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Abstract: Data from Landsat-8 and Sentinel-2A/2B are often combined for terrestrial monitoring
because of their similar spectral bands. The bidirectional reflectance distribution function (BRDF)
effect has been observed in both Landsat-8 and Sentinel-2A/2B reflectance data. However, there
is currently no definition of solar zenith angle (θsz) that is suitable for the normalization of the
BRDF-adjusted reflectance from the three sensors’ combined data. This paper describes the use
of four machine learning (ML) models to predict a global θsz that is suitable for the normalization
of bidirectional reflectance from the combined data in 2018. The observed θsz collected globally,
and the three locations in the Democratic Republic of Congo (26.622◦E, 0.356◦N), Texas in the USA
(99.406◦W 30.751◦N), and Finland (25.194◦E, 61.653◦N), are chosen to compare the performance of
the ML models. At a global scale, the ML models of Support Vector Regression (SVR), Multi-Layer
Perception (MLP), and Gaussian Process Regression (GPR) exhibit comparably good performance
to that of polynomial regression, considering center latitude as the input to predict the global θsz.
GPR achieves the best overall performance considering the center latitude and acquisition time as
inputs, with a root mean square error (RMSE) of 1.390◦, a mean absolute error (MAE) of 0.689◦, and a
coefficient of determination (R2) of 0.994. SVR shows an RMSE of 1.396◦, an MAE of 0.638◦, and an
R2 of 0.994, following GPR. For a specific location, the SVR and GPR models have higher accuracy
than the polynomial regression, with GPR exhibiting the best performance, when center latitude and
acquisition time are considered as inputs. GPR is recommended for predicting the global θsz using
the three sensors’ combined data.

Keywords: bidirectional reflectance normalization; Gaussian process; angle normalization

1. Introduction

The polar orbit satellite Landsat-8, launched by National Aeronautics and Space Ad-
ministration (NASA) [1,2] and the Sentinel-2A and 2B satellites, launched by ESA [3], have
similar spectral bands. Together, these three satellites provide 10–30 m moderate spatial
resolution multi-spectral global coverage. The combination of the three satellites presents
a new solution for global moderate-resolution landcover monitoring. Compared with a
single satellite, the combination of the three satellites, taking advantage of their complemen-
tary revisit interval patterns, provides a 2.9-day global median average revisit interval [4,5].
This would benefit numerous remote sensing applications, such as deforestation [6], fire
monitoring [7], agriculture dynamics [8], and ice velocity detection [9].

Both Landsat-8 and Sentinel-2A/2B have sun-synchronous polar orbits. Their view
angles are ±10.3◦ (Sentinel-2) and ±7.5◦ (Landsat-8) from the nadir view when acquiring
observations, resulting in non-Lambertian surface directional reflectance effects. The
magnitude of these effects varies as a function of geometry (i.e., the relation between the
sun, the object, and the sensor), and is usually described by the bidirectional reflectance
distribution function (BRDF). The BRDF effects should be corrected to provide stable and
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consistent satellite datasets. To eliminate the BRDF effects in the Landsat-8 and Sentinel-
2 datasets, a global semi-empirical approach, parameterized by external BRDF model
parameters derived from the MODIS BRDF data product, has been used to normalize the
Landsat-8 and Sentinel-2 data reflectance to the nadir view (0◦ view zenith) [10].

The solar zenith (θsz) used for normalization was defined in the following criteria:
θsz can be modelled for any date and location, and the difference between the observed
θsz and θsz used for normalization is minimized [11,12]. According to the above criteria,
there are two ways to define solar zenith (θsz), namely defining θsz with respect to the
scene acquisition center latitude or defining θsz with respect to the scene acquisition center
latitude and scene acquisition time. A latitudinally fixed θsz was defined by a degree-six
polynomial fitted on the basis of Landsat-8 data to retrieve constant latitudinal θsz, using
latitude as an input variable for the combined Landsat-8 and Sentinel-2A/2B reflectance
data [13]. To define θsz with respect to the scene acquisition center latitude and scene
acquisition time, a specific normalized θsz was defined based on a polynomial model to
derive the local overpass time against latitude, and a physical astronomical model was
used to normalize the θsz to a specific angle and minimize the angular difference between
the observed and normalized θsz for the Landsat-5 and Landsat-7 datasets [12]. However,
for both solutions, the approximation of polynomial regression is usually limited by the
explicit relationships they rely on [14]. Recent research has proven that machine learning
(ML) models can directly learn parameters and functional forms for complex nonlinear
relationships from data, which is different from parametric regression [15]. To date, the
global θsz distribution by the combination of the Landsat-8 and Sentinel-2A/2B has not
been investigated yet and there is no global θsz definition that is suitable for normalizing the
BRDF time series given by the combination of the Landsat-8 and Sentinel-2A/2B reflectance
data considering these three data sets together.

In this study, the global distribution of θsz was first quantified for Landsat-8 and
Sentinel-2A/2B, and, in a different manner from previous research, ML models were
explored to predict a θsz that is suitable for normalizing the BRDF time series from the
combination of Landsat-8 and Sentinel-2A/2B. Specifically, global metadata records from 1
January to 31 December in 2018 for Landsat-8 and Sentinel-2A/2B were used to quantify
the θsz variation between these three satellites. ML regression methods, namely regularized
linear regression (RLR), support vector regression (SVR), Gaussian process regression
(GPR), and a multi-layer perceptron (MLP), were then used to predict a suitable global θsz
with respect to latitude and with respect to both latitude and acquisition time. Finally, θsz
suitable for normalizing the BRDF effect for the combination of Landsat-8 and Sentinel-
2A/2B were predicted using the suggested machine learning model. To compare the
estimation accuracy between the ML models, test samples are compared with global
datasets as well as the observed θsz collected from the Democratic Republic of Congo
(26.622◦ E, 0.356◦ N), Texas, USA (99.406◦ W 30.751◦ N), and Finland (25.194◦ E, 61.653◦

N) in 2018. The regression accuracy of each model is evaluated in terms of the coefficient
of determination (R2), mean absolute error (MAE), and root mean square error (RMSE)
between the observed and normalized. Additionally, the ML model suitable for the
estimation of θsz for the combination of Landsat-8 and Sentinel-2A/2B is recommended.

