with an initial sampling distribution N0(m0, σ2

0 C0), where m0 = v0,

C0 = I ∈ R2 and σ0 denotes the initial step size, which is set to 0.01 in our study. Then, at
each iteration t we generate S candidate solutions vk sampled from Nt as:

vk = mt + σtyk, yk ∼ N(0, Ct) (9)

where k is the index of the randomly sampled candidate solutions with a total number of S.
Here, each yk ∈ R2 can be treated as a searching direction. Next, calculate all candidate
solutions’ objective function values J (vk) and sort them as:

J (v1:S) ≤ J (v2:S) ≤ · · · ≤ J (vS:S) (10)

The subscript indicates the rank of those samples out of S. The optimizer will stop if
the best solution reaches the termination criteria J (v1:S) < τ, where τ is a threshold, which
is set with a small value 10−11. Otherwise, it uses the top µ (µ < S) solutions to update the
distribution parameters. Note that the rank order is only based on comparing the objective

function itself, known as objective value-free ranking. In this work, we select top µ = bS
4
c

solutions with the lowest objective functions to update distribution parameters mt and Ct,
where the mean of the new distribution mt+1 is updated as

mt+1 =
µ

∑
k=1

wkvk:S = mt +
µ

∑
k=1

wk(vk:S −mt) (11)

If we set wk =
1
µ

for all candidate solutions, then the updates are treated as the

maximum-likelihood estimation of all selected solutions. In this work, we want to empha-
size the solutions with the lowest objective function and defined the function below as our
weighting function:

wi = 1− J (vk:S)

∑
µ
k=1 J (vk:S)

(12)
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In this case, the updates in Equation (11) can be treated as a stochastic approximation
of the natural gradient of m, which is recently used for optimizing deep neural networks
on a reinforcement learning task [47]. The covariance matrix C is updated using:

pt+1 = (1− c)pt +
√

c(2− c)
√

µw
mt+1 −mt

σt
(13)

Ct+1 = (1− c1 − cµ)Ct + c1 pt+1 pᵀt+1 + cµ

µ

∑
k=1

wkyi:Syᵀk:S (14)

where p can be treated as the evolution path, which is 0 at the beginning and ᵀ is the
symbol for vector transpose. It is similar to a mutation used for updating covariance
matrix, and c is the learning rate for updating p. We set c = 0.5, which is the number of

variables divided by 4 as recommended in [48]. µw is equal to
1

∑
µ
i=1 w2

i
, which is used for

weighting intermediate recombination to force the second term as a random vector selected

from N(0, Ct). c1 and cµ are two other learning rates which are set to be
2
n2 = 0.5 and

µw

n2 , respectively. To update step size σ, we adopt CMEAES’s default cumulative step size
adaption (CSA):

st+1 = (1− cσ)st +
√

cσ(2− cσ)
√

µwC
−

1
2 mt+1 −mt

σt
(15)

σt+1 = σtexp(
cσ

dσ
(
‖st+1‖

E‖N(0, I)‖ − 1)) (16)

where s is another conjugate evolution path that is similar to p but ignoring the scale
fact. cσ and dσ are two parameters for controlling the changing magnitude of σ are set to
2
n2 = 0.5 and 1 +

√
µw

n2 , respectively. We adopt the default configuration defined in the

literature [49] for this study, and the key parameters of the CMAES algorithm are listed in
Table 1.

Once the distribution parameters are updated, the optimizer will start another new
iteration until it reaches the termination condition. The main advantage of CMAES over
classical ES is the use of correlated mutations instead of axis-parallel ones. It can learn
appropriate mutation distribution steadily and has a high probability of reaching optima by
using adapted covariance matrix C to adjust searching direction [45]. However, CMAES is
still a local search optimizer similar to SA and many other stochastic optimizers. They may
get stuck in local optima, and the convergence to global optima is not guaranteed [44,48].
Many works have pointed out that the initial search position is essential for stochastic
optimization. Restart-based methods are very classical but useful in many optimization
frameworks and show benefits in finding the global optima. There are also many CMAES
extensions [43] using restart strategies to prevent premature convergence on complicated
tasks. The main limitation of those approaches is that they need extra search in the hyper-
parameter space of the population size, and the initial step-size seems inefficient. Moreover,
the subsequent restarted search usually relies on previous search results, making the whole
optimization process hard to be parallelized. However, there is evidence to support the
fundamental idea behind restarts; the initial search location is essential for finding the
global optima and saving the computations. To address these issues, we propose a pre-
stage exploration search for picking a set of potential candidate solutions for CMAES.
Then, CMAES will use those initial solutions for fine local optimization as the second
exploitation stage.
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Table 1. The key parameters of covariance matrix adaptation evolution strategy (CMAES) used in
this work.

