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Abstract: Mangroves are among the most productive ecosystems in existence, with many ecological
benefits. Therefore, generating accurate thematic maps from mangrove ecosystems is crucial for
protecting, conserving, and reforestation planning for these valuable natural resources. In this paper,
Sentinel-1 and Sentinel-2 satellite images were used in synergy to produce a detailed mangrove
ecosystem map of the Hara protected area, Qeshm, Iran, at 10 m spatial resolution within the Google
Earth Engine (GEE) cloud computing platform. In this regard, 86 Sentinel-1 and 41 Sentinel-2 data,
acquired in 2019, were employed to generate seasonal optical and synthetic aperture radar (SAR)
features. Afterward, seasonal features were inserted into a pixel-based random forest (RF) classifier,
resulting in an accurate mangrove ecosystem map with average overall accuracy (OA) and Kappa
coefficient (KC) of 93.23% and 0.92, respectively, wherein all classes (except aerial roots) achieved high
producer and user accuracies of over 90%. Furthermore, comprehensive quantitative and qualitative
assessments were performed to investigate the robustness of the proposed approach, and the accurate
and stable results achieved through cross-validation and consistency checks confirmed its robustness
and applicability. It was revealed that seasonal features and the integration of multi-source remote
sensing data contributed towards obtaining a more reliable mangrove ecosystem map. The proposed
approach relies on a straightforward yet effective workflow for mangrove ecosystem mapping, with
a high rate of automation that can be easily implemented for frequent and precise mapping in
other parts of the world. Overall, the proposed workflow can further improve the conservation and
sustainable management of these valuable natural resources.

Keywords: mangrove ecosystem; random forest (RF); Google Earth Engine (GEE); Sentinel; synthetic
aperture radar (SAR); optical; aerial roots

1. Introduction

Mangroves are unique ecosystems that grow along tropical and sub-tropical coastlines.
They provide many ecological benefits, including coastal protection, carbon sequestra-
tion, and waste and pollution assimilation [1–5]. Despite their significant environmental
services, mangroves continue to disappear due to anthropogenic activities and climate
change [6,7]. For instance, over the last five decades, approximately 20–30% of global man-
groves have disappeared due to various phenomena, such as urban expansion, conversion
to aquaculture, sea-level rise, and sediment alterations [8–13]. Therefore, accurate spatial
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and temporal mapping and monitoring of mangrove ecosystems are crucial for natural
resource conservation and sustainable development goals [14].

In situ observations provide the most accurate information about mangroves. How-
ever, collecting in situ observations through field surveys is challenging, due to the limited
accessibility of mangrove communities, as they are located in harsh and tidally inundated
environments [15]. Therefore, remote sensing has been recognized as an efficient and
cost-effective approach for mapping mangroves [16].

In this regard, multi-spectral [17–19], hyperspectral [20], light detection and ranging
(LIDAR) [21], and synthetic aperture radar (SAR) [22] datasets have been utilized for
mangrove studies. For instance, Manna and Raychaudhuri [23] examined the potential of
Sentinel-2 images for mangrove mapping in Sunderban, India. Moreover, Zhu et al. [21]
employed unmanned aerial vehicle (UAV) optical and LIDAR data to map mangrove-
inundation patterns in Fujian, China. Furthermore, Kabiri [24] utilized RGB images,
acquired by UAV, to classify the coastal ecosystem of Nayband Bay, Iran, into five classes
of mangrove, shallow water, deep water, vegetation, and sand. The ortho-images and
reference samples were fed to a maximum likelihood classifier to fulfill this task, producing
a land cover map with an OA of 87.6%. Likewise, Toosi et al. [25] investigated the suitability
of combining Sentinel-2 and WordView-2 images to produce a mangrove ecosystem map
with eight classes. An upscaling approach in three stages was applied to produce a wall-to-
wall land cover map based on a single-date Sentinel-2 image, resulting in the OA and Kappa
coefficient (KC) of 65.5% and 0.63, respectively. The incorporation of single-date satellite
imagery along with few reference samples were two limiting factors of their research,
leading to moderate accuracy.