Section 2 describes the data used in this study. Sections 3 and 4 then introduce the
methods used to analyze the data and present the results obtained, respectively. Section 5
discusses the results, before Section 6 concludes by stating several implications and recom-
mendations for global time-series applications for the three sensors combined.

2. Data
2.1. Satellite Remote Sensing Configurations

Both Landsat-8 and Sentinel-2A/2B were launched into polar sun-synchronous orbits.
Landsat-8 has an altitude of 705 km and an incline of 98.22◦. The scanning angle for
Landsat-8 is ±7.5◦ and the swath width is 185 km. Landsat-8 revisits the same location
every 16 days and crosses the equator at 10:00 ± 15 min [16]. The Sentinel-2A and Sentinel-
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2B satellites orbit at an altitude of 786 km and have an incline of 98.62◦. The scanning angle
for both the satellites is ±10.3◦ and the swath width is 290 km. Both sensors revisit the
same location every 10 days, giving a combined revisit interval of five days. Sentinel-2 has
an equatorial crossing time of 10:30 [17].

2.2. Global θsz Metadata Records for Landsat-8 and Sentinel-2A/2B

The Landsat-8 observation metadata records were bulk downloaded from the United
States Geological Survey (USGS) Landsat archive metadata database [18]. Metadata records
with approximate scene dimensions of 185 km × 180 km are defined in the Worldwide
Reference System (WRS-2) [19]. The metadata records acquired from January 1–December
31, 2018, were extracted. Only the images acquired during the daytime were used in
this study.

The following information in each Landsat-8 metadata record was used: “sceneStart,”
“sceneStop,” “sunEle,” “ce_x,” and “ce_y.” The scene center acquisition time (Act) for each
record was computed as the average of the “sceneStart” and “sceneStop” times, and the
scene center θsz was derived as 90◦—“sunEle.” The scene center latitude (Lat) and scene
center longitude (Lon) coordinates were defined as “ce_x” and “ce_y”, respectively, in each
metadata record.

The Sentinel-2A/2B metadata records were downloaded from the USGS Earth ex-
plorer [20]. Each metadata record is defined in a fixed 109 km × 109 km tile projected in
the Universal Transverse Mercator (UTM) map projection [3,21]. The Sentinel-2 projected
tiles are stored as Standard Archive Format for Europe (SAFE) files [17] and cut along
orbit swaths. All the metadata records acquired from 1 January–31 December, 2018, were
extracted. Only the images acquired in descending orbits were used in this study.

For each Sentinel-2A/2B metadata record, the following information was used: “Ac-
quisition Start Date,” “Acquisition End Date,” “Sun Zenith Angle Mean,” “Center Latitude
dec,” and “Center Longitude dec.” The Act for each Sentinel-2 metadata record was com-
puted as the average of the “Acquisition Start Date” and “Acquisition End Date,” and the
“Sun Zenith Angle Mean” was defined as the θsz value for each scene. “Center Latitude
dec” and “Center Longitude dec” were used as the Lat and Lon for each metadata record,
respectively.

There are duplicated observations for Landsat-8 and Sentinel-2A/2B during 2018
because the satellites have a repeat circle of 16 days (Landsat) and 10 days (Sentinel).
Large amounts of redundant data pose a challenge to the training of ML models. A large
redundant dataset requires more memory to fit the data, and more consumption time is
required to train and to extract useful features from the data. An increase in the size of the
redundant data volume would decrease the predictive ability and effectiveness of a machine
learning algorithm. [22,23]. Thus, a global dataset for the study was established by selecting
every tenth line of the Landsat-8 and Sentinel-2A/2B datasets collected during 2018. The
three datasets were then merged together from top to bottom. In total, 361,826 metadata
records were used in this study, with 25,737 from Landsat-8, 161,799 from Sentinel-2A, and
174,290 from Sentinel-2B. As θsz varies smoothly in space and time [12], it constitutes a good
representation for the global θsz dataset for the combination of Landsat-8 and Sentinel-2A
-2B in 2018. The number of metadata records for Sentinel-2 are larger than that of Landsat-8.
The proposed ML model is first trained from the combination of the three sensors and
then predicts θsz; thus, this, not even available, dataset would infect the derived θsz values
slightly and become more inclined to Sentinel-2 data.

2.3. Local θsz Metadata Records for Landsat-8 and Sentinel-2A/2B

To examine the ML models’ performance on local θsz, observations collected by
Landsat-8 and Sentinel-2A/2B over three locations during 2018 were selected, namely,
northeast of the Democratic Republic of Congo (26.622◦ E 0.356◦ N, over path/row 175/60
for Landsat-8 and tile number T35NMA for Sentinel-2); TX, USA (99.406◦W 30.751◦N,
over path/row 28/39 for Landsat-8 and tile number T14RMV for Sentinel-2); and south
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of Finland (25.194◦ E 61.653◦ N, over path/row 188/17 or 189/17 for Landsat-8 and tile
number T35NMA for Sentinel-2) (henceforth referred to, for brevity, as Congo, Texas, and
Finland). These three locations were selected as they have a different latitude/longitude
but span a large latitudinal range. Locations with different latitudes are used to examine
the ML models’ prediction performance because θsz will change with latitude for a given
local time.