Parameter Definition Value

S Number of candidate solutions at each iteration 30

σ0 Initial step size 0.01

µ Number of selected top ranked solutions 7

τ Threshold value to terminate the optimization 10−11

c Learning rate for updating evolution path 0.5

c1 Learning rate for updating covariance matrix 0.5

cσ Learning rate for updating step size 0.5

2.2.3. Iterative Grid Search (IGS)

To find good candidate solutions for fine local optimization, we introduce an IGS strat-
egy in this work. In Figure 3, we examine the loss landscapes computed using Equation (7).
We inject 0 deformation and 0 DEM error as ground truth with two site baseline parame-
ters (convde f , convtopo, ∆days, B⊥) for generating simulated wrapped interferogram using
Equation (6). We then oversample both deformation rate (1000 samples) and DEM error
(1000 samples) to better illustrate the surface of the corresponding loss value landscape
(1e6 evaluated solutions). By observing Figure 3, it can be seen that both landscapes are
non-convex, rugged and contain many local optima. This is the reason why a simple
gradient-based optimizer is hard to find global optima. The desired algorithm is expected
to converge to global optima effectively and avoid brute force grid search because naïve
sampling is impractical when high precision estimation and real-time performance are
required. Comparing landscapes of the two sites also shows that different real-world
baselines could result in very distinct objective functions. Some site baseline parameters
may produce much more challenging objective functions than others.

In fact, a straightforward grid search is commonly used in industry processing
pipelines. For a ±26 cm/year linear deformation rate and ±200 m DEM error study
case, a typical grid search is applied as Ss with 0.5 cm and 2 m step size (respective
to deformation rate and DEM error) in order to pick the best solution. It generates
(2 × 200/2) + (2 × 26)/0.5 = 20,800 number of objective function evaluations in total
for each PS location and has a limited precision bottleneck regarding the step size. Increas-
ing the step size can reduce the computations but also decrease the precision. Furthermore,
a large step will result in poor estimation for complicated baselines because of the objective
function’s ruggedness. We treat κSs as sampling step size for deformation rate and DEM
error, where a scaling factor κ is used to control the density of grid search. In an optimiza-
tion task, the number of objective function evaluations (search cost) is an essential metric
for assessing a stochastic optimizer’s performance. Especially when higher precision is
required, dense grid search is extremely insufficient. Moreover, from an optimization point
of view, determining whether the true global optima reached is a fundamental challenge
as a stochastic optimization algorithm. As a consistency check, the algorithm can be run
from several different random starting points to ensure the result of each run converges
to the global optimal. Rather than using randomly selected starting points, in this work,
we hypothesize that using a low-precision grid search can select a set of initial candidate
solutions that are potentially close to the global optima. To support our assumption, we
plot the loss landscapes with different sampling steps sizes by setting κ = [1, 3, 5, 8] as
shown in Figure 4.
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Figure 3. Loss landscape of objective function RI-MSE (Equation (7)) with two different real-world
spatial and temporal baselines. Site (A) and Site (B) are two different real-world sites.
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Figure 4. The landscape of loss function. Each row represents the loss landscapes that corresponds
to real–world baselines with synthetic 0 deformation and 0 DEM error, and each column shows the
results under different step sizes of grid sampling. The linear deformation rate x–axis and DEM error
y–axis form a 2D solution space for an InSAR pixel location. The value is calculated by Equation (7)
with selected real-world baselines.
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By observing the resulting loss landscapes at different sampling scales, we notice
that global optima can be roughly located with a less dense grid sampling. As seen in
Site-A and Site-B from Figure 4, κ = 5 or 8 is sufficient to estimate the location of global
optima. However, when dealing with complicated baselines such as Site-C and Site-D,
it is necessary to require κ = 1 or 3 in order to roughly locate the optimal solution. A
large sampling step size (large κ) leads to low precision, but a small sampling rate (small
κ) brings massive computations. Figure 4 shows that there is no fixed optimal sampling
scale κ for different baselines. Hence, in this work, we propose an iterative strategy by
performing grid sampling from large κ to small units until N acceptableinitial solutions
have been picked. We define a threshold ω for accepting sampled estimates, whose values
are less than ω as acceptable initial solutions.