Most conducted studies on mangroves using remote sensing data have implemented
traditional approaches on local computers, requiring manual acquiring, correcting, and
processing of satellite images. Therefore, Cárdenas et al. [26] encouraged scholars to
employ cloud-computing platforms, such as Google Earth Engine (GEE), making mangrove
mapping more efficient [27,28]. This platform enables the automation of repetitive tasks
(e.g., image acquisition, calibrating, and processing) and, thus, decreasing the dedicated
time up to 60% [26].

GEE is a cloud platform enabling high-performance computing capabilities for geospa-
tial data processing [29,30]. GEE hosts petabytes of satellite images, which have been
efficiently employed in a variety of Earth science-related studies, such as land cover
mapping [31–33], monitoring of volcanic thermal anomalies [34], monitoring of forest
health [35,36], and wildfire damage assessment [37]. This cloud platform was also used
in several mangrove studies, especially mangrove extent mapping [8,15,38–40]. For exam-
ple, Mondal et al. [39] combined annual downscaled Sentinel-2 images and two machine
learning algorithms of random forest (RF) and classification and regression trees (CART)
within GEE for mangrove extent mapping along the coasts of Senegal and Gambia. The
final mangrove extent maps of RF and CART had average OAs of about 93.44% and 92.18%,
respectively. Furthermore, Sentinel-1 and Sentinel-2 data were employed in conjunction
to produce a 10 m-resolution mangrove extent map of China [15]. In this regard, quantile
synthesis features derived from both datasets were applied to an RF classifier using both
pixel-based and object-based approaches. Finally, the classification results were improved
by the constraint of tidal flats and visual manipulations. It was reported that the pixel-based
approach obtained a higher OA, of approximately 95%, based on two-class (i.e., mangroves
and non-mangroves) mapping.

Almost all of the mangrove-related studies within GEE, to the best of our knowl-
edge, were dedicated to mangrove extent mapping [8,15,39–41] and, thus, the potential
of this cloud platform for detailed mangrove ecosystem mapping was not fully explored.
Additionally, other studies that were carried out to map a detailed mangrove ecosystem
implemented traditional approaches on local computers using a few satellite observa-
tions [23,25]. Therefore, in this study, the GEE cloud computing platform was integrated
with open-access satellite images to produce a detailed mangrove ecosystem map, ad-
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vancing conservation and sustainable management of these valuable ecosystems through
a higher automation level. The proposed approach uses an uncomplicated yet effective
framework, allowing a consistent mangrove ecosystem mapping workflow for monitoring
and assessment purposes. In this regard, the objectives of the present study are summarized
as (1) incorporating multi-source images of Sentinel-1 and Sentinel-2 for accurate mangrove
ecosystem mapping within GEE through an efficient and reproducible workflow, and (2)
employing dense seasonal time-series observations to alleviate the tidal effect for more
accurate mapping without any further tidal refinements. The robustness of the proposed
method was then examined through cross-validation and consistency analyses. Further-
more, the contribution of multi-source remote sensing data and seasonal observations were
also investigated.

2. Materials and Methods
2.1. Study Area

The study area covers the mangrove ecosystem in the Hara protected area of Qeshm
Island, southern Iran (see Figure 1), which is under protection by different international
conventions [42]. It is approximately centered at latitude and longitude of 26◦ 50′ N and
55◦ 44′ E, respectively, between the northwest estuaries of Qeshm Island and Hormozgan
province. This area is the largest mangrove ecosystem in the Persian Gulf and Oman Sea
coasts [43]. The study area includes grooved tidal channels, wherein tides are semi-diurnal.
Furthermore, this region is affected by considerable tidal fluctuations, which necessitate
taking the tidal effect into account for accurate mangrove mapping. There are generally
two mangrove species, Avicennia marina and Rhizophora mucronata, in the Persian Gulf, the
dominant of which is Avicennia marina, which grows in oxygen-poor sediments [44,45].
The local community uses this mangrove ecosystem for fishing, leaf-cutting, and regular
boat journeys (i.e., tourism), which have negatively impacted the ecosystem, suggesting
the necessity of frequent monitoring for conservation and natural resource management.
Additionally, due to its proximity to the Strait of Hormuz, through which a large number
of oil tankers pass, this area is also adversely impacted by oil leakage [46].
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Table 1. The number and area of training and test polygons for nine classes that were considered in
this study.