3. Methodology

Following the optimal θsz definition criteria described in [12], Lat, Lat and Act, and Lat
and Lon and Act were used as the input variables into different ML models to predict θsz
respectively, ensuring that θsz can be modeled at any location and date to produce consistent
BRDF normalized reflectance data for the combination of Landsat-8 and Sentinel-2A -2B.
This requirement enables a large volume of data auto processing for the three sensors
combined. For generating multi-temporal composite produce, a consistent θsz definition
is representative of the same day in the compositing period, if it can be modelled at any
location and any date [24]. Statistical metrics were used to evaluate the fitting performance
between the predicted θsz values given by each model and the testing datasets, ensuring
that the difference between the observed and normalized θsz was minimized, because it
will introduce unreliability into the semi-empirical BRDF model to normalize reflectance
data at the θsz that are different from the θsz used to invert BRDF model parameters [11].
These statistical metrics are the root mean squared error (RMSE), mean absolute error
(MAE), and the coefficient of determination (R2).

The process flow of the θsz retrieval based on ML models is illustrated in Figure 1,
and the process can be summarized as preprocessing, training, and prediction. In the
preprocessing step, the input variables, e.g., Lat, Lon, and Act, were normalized and
scaled, in which values were shifted and rescaled to ensure that they ended up with a
value between 0 and 1. After this the normalized variables were fitted for the ML models
as inputs. In addition, the global θsz datasets were split randomly into training and
testing datasets, with 70% of the data for training and 30% for testing in each set. In the
training process, ten-fold cross-validation [25] was used to optimize the hyper-parameters
of each model and check the overall performance of each regression method. In the cross-
validation, the datasets were randomly and equally dispatched into k groups (k = 10).
In each validation process, (k − 1) groups were used as the training instances and one
group was treated as the test instance. An evaluation score was obtained for the model
in each validation process, giving a total of k evaluation scores after looping for every
test instance. Finally, the hyper-parameters for each model were optimized in the cross-
validation process using the average of the evaluation score. In the prediction process, the
predicted θsz was estimated by each of the ML models using the best hyper-parameters
obtained from the cross-validation process. Particularly, polynomial regression and four
ML models were used to predict θsz for the normalization.
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Figure 1. The flow chart of the proposed ML models to estimate global θsz of 2018 for the combination
of Landsat-8, Sentinel-2A, and Sentinel-2B.

3.1. Polynomial Regression Model

For reference, the single variable Lat was used as the input to a 6th-degree polynomial
to retrieve constant latitudinal θsz. In this study, the following 6th-degree polynomial
regression was used as a benchmark model to compare with ML models, for both the
latitudinal fix θsz model and the physical astronomical model, described in Section 1, built
upon the following polynomial regression [12,13]:

y = p0x6 + p1x5 + p2x4 + p3x3 + p4x2 + p5x + p6 (1)

where x is the Lat for each metadata record and y is the predicted θsz from the polynomial
regression.

3.2. ML Regression Models

ML has been successfully applied in many regression [14,15,26–28] and classifica-
tion [29–31] tasks. Despite the good fitting performance of parametric models, i.e., poly-
nomial regression, the approximation of these models is usually limited by the explicit
relationships they rely on. Unlike parametric regression, ML models learn the parameters
and functional form from the data. In this study, four ML models were used to predict θsz
for the combination of Landsat-8 and Sentinel-2A/2B.
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3.2.1. Regularized Linear Regression

RLR was used to predict θsz from different input variables. The output results were
assumed to be a linear sum according to the weighted input variables, x = [x1, x2, · · · , xn]

T ,
then, θsz = xTw. The maximum likelihood of the output results was obtained by minimiz-
ing the squared errors of the weights. Additionally, the weights w = [w1, w2, · · · , wn]

T can
be estimated by least squares minimization.

3.2.2. Support Vector Regression

SVR is based on support vector machines, which are nonlinear ML models for classifi-
cation and regression [32,33]. In the SVR model, a linear model was used to estimate the
output θsz after transforming the input variables into a high-dimensional space. A kernel
function was used to transform the input data to ensure that a linear model can be fitted.
After mapping the training data into hyperspace, Vapnik’s ε-insensitive cost function was
used to optimize the parameters of the linear model, as follows:

Lε(e) = Cmax(0, |e| − ε), C > 0 (2)

where an error e = y − ŷ within a ε-defined margin is ignored, while the influence of
the samples outside this linear margin is penalized. The parameter C regularizes the
trade-off between model complexity and error frequency. In this work, we use the SVR
implementation of the Python package Scikit-Learn [34], which is based on LIBSVM [35].
There are the following two key parameters: the margin distance, defined by ε, is used
to evaluate the sample data that fall outside some boundaries, and the C factor is used to
balance the weighting between complexity and accuracy. As well as the ε distance and
C factor, the kernel type must be selected; a radial basis function kernel was used. To
optimize the hyperparameters, we considered values of 1, 10, and 100 for the C factor and
values of 0.001, 0.01, 0.1, and 0.2 for the ε distance in the experiments.

3.2.3. Gaussian Process Regression

Gaussian process models [22,36] are probabilistic ML models designed for regression
and classification problems. They offer powerful regression ability in vegetation biophysical
parameter retrieval [37,38], and landcover classification [39]. A GPR model assumes that
the observed θsz is a function of the input variables using a joint Gaussian distribution of
the available observations with zero mean and covariance matrix K, as follows:[

y
ŷ

]
∼ N

(
0,
[

K + σ2 In k∗
kT
∗ k∗∗ + σ2

])
(3)

where k∗ is the covariance between the training inputs and the testing inputs, k∗∗ is the
autocovariance for the testing inputs, and K + σ2 In defines the covariance matrix of the
noise for training inputs. The GPR model uses Bayes’ principle to define a posterior
distribution and likelihood function over the output predicted ŷ given the new input and
the training dataset. The mean value of the posterior distribution is used as the prediction,
and the confidence intervals of the prediction are derived from the likelihood function. In
our implementation, GPR implementation of the Python package Scikit-Learn was used
to derive the predicted θsz. When learning a GPR model, some parameters related to the
covariance or kernel functions also need to be specified. The RBF kernel (Radial-basis
function kernel) was chosen, which is a stationary squared exponential kernel. The hyper-
parameters to be tuned for RBF kernel include magnitude, characteristic length, and noise
variance. Additionally, the maximum-likelihood method was applied for parameter tuning
in this study. Compared with SVR, GPR not only gives a prediction mean for the new
observation, but also provides a full probabilistic posterior distribution.
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3.2.4. Multi-Layer Perception