IGS performs grid sampling with different κ iteratively, and the key steps at each
iteration are: (1) sort all sampled estimates based on their loss values (Equation (7)); (2) if
the smallest one is greater than ω, the algorithm will iterate to the next grid search level.
Otherwise, it pushes the estimate to candidate solution list one by one until the length of
N or no solution loss is less than ω. Moreover, solutions close to global or local optima
might have similar loss values, as shown in Figure 5 (Estimate C, 2, 3). To avoid selecting
solutions from the same local area in the landscape, we define a CheckDistance procedure
to skip solutions that are too close to any existing accepted solutions. A threshold value ψ is
adopted to determine if two solutions are too close to each other by assessing two estimates
L2 distances in the solution space. As shown in Figure 5, if point C is already labeled as
a candidate solution, points 2 and 3 will not be considered. Instead, the algorithm will
consider points 4 and 5 because they are not close to any existing candidate solution.

Figure 5. A simple illustration of selecting candidate solutions by skipping the estimates (Estimate 2,
3) that are too close to any picked candidate solution (Estimate C).

2.2.4. IGS-CMAES

Once we get a certain number of acceptable initial solutions, CMAES is then applied
for local fine optimization. In fact, there are existing CMAES extension works that are
proposed based on a repeat mechanism. The key concept of those methods is repeating
CMAES process by adjusting the initial point and population size according to the results
from previous runs. They offer better performance but increase the computation time
because the adjustments are not parallelizable. In our work, CMAES runs only once for
each candidate solution as a starting location. Hence, the local search can be performed in
parallel to save overall execution time compared to repeat-based algorithms. Our complete
IGS-CMAES optimization procedure is given in Algorithm 1.
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Algorithm 1: IGS-CMAES for deformation rate and DEM error estimation.

input : φo ∈ Rk, convde f , convtopo, ∆days ∈ Rk, B⊥ ∈ Rk, ω = 0.3, Nc = 5

// First Exploration Stage: select candidate initial solutions
Vinit = {};
for κ ← [8, 7, 6, 5, 4, 3, 2] do

S← GridSampling(κ);
L(i, j)← J (S(i, j));
for vc ← Lmin to Lmax do

if vc < ω && DistanceCheck(vc, Vinit) is True then
push (vc) into vinit;;
if size(Vinit > Nc) then

Break; // End for Initial Solutions Selections

else
if size(Vinit <= Nc) then

Continue; // Next Grid Sampling with smaller κ

// Second Exploitation Stage: perform Local CMAES search
Vf inal = {};
for v← Vinit do

Run CMAES local starting from v;
Push final solution vs into Vf inal ;

output : vs with lowest J in Vf inal

To summarize, we propose to use IGS to globally select acceptable initial solutions,
which are with high possibility of close to the global optima. We then apply CMAES,
started from each selected initial solution, to perform the local refine search. Lastly, the
final result is the best estimate among all local solutions. Overall, IGS-CMAES can save
unnecessary function evaluations compared to dense grid search but still cover the global
optimal space. At the same time, it also preserves the benefits of accuracy and efficiency
from the local search.

3. Results
3.1. Experimental Setup

This section empirically demonstrates the effectiveness and robustness of the proposed
IGS-CMAES using both simulated and real-world TSInSAR data. All our experiments
are based on seven real-world stacks R (R1–R7), captured by TerraSAR-X in StripMap
mode [50]. Each stack represents a different ground site and contains 31 SLCs except
R7, which has 17 SLCs. We designed a simulator that generates TSInSAR signals by
injecting synthetic deformation rate and DEM error with real-world baseline parame-
ters. Moreover, we apply an industry 3vGeomatics’s industry-standard InSAR processing
pipeline [40,51] to perform data preprocessing as well as generate the reference results
to assess the performance of the proposed IGS-CMAES method on real data. The ex-
periments were designed to estimate two important parameters: optimization cost and
accuracy. Optimization cost is defined as the number of objective function evaluations.
Accuracy is assessed directly by comparing with synthetic deformation rate and DEM er-
ror values in the simulation setup. Because there is no ground truth in the real-world
scenario, we adopt mean phase residual (MPR) between the wrapped reconstructed
and input interferograms to evaluate performance. The details of both experiments
and results are presented in the following sub-sections, and the code is available at:
https://github.com/Lucklyric/TSInSAR-PF-IGS_CMAES (accessed on 23 June 2021).