ID Class
Training Samples Test Samples Total

Polygon Area (ha) Polygon Area (ha) Polygon Area (ha)

1 Mangrove 24 14.59 27 15.30 51 39.89
2 Tidal zone 30 17.04 22 13.38 52 30.42
3 Deep water 29 17.67 36 23.12 65 40.79
4 Shallow water 44 16.31 35 15.67 79 31.98
5 Mudflat 43 19.23 43 20.81 86 40.04
6 Aerial roots 20 10.01 20 9.05 40 19.06
7 Urban 18 7.65 24 9.82 42 17.47
8 Bare ground 40 17.61 41 18.41 81 36.20
9 Vegetation 17 5.11 16 4.82 33 9.93

Total 265 125.22 264 130.38 529 529

2.2. Datasets

In this section, the datasets employed for mangrove ecosystem mapping are explained.
First, a description of the collection and preparation of reference samples is provided, and
then the Sentinel-1 and Sentinel-2 satellite datasets are described.

2.2.1. Reference Samples

In this study, precise visual interpretation depended on collecting reference samples
from high-resolution satellite images available in ArcMap and Google Earth. Additionally,
false-color composite satellite imagery and previous mangrove ecosystem maps were
used. Homogenous sites were considered for reference sample collection to mitigate
the challenge of mixed pixels by avoiding fragmented areas. In total, nine classes with
adequate (i.e., in terms of land cover portion in the study area and possible complexity)
reference samples and appropriate spatial distribution (i.e., distributed over the study
area) were generated (see Figure 1). Reference samples were then randomly split into two
groups of training (50%) and test (50%) samples. Random splitting leads to low bias in
the performance of the final classification results [47]. However, the primary challenge
of random sampling is the information leak between training and test samples [48]. In
other words, random sampling at pixel unit causes the training and test datasets to include
reference samples from the same polygons. This issue increases the spatial autocorrelation
between training and test datasets, which affects the accuracy assessment results and
decreases the generality of the classifier [49]. Therefore, to avoid this, the random splitting
step was conducted at the polygon unit, which also spatially disjointed the training and
test samples. It should be mentioned that the random splitting step was implemented ten
times to enable applying a cross-validation procedure for performance evaluation, which
can also prove the applicability and robustness of the proposed method for accurate and
detailed mangrove ecosystem mapping [39]. Table 1 provides the number of training and
test polygons (i.e., the average value in ten iterations) and their corresponding area. In
total, 265 and 264 training and test polygons with an area of about 125.22 ha and 130.38 ha
were generated, respectively.

2.2.2. Satellite Images

The time-series Sentinel-1 and Sentinel-2 satellite images were integrated to produce an
accurate mangrove ecosystem map. Combining SAR and optical data allows the detection
of different physical and spectral characteristics of land covers and, thus, their integration
may achieve precise classification results [50–52]. Additionally, time-series data enables
consideration of the water level fluctuations and tidal effects in the mangrove ecosystem,
which can also increase the reliability of the classification results [53].

Sentinel-1 is a European SAR satellite, which acquires C-band data in dual-polarization
in all-weather conditions with a 6-day temporal resolution. Level-1C ground range detected
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(GRD) images with 10 m spatial resolution in both ascending and descending modes were
employed [54,55]. In total, 86 Sentinel-1 scenes in the VV (vertical transmittance and
receiving) and VH (vertical transmittance and horizontal receiving) polarizations, acquired
in 2019 (i.e., from 1 January 2019 to 1 January 2020), were employed (see Table 2).

Sentinel-2 is also a European platform launched by the European Space Agency (ESA)
and carries the MultiSpectral Instrument (MSI) sensor [54]. This sensor records the Earth’s
surface information in 13 spectral bands from visible to shortwave infrared (SWIR) regions,
with different spatial resolutions ranging between 10 m and 60 m. In this study, only four
bands of blue, green, red, and near infrared (NIR), which are captured with 10 m spatial
resolution, were used. As it is acknowledged that satellite imagery with higher spatial
resolutions improves mangrove ecosystem mapping, [25], here, only bands with 10 m
spatial resolution were employed. This is mainly rooted in the fact that higher spatial
resolution imagery improves the delineation of mangrove ecosystem classes, especially
identifying mangrove patches with a small area or narrow shapes [56]. In total, 41 Sentinel-
2 images, acquired in 2019 (i.e., from 1 January 2019 to 1 January 2020), were considered
for mangrove ecosystem mapping (see Table 2).