Multi-layer perception network (MLP) is a classical type of feedforward artificial
neural network and has been widely used in different fields of remote sensing [15,27].
There are the following three parts in the MLP: an input layer, a hidden layer, and an
output layer. A non-linear activation function was used in each node of neuron in the
hidden and output layers. Additionally, there can be multiple layers of neurons in each
hidden layer. The backpropagation iterative optimization process is used to adjust the
connection weight between the hidden layers of the neurons by minimizing the estimation
error [40]. The MLP model used a representation of neurons to achieve highly precise
estimates of the nonlinear relationship between the input variable and the output result.
Since the network is fully connected, each node in one layer connects to every node in the
next layer with a certain weight. Therefore, the output c of each neuron is as follows:

c = ϕ
(
∑ wiai + bi

)
(4)

where ai and wi are the input and weight for the neuron, respectively, bi is the bias of the
neuron, and ϕ is the activation function used. In our implementation, MLP Regressor in
the Python Scikit-Learn package was used. The parameters for MLP include the number of
hidden layers, number of neurons for each hidden layer, optimizer, and activation function.
The ReLU activation function was used, and the Adam optimizer was chosen. To find
the optimum parameters, the number of hidden layers is tested with 1, 2 and 3, and the
number of neurons for each hidden layer is tested with (200), (200, 100) and (200, 140, 70).

4. Results
4.1. Global θsz Distribution and Variations for Landsat-8 and Sentinel-2A/2B

Figure 2 shows the observed θsz plotted against the Lat and Lon for the global data
in 2018 by Landsat-8, Sentinel-2A, Sentinel-2B, and the three sensors combined. For all
three sensors, the variation of θsz with latitude is apparent. As can be seen in Figure 2, θsz
increases from the equator area to the polar regions. Compared with Sentinel-2, Landsat-8
acquires more observations around the two polar regions; this is because of the different
satellite imagery acquisition strategies [17,41]. There are few observed θsz collected over
the ocean, an abrupt change for θsz was observed in the region at about 30◦ N, −30◦ E. This
is because there is an interval of a few months between the observations. Additionally, for
each grid point in the graph, if there were more than one θsz sensed, the first was chosen
to plot.

Across the whole year, θsz varies because the satellite local overpass time changes
with the latitude and because of seasonal changes in the position of the sun. Figure 3
illustrates θsz as a function of Lat and Act for Landsat-8, Sentinel-2A, Sentinel-2B, and the
three sensors combined in 2018. As both Landsat-8 and Sentinel-2 have a polar orbit, a
similar θsz variation with respect to the Lat and Act for Landsat-8 and Sentinel-2 can be
seen from Figure 3.

Table 1 summarizes the global mean average, median average, minimum, maximum,
and standard deviation of θsz for each sensor and the three sensors combined in 2018.
Specifically, the global maximum and minimum θsz for Landsat-8 are 89.99◦ and 20.96◦,
with a mean average of 49.97◦ and standard deviation of 18.58◦. Compared with Landsat-8,
Sentinel-2 gives a lower θsz, with a maximum, minimum, and mean of 83.38, 14.74, and
43.89◦ for Sentinel-2A and 88.87, 14.76, and 44.89◦ for Sentinel-2B. This is because the
average equatorial crossing time of Landsat-8 is 30 min earlier than Sentinel-2 (10:00 for
Landsat-8, 10:30 for Sentinel-2). There are slight differences between the θsz of Sentinel-2A
and Sentinel-2B because they have a phase delay of 180◦ between them [3]. The global
mean average difference in θsz between Landsat-8 and Sentinel-2A/2B is 6.09◦/5.09◦.
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Table 1. Summary statistics of observed θsz for the global data of 2018 for Landsat-8, Sentinel-2A,
Sentinel-2B, and all three sensors combined. Results are given to three decimal places.

Mean Median Standard
Deviation Maximum Minimum

Landsat-8 49.973◦ 48.145◦ 18.581◦ 89.985◦ 20.963◦

Sentinel-2A 43.890◦ 41.573◦ 17.951◦ 83.377◦ 14.739◦

Sentinel-2B 44.885◦ 42.665◦ 18.346◦ 88.872◦ 14.759◦

Three sensors
combined 44.802◦ 42.520◦ 18.250◦ 89.985◦ 14.739◦

Figure 4 shows a boxplot of the observed θsz distribution for each of the sensor and
the three sensors combined. The dotted orange lines show the median average for each
θsz data set. It is clear that the medium of θsz for Landat-8 is higher than for Sentinel-2
and the three sensors combined due to the different equatorial crossing times of Landsat-8
and Sentinel-2. The medium value of θsz for Sentinel-2 and the three sensors combined are
on the same level because the number of observed θsz for Sentinel-2 accounts for a large
proportion of the three sensors combined.
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4.2. Performance of ML Models for Global θsz Prediction

Table 2 summarizes the accuracy metrics, with respect to the observed θsz for the
three sensors combined, for all five methods when using different combinations of input
variables. When only using one input variable (Lat or Act) to predict θsz, the SVR and
MLP models achieve a comparable performance to that of polynomial regression. The GPR
model is slightly better than polynomial regression, with R2 = 0.526, MAE = 10.590◦, and
RMSE = 12.463◦ with Lat as the input variable, compared with values of 0.525, 10.597◦, and
12.473◦, respectively, for polynomial regression. When more than one variable is used for
the fitting process, the nonlinear ML models exhibit a significant improvement over the
accuracy of the linear RLR model, as can be seen for the combination of Lat and Act, and
Lat and Lon and Act in Table 2. Considering Lat and Act as inputs, all three nonlinear ML
models achieve acceptable results. Specifically, GPR gives the best results in terms of R2

(0.994), MAE (0.689◦), and RMSE (1.390◦), followed by SVR with values of 0.994, 0.638◦,
and 1.396◦, respectively. Note that using three variables as inputs (Lat and Lon and Act)
does not improve the global-scale prediction results of the GPR and SVR models compared
to the use of two input variables (Lat and Act). This is consistent with the results discussed
in Section 4.1, as Lat and Act are the two main factors determining the variation of θsz.