https://github.com/Lucklyric/TSInSAR-PF-IGS_CMAES
https://github.com/Lucklyric/TSInSAR-PF-IGS_CMAES
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3.1.1. Simulation Data

Our simulator generates interferometric phase by injecting synthetic deformation
rate and DEM error into seven real-world temporal and spatial baselines R1–R7. For
each dataset, in order to assess the robustness of different optimizers, we sample 30
deformation rates and 60 DEM errors from two uniform distributions—U (−26, 26) cm/year
and U (−200, 200) m. It gives a total of 1800 possible signal pairs for each of the seven
baselines, which are further used to generate synthetic interferometric pixel stacks using
Equation (6), where convde f , ∆days, convtopo and B⊥ are real-world baselines from the R1–
R7 stacks. In order to objectively evaluate different methods, we use (1) root-mean-square
error (RMSE) between the simulated (ground truth) and the estimated deformation rate
(cm/year) and DEM error (m), (2) L1 unwrapped phase difference (L1-UPD) between
the simulated (unwrapped ground truth) and the reconstructed phase calculated based
on the estimated deformation rate and DEM error, (3) the accuracy (ACC%) of reducing
rate that counts the percentage of how many test cases that the method’s unwrapped L1
phase error is less than π. We performed our experiments from three perspectives: (1)
apply four widely used local optimizers—(a) least square (LS), (b) Nelder–Mead [52], (c)
conjugate gradient (CG) [53] and (d) Broyden–Fletcher–Goldfarb–Shanno (BFGS) [54],
to show how challenging our task is when applying conventional local optimizers; (2)
adopt the IGS strategy into all local optimizers used in the first experiment to showcase the
improvements in comparison with our coarse search strategy; (3) compare to the other two
global optimization methods—direct gird search (baseline method) and dual simulated
annealing (Dual-SA) [55]—to investigate the novelty of our IGS-CMAES algorithm.

Table 2. Quantitative assessment for simulated data with several widely used local optimizers and their IGS-extended
version.

Baseline Categories LS IGS-
LS

Nelder-
Mead

IGS-
Nelder-
Mead

CG IGS-
CG BFGS IGS-

BFGS

R1
mr-RMSE
(cm/year) 12.2382 2.9481 12.4695 2.0734 12.5197 1.3484 12.4414 1.2893

he-RMSE (m) 107.0381 0.0011 105.6981 0.0001 107.6607 0.0000 106.5213 0.0000

R2
mr-RMSE
(cm/year) 13.2260 2.3247 13.3805 2.5936 13.6642 1.3439 13.6011 1.3143

he-RMSE (m) 107.2283 0.0016 106.3737 0.0002 107.4976 0.0000 107.5918 0.0000

R3
mr-RMSE
(cm/year) 13.0308 1.9413 13.1002 1.6877 13.3366 1.4307 13.2444 1.0897

he-RMSE (m) 107.8291 0.0016 106.5126 0.0002 108.3554 0.0000 108.7696 0.0000

R4 mr-RMSE (cm) 12.7119 1.9372 13.1455 2.2679 13.1560 0.8951 13.2614 2.0387
he-RMSE (m) 107.5101 0.0032 106.5326 0.0002 108.2290 0.0000 108.4366 0.0000

R5
mr-RMSE
(cm/year) 12.6042 2.1055 12.6375 1.9330 12.8295 0.8136 12.8457 1.5362

he-RMSE (m) 106.7188 0.0022 105.9384 0.0002 109.1707 0.0000 107.6000 0.0000

R6
mr-RMSE
(cm/year) 12.4571 1.9549 12.5720 1.7121 12.5872 0.6817 12.6906 0.7807

he-RMSE (m) 105.3393 0.0062 106.0447 0.0003 108.2960 0.0000 109.1020 0.0000

R7
mr-RMSE
(cm/year) 12.5991 14.9993 12.6070 14.1472 12.7588 6.7126 12.6561 3.2887

he-RMSE (m) 106.6014 0.0006 106.0582 0.0001 108.0011 0.0000 12.6561 0.0000

From Table 2, it is obvious that none of the local optimizes works for any stack. They
show significant errors on both types of signal estimation. During the experiments, all
local optimizers prone to converge to local optima around the initial solution. However,
comparing to IGS-extended versions, which run each local optimization following IGS
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policy, there is a consistent agreement to reduce the errors in deformation and DEM error es-
timations. As shown in Figures 6 and 7, a significant decrease in L1-UPD and improvement
in ACC is observed, when IGS is adopted. The proposed IGS policy effectively improves
all local optimizer performance in the unwrapped phase domain, except R7, which is a
special case with fewer SLCs. Nevertheless, all IGS-optimizers produce acceptable results.
However, due to the limitation of those local optimizers themselves, the results are still
not satisfactory.