Table 2. The number of Sentinel-1 and Sentinel-2 satellite images in each season.

Data
Season

Total Date
Spring Summer Autumn Winter

Sentinel-1 22 22 22 20 86 From 1 January 2019
to 1 January 2020Sentinel-2 11 11 12 7 41

3. Methodology

The schematic framework, providing an overview of the proposed approach, is pre-
sented in Figure 2. This section comprises three sub-sections, in which the satellite data
preprocessing, classification workflow, and accuracy assessment procedure are explained
in detail.
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3.1. Satellite Data Preprocessing

Sentinel-1 GRD data are available within GEE with the snippet of (Image Collec-
tion ID: COPERNUCUS/S1_GRD). They are generally ready-to-use data because several
preprocessing steps are initially applied to them by the GEE developers. These data are
already converted to the backscattering coefficient (σ◦, dB) and are ortho-rectified. In
particular, five preprocessing steps (1) applying orbit file correction, (2) GRD border noise
removal, (3) thermal noise removal, (4) radiometric calibration, and (5) terrain correction
were applied to each Sentinel-1 scene, while their detailed information is provided by the
GEE developers (https://developers.google.com/earth-engine/guides/sentinel1 accessed
on 29 June 2021). Afterward, all available Sentinel-1 scenes in 2019 were categorized based
on the seasons of acquisition, followed by applying a mean reducer to generate seasonal
time-series data. Downscaling time-series Sentinel-1 data by the mean reducer function
produced seasonal datasets, which are less susceptible to image acquisition conditions, and
reduced speckle noise [31].

Sentinel-2 top of atmosphere (TOA) reflectance data, which are available within GEE
by the snippet (Image Collection ID: COPERNICUS/S2), were also used in this study. The
TOA reflectance values were derived through radiometric calibration of raw data. Because
of the importance of applying cloud masking, a filtering step was first implemented to
remove Sentinel-2 scenes with a cloud cover percentage of higher than 5%. Subsequently,
similar to Sentinel-1 data, a seasonal median reducer was applied to all remaining Sentinel-2
scenes, generating seasonal optical features for classification tasks. The median reducer
function allows the production of cloud-free seasonal datasets, in which the noisy, very
dark, and very bright pixels are also removed [31,57].

Ultimately, eight SAR features (4 VV + 4 VH) and 16 optical features (4 blue + 4 green
+ 4 red + 4 NIR bands) were used in synergy to produce mangrove ecosystem maps. It
is well acknowledged that the quality of the classification results directly depends on
the input features [58,59]. As such, the integration of multi-source (i.e., SAR + optical)
data can increase the discriminative capability of the classifier [53]. Moreover, time-series
satellite data can manifest the water level fluctuations in estuaries, such as mangrove
ecosystems [53]. Consequently, seasonal datasets can mitigate the tidal effects in the study
area and allow producing cloud-free mosaics.

3.2. Classification

Different classification algorithms have been employed for mangrove mapping using
satellite images [23,39,60]. In this regard, choosing the most appropriate classifier, in addi-
tion to selecting discriminative features, is important, and directly affects the classification
results. Among classifiers, random forest (RF) proved to be an efficient algorithm in man-
grove mapping studies [15,44,61]. For instance, Toosi et al. [44] compared four frequently
used non-parametric classifiers (i.e., RF, support vector machine (SVM) with linear and ra-
dial basis function kernels, and regularized discriminant analysis) for mangrove ecosystem
mapping, and concluded that the RF classifier was superior.