Remote Sens. 2021, 13, 2598 10 of 20

Table 2. Regression accuracy obtained with polynomial fitting and ML models on the observed θsz

for global data over all 12 months of 2018 for the three sensors combined. Results are given to three
decimal places.

Input Metric Polyfit RLR SVR GPR MLP

Lat
R2

MAE
RMSE

0.525
10.597◦

12.473◦

0.067
14.720◦

17.484◦

0.516
10.581◦

12.597◦

0.526
10.590◦

12.463◦

0.525
10.619◦

12.470◦

Act
R2

MAE
RMSE

0.114
14.633◦

17.038◦

0.000
15.512◦

18.101◦

0.113
14.593◦

17.044◦

0.116
14.620◦

17.023◦

0.113
14.635◦

17.048◦

Lat and
Act

R2

MAE
RMSE

-
0.067

14.720◦

17.484◦

0.994
0.638◦

1.396◦

0.994
0.689◦

1.390◦

0.993
0.873◦

1.504◦

Lat and
Lon and

Act

R2

MAE
RMSE

-
0.070

14.692◦

17.454◦

0.993
0.711◦

1.489◦

0.994
0.691◦

1.391◦

0.992
1.052◦

1.598◦

Figure 5 compares the regression performance of different models using Lat (left)
and Act (right). The dotted points denote the data used for training (yellow) and testing
(gray). The polynomial regression parameterized single input, colored in blue, is plotted as
the reference line. The plot on the left shows a bowl-shaped observed θsz against Lat for
all three nonlinear ML models, representing the polar solar-synchronous orbit geometry.
The RLR model (orange) is a straight line, which does not fit much of the data along the
center latitude in the x-axis. The GPR, MLP, and SVR models exhibit a regular regression
fitting line of θsz against latitude, with GPR (red) and SVR (green) providing a better fit
than MLP (purple). Some differences between GPR and SVR appear at latitudes above 60◦

north and below 60◦ south, where GPR gives a better fit to the θsz in high-latitude areas,
with an RMSE of 12.463◦ (GPR) compared to 12.597◦ (SVR). The gray area illustrates the
GPR θsz fitting for the 95% confidence interval. There are few data located around 60◦

S for the observed θsz, because around this latitude most parts of the earth are occupied
by ocean and a very small proportion of land (Figure 2). Both of the two ML models
predicted a smooth regression fitting line in this area, reflecting the ML models’ prediction
ability when the data were sparse or missed. The right-hand plot compares the regression
performance of the ML models against the polynomial regression for θsz against Act. The
RLR model (orange) still follows a straight line, whereas all three nonlinear ML models
give a sinusoidal shape. The performance of these three models is quite similar, with an R2

around 0.1, indicating a relatively weak relationship between θsz and Act.
Figure 6 shows the results of an importance test of the input variables with respect to

the predicted θsz for the four ML regression models. The importance of each input variable
in a prediction was measured using the MAE, which was computed by leaving out each
input variable in turn and performing a test, and then computing the average value. After
each test, a stable variable importance was established. A higher MAE value indicates
that the input variable that has been left out has more importance to the model. For the
RLR model, all three input variables have nearly the same importance to the fitting model
because of the linear form of the combination of input variables. For all three nonlinear
ML models, Lat has a strong correlation to the predicted θsz, as shown in Figure 6. Act
has a moderate correlation to the fitted θsz, while there is only a weak correlation between
Lon and θsz. The results agree with our physical intuition regarding how each of the input
variables contributes to the predicted θsz, as discussed in Section 4.1.
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Figure 6. Input variable importance plots of θsz for the following four ML regression models: RLR,
SVR, GPR, and MLP. The x-axis denotes the input variable, Lat, Lon, or Act, and the y-axis measures
the difference in MAE calculated as the average from sereval tests when leaving one variable out.

Figure 7 shows a scatterplot of the observed θsz against the predicted θsz for the four
ML models, taking Lat and Act as the input variables on a global scale. The RLR model
presents the most disperse scatterplot, implying that relatively large errors could occur
if a linear model was used to derive θsz. This is because complex nonlinear relationships
exist between the input variables and θsz. It can be observed that the three nonlinear
ML models produce a distribution of data around the 1:1 line (gray line). All of them
achieve MAE values below 1◦ (SVR: 0.638◦, GPR: 0.689◦, and MLP: 0.873◦), which is less
than the global mean average difference of θsz between Landsat-8/Sentinel-2A (6.09◦) and
Landsat-8/Sentinel-2B (5.09◦), implying that the ML models have an excellent ability to
fit this nonlinear complex relationship. There are some outliers when θsz was larger than
70◦ for all the SVR, GPR, MLP models. This is because when polar-orbiting Landsat-8 and
Sentinel-2 transit over polar regions, the observed θsz varied greatly over the area with
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same Lat but different Lon [4] and also because Lat and Act were used as inputs. We do
not include Lon to predict θsz in Figure 7.
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Figure 7. Scatterplot of observed θsz against predicted θsz given by RLR (top left), SVR (top right),
GPR (bottom left), and MLP (bottom right) for the three sensors combined using Lat and Act as
input variables in 2018.