Figure 6. Unwrapped phase L1 difference.
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Figure 7. Reducing rates (ACC%) of unwrapped phase L1 difference less than π.

In this work, we also provide comparison between the proposed IGS-CMAES and
other two global algorithms—grid search and Dual-SA with an extra metric—the mean
number of objective function evaluation (NFev). Both methods are designed for global
optimization. The comparisons reported in Table 3 show that all three methods have an
on-par accuracy on deformation estimation when using R1-R6. However, Dual-SA fails to
give proper estimates of DEM error except for R6. The error of grid search is mainly due to
its limited sampling precision and it fails to provide proper deformation estimation when
working on limited temporal information R7, which also troubles Dual-SA. In contrast,
our IGS-CMAES consistently offers robust and accurate results, and achieves better gener-
alization ability than other two methods. Furthermore, IGS-CMAES has demonstrated a
significant improvement in NFev by saving more than 85% objective function computation
costs compared to grid search, while maintaining similar and even better results. Our
method surpasses Dual-SA on all baselines with substantial improvement in both accuracy
and efficiency.
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3.1.2. Real-World Data

In this section, we present results obtained when applying IGS-CMAES to real interfer-
ometric SAR acquisitions. All input interferograms from the R1–R7 have been preprocessed
by the 3vGeomatics processing pipeline [40] with proper filtering, earth flattening and
atmospheric phase removal as discussed in Section 2.2.1. There are 2000 PS pixels selected
from each stack, which results in 14,000 test data points. Because there is no ground-truth
data for real-world data, we adopt the final results from the processing pipeline as refer-
ence output. Such pipeline involves a phase unwrapping step and then uses least-square
optimization to approximate the linear deformation rate and DEM error on the unwrapped
phase directly. Phase unwrapping is known to be very time-consuming, but we can treat
those outputs as reference results. It is worth mentioning that our proposed IGS-CMAES
is designed to work on the wrapped phase directly in order to save the computations in
unwrapping.

Table 3. Quantitative comparison for simulated data using IGS-CMAES with two other global optimizers.

Baseline Categorie IGS-CMAES Grid-Search Dual-SA

R1

mr-RMSE 0.0284 0.0967 0.6336

he-RMSE 0.0000 0.5611 31.7574

L1-UWPD 0.0424 0.1191 1.3113

ACC 99.94% 100% 96.88%

NFev 2725.03 20800 4109.38

R2

mr-RMSE 0.1137 0.0967 0.1792

he-RMSE 0.0000 0.5610 6.7533

L1-UWPD 0.0424 0.1051 0.1279

ACC 99.94% 100% 99.35%

NFev 2585.18 20800 4103.06

R3

mr-RMSE 0.1991 0.0967 0.4899

he-RMSE 0.0000 0.5613 15.5361

L1-UWPD 0.0791 0.1180 0.7239

ACC 99.61% 100% 96.33%

NFev 2687.90 20800 4112.38

R4

mr-RMSE 0.2276 0.0967 0.0588

he-RMSE 0.0000 0.5617 7.5336

L1-UWPD 0.0848 0.0806 0.0534

ACC 99.56% 100% 99.69%

NFev 2500.69 20800 4089.58

R5

mr-RMSE 0.2844 0.0967 0.1556

he-RMSE 0.0000 0.5617 5.8893

L1-UWPD 0.1065 0.0864 0.0853

ACC 99.44% 100% 99.52%

NFev 2520.12 20800 4093.36

R6

mr-RMSE 0.0000 0.0967 0.0000

he-RMSE 0.0000 0.5617 0.0000

L1-UWPD 0.0000 0.0591 0.0000

ACC 100% 100% 100.00%

NFev 2381.48 20,800 4070.47

R7

mr-RMSE 1.6145 7.763333 13.902

he-RMSE 0.0000 0.5609 104.1441

L1-UWPD 1.1259 5.5327 27.8864

ACC 94.88% 70% 39.03%

NFev 3576.92 20800 4121.54
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We estimate the linear deformation rate end DEM error using the proposed model
on selected PS locations. Visual outputs and comparison to the reference results can be
found in Figure 8. It is shown that the estimates of IGS-CMAES match the reference output
pretty well in R1-R6. There are a few apparent disagreements on deformation rate in R(7),
where reference results indicate small movements, but IGS-CMAES predicts high positive
displacements (red dots). After careful examination, we present our numerical analysis
in Table 4. We calculate mr-RMSE and he-RMSE to quantify the difference between the
IGS-CMAES and reference results. The only significant mismatch is the deformation rate in
R7 (0.190598), which correlates with the observation in Figure 8. All other categories stay
commensurate with a little disparity. We further investigate the wrapped phase residuals
(WPR) between the wrapped reconstructed phase and input interferogram, and our method
shows lower residuals than the reference output. This finding can also be confirmed by
checking RI-MSE (Equation (7)), which is presented to show the phase distance in the
polar coordinate system (Figure 1). Experimental results reveal that our IGS-CMAES offers
more performance advantages on global convergency than the reference output. Moreover,
our method can be applied to wrapped interferograms directly while achieving equal
performance compared to the reference method, which requires phase unwrapping. Lastly,
the algorithm continuously performs around 3800 NFev for each baseline. Therefore, we
are confident that IGS-CMAES can serve as an efficient optimizer and provide accurate
global fitting.
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Figure 8. Visualization of estimated linear deformation rate and DEM on R1–R7 real-world stack’s
PS pixels. IGS-CMAES is applied on wrapped interferogram directly. Reference results are generated
using 3vGeomatics processing pipeline with unwrapped phase.
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Table 4. Quantitative assessment of IGS-CMAES’s outputs with reference results.

Baseline NFev
RI-MSE

Proposed
(Rad)

RI-MSE
Reference

(Rad)

WPR
IGS-CMAES

(Rad)

WPR
Reference

(Rad)
mr-RMSE

(cm)
he-RMSE

(m)

R1 4023.67 0.305124 0.307999 0.431716 0.435595 0.114381 0.061021

R2 3960.59 0.306338 0.307771 0.438660 0.439584 0.080547 0.053405

R3 3872.19 0.238092 0.242657 0.371183 0.374736 0.109501 0.052438

R4 3510.90 0.120080 0.119850 0.238335 0.238453 0.034719 0.048583

R5 3563.92 0.120687 0.122859 0.249803 0.250186 0.059676 0.122966

R6 3496.90 0.161789 0.161793 0.321250 0.321475 0.025550 0.102940

R7 3817.64 0.191073 0.210659 0.326159 0.352141 0.190598 0.061347

4. Discussion

Average ground deformation rate and DEM error estimation concurrently using
TSInSAR stack can naturally be treated as a two-dimensional optimization task. However,
due to the wrapped phase, the resulted objective function could contain many local optima
that results in a pure local optimizer easily stuck to semi-optimal solutions. Moreover,
varying spatial and temporal baseline parameters (convde f , ∆days, convtopo and B⊥) also
lead to different objective functions to be resolved. Hence, both global convergence and
generalization ability are considered in our method. The proposed IGS policy tackles this
optimization problem by iteratively sampling to select candidate solutions at a coarse level.
It avoids inefficient naïve grid search but also retains a global exploration. Our simulation
experiments confirm the benefits of the proposed IGS policy in Table 2 and Figures 6 and 7.
The failing local optimizers tend to exhibit significant improved results after IGS boosting.
However, due to the bottlenecks of local optimizers, their results can only be as good as
dense grid search and Dual-SA (Table 3).

Under the scope of global optimization, the performance of naive dense grid search
highly relies on the sampling step size. An inevitable trade-off between precision and
computation efficiency limits its usage when millimetric accuracy is required. SA algorithm
is demonstrated in a recent study [9] on small-scale motion detection, which inspires us
to adopt a stochastic gradient-free optimizer in this work. Its global extension Dual-SA
combining Classical SA, and Fast SA has shown better results than other conventional
optimizers. However, SA-based methods highly depend on randomness, and Dual-SA’s
global search policy relies on hyperparameter tunning to generalize to different objective
functions [43,55]. It can be observed from Table 3, that Dual-SA results show unstable
performance when dealing with different baselines. In contrast, CMAES leads to fast local
convergence with adaptive searching direction using the covariance matrix and has shown
superior performance on many local optimization benchmarks. In addition, we can achieve
fast convergence with CMAES by setting a small population size and step size because we
have conducted sufficient exploration during the first IGS stage. At the second stage of
optimization, CMAES can directly focus on local optimization for exclusive exploitation.