Figure 8 shows the distribution of the predicted θsz using Lat and Act as the input
variables for different ML models. The RLR model appears in the form of a fitted plane. The
nonlinear fitted models have a very similar distribution to the observed θsz (see Figure 3),
with smooth variations in space and time, indicating good θsz predictions for the three
sensors combined.

As all three nonlinear ML models achieve good accuracy in terms of estimating the
observed θsz for the three sensors combined at the global scale, the computation time
and RAM consumption were also investigated. A desktop computer with an Intel Core
i7-8700 3.20 GHz CPU and 16 GB RAM running Windows 10 was used as the computing
environment. Table 3 summarizes the computation times and RAM consumption of the
different models for θsz regression using Lat and Act as inputs. Compared with the other
three nonlinear models, RLR has the lowest runtime and memory consumption (1.36 s
and 501.7 MB, respectively). When the regression models become more complex, the
computation time and RAM consumption increase (1747.27 s and 5118.5 MB for the GPR
model, 7090.03 s and 4999.9 MB for the SVR model).
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Table 3. Comparison of computational time and RAM consumption in the training process using
different ML models.

Model Time(s) RAM(MB)

RLR 1.36 501.7
SVM 7090.03 4999.9
GPR 1747.27 5118.5
MLP 2152.50 3512.2

4.3. Performance of ML Models for Local θsz Prediction

The left-hand side of Figures 9–11 shows θsz from the three sensors combined plotted
as a function of Act for 2018 over the northeast of the Congo (Figure 9), Texas (Figure 10)
and Finland (Figure 11). θsz against Lat was not shown, as there are nearly no variations
for observed Lat over the three selected locations through 2018.

The variations in θsz from the three sensors combined appear to be sinusoidal for the
Congo because the solar geometric position swings back and forth around the equator. In
2018, the mean average θsz values for Landsat-8 and Sentinel-2A/2B were 31.023, 26.977,
and 27.204◦, respectively. The maximum variation in θsz over the Congo in 2018 for the
three sensors combined was 17.006◦, with a maximum of 35.666◦ observed on June 23 from
Landsat-8 and a minimum of 18.660◦ observed on October 1 from Sentinel-2B.

The θsz variations appear to be bowl-shaped over Texas (Figure 10, left), with the
smallest θsz occurring in the summer when the sun is closest to being directly overhead at
the time of satellite overpass in the northern hemisphere. Over 2018, the mean average θsz
values for Landsat-8 and Sentinel-2A/2B were 38.013, 35.056, and 34.580◦, respectively. The
maximum variation in θsz for the three sensors combined over Texas in 2018 was 41.741◦,
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with a maximum of 57.757◦ from Landsat-8 on December 26 and a minimum of 16.016◦

from Sentinel-2B on June 12.
Finland (Figure 11, left) shows a similar bowl-shaped θsz variations to Texas, but

spans even greater ranges due to the higher latitude. The mean average θsz values for
Landsat-8 and Sentinel-2A/2B were 60.344, 56.505, and 56.932◦, respectively, over 2018.
The maximum variation in θsz for the three sensors combined over Finland in 2018 was
46.514◦, with a maximum of 84.859◦ from Landsat-8 on December 11 and a minimum of
38.345◦ from Sentinel-2B on June 23.
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Figure 10. Observed θsz over Texas (−99.406◦, 30.751◦) plotted against Act (left) for all 12 months of 2018 for the three
sensors combined. Comparison of the performance (right) for the polynomial regression and different ML models on the
observed θsz against Act in 2018 for the three sensors combined.
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Figure 11. Observed θsz over Finland (25.194◦, 61.653◦) plotted against Act (left) in 2018 for the three sensors combined.
Comparison of the performance (right) of the polynomial regression and ML models on the observed θsz against Act in
2018 for the three sensors combined.

The right-hand sides of Figures 9–11 compare the regression performance of the
different ML models for predicting θsz, considering Act as the input variable for the Congo,
Texas, and Finland, respectively. Polynomial regression is shown as a reference. For all
cases, the nonlinear ML models fit the change in θsz with respect to Act. The RLR model
produces a straight line for both cases. The regression results of SVR, GPR, and MLP reflect
the variation of θsz in the three locations.

Tables 4–6 present summary statistics for the predicted θsz considering the inputs
of Act, Lat and Act, and Lat and Lon and Act given by the different ML models for the
Congo, Texas and Finland in 2018, respectively. Considering Act as the input variable,
all of the nonlinear ML models achieve better results than the RLR linear model. SVR
and GPR obtain better results than polynomial regression in all cases, achieving RMSEs
of 1.769 and 1.810◦ for the Congo, 1.099 and 1.162◦ for Texas, and 0.187 and 0.181◦ for
Finland, respectively, compared with 1.943◦ (Congo), 1.228◦ (Texas), and 0.207◦ (Finland)
for polynomial regression. Compared with polynomial regression, SVR and GPR reduced
the RMSE by 9.0 and 6.8% for Congo, 10.5 and 5.4% for Texas and 9.7 and 12.6% for Finland,
respectively. The major difference between SVR and GPR occurs when Lat and Act, and
Lat and Lon and Act are considered for training. For the Congo, GPR achieves an RMSE of
0.987◦ when Lat and Act are considered as inputs, compared with 1.279◦ for SVR; similar
differences appear at the other two locations. This demonstrates that GPR achieves better
regression performance when Lat and Act are considered. Additionally, the same results
were found when Lat and Lon and Act were considered as inputs.
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Table 4. Regression accuracy obtained with polynomial regression and ML models on the observed
θsz for the Democratic Republic of Congo (26.622◦, 0.356◦) in 2018 for the three sensors combined.
Results are given to three decimal places.