In our real data experiments, reference results are generated by 3vGeomatics’s industry
level processing pipeline. The pipeline has served industry customers for years, and it is
reasonable to treat its outputs as empirically validated references. Besides its robustness,
this pipeline requires phase unwrapping to eliminate phase ambiguities before signal
estimation. As aforementioned, phase unwrapping itself is an expensive step and has a
dependency on prior known displacement pixel as the reference [17]. Due to our data
nature, where no ground truth is available, it does not allow us to perfectly assess IGS-
CMAES’s estimates. Hence, we use reference results that are based on wrapped phase. The
proposed IGS-CMAES achieves a comparable output but on wrapped phase directly. It
substantially improves existing work by skipping the complicated unwrapping step and
preserve a robust estimation.

Lastly, we want to discuss the disagreement in the R7 stack, which shows a few miss-
matched estimations between IGS-CMAES and the reference output. This is an interesting
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finding, as the statistics in Table 4 suggest that IGS-CMAES has very similar results as the
reference one on all other stacks. Though significant differences happen in R7, IGS-CMAES
shows consistent lower phase residuals between the wrapped and input phases. To this
end, we can only conclude that the proposed IGS-CMAES provides robust convergence
from an optimization point of view. However, our optimization tasks and objective function
are defined following the literature of the linear deformation model. It is worth mentioning
that R7 is the only stack with just 17 SLC acquisitions comparing to all other stacks (31
SLC). A limited number of terms in Equation (7) results in a potential situation that the
objective function’s optimal solution might not cover all the latent truth estimates. The
hyperthesis might not hold due to insufficient temporal information resulting in overfitting
of the data, but the unwrapping used for generating the reference phase provides a spatial
regularization that reduces the amount of overfitting. Fortunately, enough number of SLC
acquisitions results in more formatted interferograms—which is commonplace nowadays
to obtain sufficient SLCs for one site. Reference results are based on the unwrapped
phase, and phase unwrapping is a step that incorporates spatial analysis, which is not the
scope of this work. However, considering spatial analysis can reduce the effect on limited
temporal access. This understanding guides us to incorporate both spatial and temporal
analysis for deformation and DEM error estimation in future work. Overall, based only on
temporal analysis, IGS-CMAES delivers robust results on stacks with sufficient temporal
observations. Its effectiveness in solving optimization tasks is well validated in our method
by using both simulation and real data experiments.

5. Conclusions

Estimating ground deformation and DEM error with TSInSAR data is an ill-posed
problem. In this work, we provided two main contributions: (1) designing a two-stage
architecture suitable for interferometric phase processing and (2) introducing a bench-
mark hybrid simulation dataset by combing real-world baseline parameters and synthetic
ground truth signals for an effective evaluation. It is known that, when the availability of
exclusive time series data increases, it is necessary to design more efficient and effective
algorithms. Typically, research in these fields is conducted by solving complex optimiza-
tion problems, which are extremely computationally intensive and time-demanding. By
considering parameter estimation as an optimization problem, we presented an exploration
process to acquire sufficient global information that will guide us to the optimal solution
using IGS coarse search. After that, a group of candidate solutions is passed to the second
exploitation step, where the best estimation is obtained using an effective local CMAES
refined search. The combined two-stage optimization delivers a high degree of accuracy
and efficiency without being influenced by local extrema. Our method was evaluated using
simulated and real data, and the result outperforms traditional local and global optimizers.
Furthermore, IGS-CMAES offers the advantage of avoiding phase unwrapping, which is
often time-consuming and prone to error. It also generalizes well to different real site base-
lines without retuning the model configurations. In conclusion, this study demonstrates
that our proposed two-stage black-box optimization framework IGS-CMAES successfully
addresses two research tasks concurrently: linear deformation estimation and DEM error
correction with TSInSAR data. When sufficient temporal information is provided, investi-
gations on real data demonstrate that IGS-CMAES achieves comparable performance to
an industry-standard processing pipeline, which requires a phase unwrapping process.
Further developments of this work will focus on the improvements by considering spatial
information when dealing with limited temporal data.
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