Metric Polyfit RLR SVR GPR MLP

Act
R2

MAE
RMSE

0.778
1.550◦

1.943◦

−0.068
3.575◦

4.263◦

0.816
1.334◦

1.769◦

0.808
1.401◦

1.810◦

0.784
1.520◦

1.918◦

Lat and
Act

R2

MAE
RMSE

-
0.036
3.508◦

4.051◦

0.904
0.974◦

1.279◦

0.943
0.907◦

0.987◦

0.902
1.129◦

1.294◦

Lat and
Lon and

Act

R2

MAE
RMSE

-
0.020
3.527◦

4.084◦

0.753
1.464◦

2.051◦

0.943
0.905◦

0.986◦

0.851
1.291◦

1.594◦

Table 5. Regression accuracy obtained with polynomial regression and ML models on the observed
θsz for Texas (−99.406◦, 30.751◦) in 2018 for the three sensors combined. Results are given to three
decimal places.

Metric Polyfit RLR SVR GPR MLP

Act
R2

MAE
RMSE

0.992
0.844◦

1.228◦

−0.104
13.059◦

14.763◦

0.994
0.724◦

1.099◦

0.993
0.790◦

1.162◦

0.992
0.857◦

1.240◦

Lat and
Act

R2

MAE
RMSE

-
−0.127
13.093◦

14.920◦

0.997
0.625◦

0.823◦

0.998
0.560◦

0.632◦

0.993
0.972◦

1.156◦

Lat and
Lon and

Act

R2

MAE
RMSE

-
−0.144
13.183◦

15.030◦

0.982
1.480◦

1.899◦

0.998
0.543◦

0.620◦

0.995
0.766◦

0.991◦

Table 6. Regression accuracy obtained with polynomial regression and ML models on the observed
θsz for Finland (25.194◦, 61.653◦) in 2018 for the three sensors combined. Results are given to three
decimal places.

Metric Polyfit RLR SVR GPR MLP

Act
R2

MAE
RMSE

1.000
0.164◦

0.207◦

−0.039
12.726◦

14.443◦

1.000
0.153◦

0.187◦

1.000
0.149◦

0.181◦

1.000
0.183◦

0.230◦

Lat and
Act

R2

MAE
RMSE

-
−0.034
12.677◦

14.411◦

1.000
0.140◦

0.185◦

1.000
0.125◦

0.159◦

0.999
0.291◦

0.351◦

Lat and
Lon and

Act

R2

MAE
RMSE

-
−0.037
12.703◦

14.429◦

0.991
0.994◦

1.317◦

1.000
0.126◦

0.165◦

0.999
0.238◦

0.377◦

5. Discussion

The combination of Landsat-8 and Sentinel-2A/2B has been widely used to monitor
landcover use and for landcover mapping [42]. The BRDF effect has been demonstrated
in both Landsat-8 and Sentinel-2 reflectance data [10]. Semi-empirical approaches have
been advocated for the normalization of Landsat-8 and Sentinel-2 directional reflectance
data to the nadir view. However, no suitable definition of θsz has yet been presented for
normalizing the combined Landsat-8 and Sentinel-2A/2B directional reflectance data to
produce reliable time series. θsz has the potential to change greatly over space and time
because of the latitudinal variation of the local cross time and also because of seasonal
changes in solar position. The annual reflectance variations caused by changes in θsz can
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be as large as 0.053 for the red band and 0.065 for the NIR band at latitudes of 50◦ [43]. This
is nontrivial and constitutes a serious issue for remote sensing applications.

In this paper, Landsat-8 and Sentinel-2A/2B metadata records collected in 2018 were
analyzed. Combining the three sensors, the minimum and maximum θsz are 14.739 and
89.985◦, and the mean value is 44.802◦ with a standard deviation of 18.250◦. The differences
in the global mean average θsz between Landsat-8 and Sentinel-2A and between Landsat-8
and Sentinel-2B are 6.09 and 5.09◦, respectively. These differences are caused by the 30-
minute difference in the mean equator overpass time (Landsat-8: 10:00, Sentinel-2: 10:30),
which necessitates the normalization of θsz for the three sensors to eliminate the effects of
BRDF from θsz variations.

The novelty of this research lies in that the four ML models were used to learn and
optimize the functional forms of these models and then predict the values of θsz for the
combination of the three sensors. The results showed that the GPR model achieved a
higher accuracy to estimate the θsz compared to the polynomial and astronomical physical
models. Further, research on the quantification of θsz for the combination of Landsat-8 and
Sentinel-2A -2B is lacking and defining a θsz suitable for normalizing the BRDF time series
given the data set is required.

The four ML models, i.e., RLR, SVR, GPR, and MLP, were selected to predict θsz for a
combination of these three sensors. In the RLR model, the predicted θsz is assumed to be
a linear weighted sum of the input variables; thus, the performance of the RLR model is
limited by its simple function form. The SVR model is a regression version of the traditional
support vector classification model, and it estimates θsz values by optimizing the penalty
function after delivering at a sparse solution. GPR is a probabilistic approximation to
non-parametric data distribution regression models; in the prediction, both a predictive
mean value and result variance can be learned. The MLP model is a basic type of an
artificial neural network, it can fit any nonlinear relationship through a non-linear activation
function and back-propagation iterative optimization. We noted that the advantage of
the MLP model compared to SVR and GPR is not substantial in θsz prediction. This is
possible because that MLP-base model presents a better performance when the datasets
are non-linear, complex, and redundant, etc., image and natural language data [44,45].

The optimal θsz definition for normalizing combined Landsat-8 and Sentinel-2A/2B
reflectance data was considered as the following criteria: θsz can be modelled at any
location and date, and the difference between the observed θsz and θsz for normalization
are minimized. Lat, Lat and Act, and Lat and Lon and Act were used as the input variables
into different ML models to predict θsz, respectively. RMSE, MAE, and R2 metrics were used
to evaluate the regression accuracy of the different ML models. Instead of an astronomical
physical model [12], which builds upon polynomial and uses physical knowledge and
mathematical relationships to convert geometrical coordinates to θsz, four ML models
were used to fit the values of θsz. The functional forms of these models were learned
and optimized from the global θsz data from all three sensors. The performance of the
astronomical physical model depends on the estimation accuracy of polynomial regression.
The research results showed that the GPR and SVR models are slightly better than the
polynomial for global θsz data, and an improvement was made at all of the three locations’
θsz datasets.

With Lat as the input variable, the nonlinear ML models achieved RMSEs of 12.597◦

(SVR), 12.463◦ (GPR), and 12.470◦ (MLP) and R2 values of 0.516 (SVR), 0.526 (GPR), and
0.525 (MLP) when comparing the predicted θsz with the test θsz at the global scale. This
prediction accuracy is comparable to that of the reference polynomial regression, which
achieved an RMSE of 12.473◦ and an R2 of 0.525, with GPR slightly better. SVR, GPR, and
MLP achieved RMSEs of 1.396, 1.390, and 1.504◦ and R2 values of 0.994, 0.994, and 0.993,
respectively, when considering Lat and Act as the input variables; these values compare
favorably with the linear RLR model (an RMSE of 17.484◦ and an R2 of 0.067). There
is little further improvement when Lat and Lon and Act are used as input variables. A
relative importance test showed that Lat is most closely correlated with the variation of θsz,
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followed by Act. Lon has a weak relationship with θsz at a global scale. This is consistent
with our physical knowledge that θsz varies with the latitudinal variation of local cross
time and the seasonal changes in solar position.

The performance of the ML models was further evaluated at specific locations (Congo,
Texas, and Finland). In the case of Finland, the predicted θsz against the Act gave RMSEs of
0.187◦ (SVR), 0.181◦ (GPR), and 0.230◦ (MLP) and R2 values of 1.000 (SVR), 1.000 (GPR),
and 1.000 (MLP), all of which are better than the linear RLR values of 14.443◦ (RMSE)
and −0.039 (R2). Compared with the precision statistics from the polynomial regression
(0.207◦ for RMSE and 1.000 for R2), MLP achieved comparable accuracy, and SVR and GPR
performed better, reducing the RMSE by 9.7% (SVR) and 12.6% (GPR), compared with
the polynomial. For the Congo and Texas, the nonlinear models (SVR, GPR, and MLP)
exhibited more favorable performances than the linear RLR model. Compared with the
well-established polynomial model, MLP produced a performance comparable to that of
polynomial regression, and SVR and GPR gave greater accuracy in all cases. These results
indicate that, although polynomial regression performs well, it is constrained by its explicit
and simple parametric relations. On the contrary, for ML models, functional parameters
are learned and optimized from data; thus, an improved performance can be achieved,
compared with polynomial regression, in the case of complex nonlinear relations. GPR
performs better than SVR, especially when Lat and Act, and Lat and Lon and Act were
considered as input variables.

The resource consumption of each of the ML models was also investigated. The
resource consumption rises with the model complexity, with training times of 7090.03 s for
SVM, 1747.27 s for GPR, and 2152.50 s for MLP, compared with 1.36 s for RLR. All of the
nonlinear models have a greater computational cost than the linear model. However, once
the learning model has been trained, the model can be stored for further use; this is a clear
advantage of the ML models over physical models.

6. Conclusions

In this study, the variation in θsz for the combination of Landsat-8, Sentinel-2A, and
Sentinel-2B was quantified for the year 2018. Throughout the year, the minimum and
maximum θsz for the three sensors combined are 14.739 and 89.985◦, respectively, giving
a mean value of 44.802◦ with a standard deviation of 18.250◦. As Landsat-8 crosses the
equator 30 min before Sentinel-2, the global mean average θsz difference is 6.09◦ (between
Landsat-8 and Sentinel-2A) and 5.09◦ (between Landsat-8 and Sentinel-2B).

The four ML models were explored to train the forms and to optimize the model
parameters and then used to estimate the values of θsz for a combination of three sensors.
The ML models exhibit a performance comparable to that of polynomial regression when
Lat is used to predict the global θsz. When Lat and Act were considered as the inputs, the
nonlinear ML models achieve an obvious improvement in prediction accuracy compared
with the linear model. The GPR model achieved the best overall model performance when
using Lat and Act were used as the inputs, with an RMSE of 1.390◦, MAE of 0.689◦, and R2

of 0.994, followed by the SVR model with an RMSE of 1.396◦, MAE of 0.638◦, and R2 of
0.994. In addition, comprehensive analysis of the model regression for specific locations
(Congo, Texas, and Finland) were discussed. Considering Act as input variable, the SVR
and GPR models achieve more accurate estimations than the polynomial regression in all
cases, implying that ML models can stratify θsz definition criteria better than polynomial
regression. GPR achieved the best results, especially when Lat and Act, and Lat and Lon
and Act were considered as the input variables. The GPR model is recommended for the
prediction of global θsz for the three sensors combined in 2018.

In this study, more than 350,000 metadata records were obtained by down-sampling
one-tenth of the combined dataset of Landsat-8 and Sentinel-2A/2B during 2018. A scalable
Gaussian process [23] that has been specially designed for huge data volumes could be
used to handle the full dataset. In the future, the proposed optimal θsz could be used for
the normalization of bidirectional reflectance to produce consistent global time series for
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the combination of Landsat-8 and Sentinel-2A -2B and quantify the effects of normalized
θsz on the reflectance data. Landsat-9, proposed for launch in mid-2021, will be placed
into the current Landsat-7 orbit and will carry a refined version of the Landsat-8 sensor
payload [46]. Thus, Landsat-9 data could be added to the experiment, giving a combination
of Landsat-8/9 and Sentinel-2A/2B from which to derive θsz values suitable for applying
BRDF normalization, thus resulting in more consistent time series data.
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