RF is an authoritative non-parametric classifier, which employs the bootstrap aggrega-
tion technique to combine the classification results of various independent random decision
trees and to predict the class label [62]. Each of these random decision trees is trained by a
subset of training samples, called in-bag samples, and uses the remnant, called out-of-bag
samples, for internal cross-validation. Later, their results are integrated to produce the
final classification results. This enables the RF classifier to have a higher tolerance for noise,
and also avoids overfitting possibilities [63,64]. Moreover, RF has proven its capability of
handling high-dimensional data by resulting in promising maps [31].

https://developers.google.com/earth-engine/guides/sentinel1
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In this study, a pixel-based RF classifier was implemented within GEE because of
the high potential of the RF classifier for mangrove ecosystem mapping [15,44,61]. In this
regard, the final image mosaics, comprising seasonal Sentinel-1 and Sentinel-2 data, were
inserted into an RF classifier. Meanwhile, half of the reference samples were employed to
train the RF classifier. The RF classifier has several tuning parameters that affect the training
phase of the classification step and, thus, directly influence the classification results. Among
these parameters, the number of trees and variables at each node are the most influential
parameters [63], which were set at 100 and equal to the square root of the number of
input features, respectively. It should be noted that these values were determined through
several trial and error attempts based on computational efficacy, visual inspection of the
classification results, and the average out-of-bag sampling error of the RF classifier in the
training phase.

3.3. Accuracy Assessment

Any thematic map derived from remote sensing data should be subjected to a trust-
worthy accuracy assessment to ensure its quality and reliability [65]. Therefore, both visual
interpretation and statistical approaches were conducted to evaluate the accuracy of the
final mangrove ecosystem map. High-resolution satellite images available within Google
Earth and ArcMap were employed for visual assessment of the classification results. In
terms of statistical accuracy assessment, independent test samples were incorporated to
generate the confusion matrix, and then other metrics, such as OA, KC, producer accuracy
(PA), and user accuracy (UA), were derived. The PA represents how well a specific area can
be mapped, whereas the UA is an indicator of how well the produced map represents what
really exists in the study area [66]. Furthermore, the F-score, the harmonic average of recall
and precision, was computed for each class, and then its macro-averaging was reported for
the classification results [67]. As already mentioned in Section 2.2.1, the classification proce-
dure was repeated ten times with different training and test sets to comprehensively assess
the classification performance for mangrove ecosystem mapping through a cross-validation
step.

4. Results

Figure 3 presents the resulting mangrove ecosystem map (i.e., only classes within the
mangrove ecosystem) with 10 m spatial resolution using RF classifier and the integration
of seasonal SAR and optical satellite data within GEE. It should be noted that this map
was produced based on a majority voting step of ten classification results. The majority
voting step allows the production of a more reliable and accurate mangrove ecosystem
map [68]. This is rooted in the fact that combining decisions of several classification results
can lead to better recognition results [69]. Visually, the thematic map had an acceptable
accuracy, indicating the high potential of the proposed method for delineating different
classes. Generally, mangrove areas were depicted precisely, and their surroundings were
also classified as aerial roots, as these roots grow around mangroves. Furthermore, the
middle parts of the tidal channels were correctly classified as deep water, while other parts
located near the coastline areas (i.e., tidal zone) were successfully distinguished as shallow
water. Additionally, along with their corresponding high-resolution satellite images, two
zoomed-in areas are also provided in Figure 3 for better visual interpretation. For instance,
Figure 3b,c illustrates a zoomed-in area of the mangrove ecosystem, in which the mangrove
areas are successfully identified. Moreover, based on Figure 3d,e, the proposed workflow
was highly capable of discriminating between different classes with acceptable precision.
In particular, mangrove areas and their surroundings (i.e., aerial roots) were properly
discriminated, and also shallow water, deep water, and tidal zone classes were delineated
appropriately. Furthermore, other areas without specific covers, which are wet (due to the
existence of narrow water channels), were also accurately classified as mudflat.
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The consistency images of six classes within the mangrove ecosystem were also
computed based on the classification results of ten iterations to determine the robustness of
the proposed classification procedure and the consistency of each pixel. It should be noted
that the consistency images were produced based on the number of label assignments of
each pixel to different classes. In other words, the consistency images present how many
times a pixel was assigned to a specific class. The consistency values ranged between one
and ten, in which one means very low consistency, while ten means highly consistent.
Figure 4 shows the consistency images of six classes within the mangrove ecosystem. It was
observed that in almost all cases, the classifier was able to assign consistent labels to each
pixel in ten iterations. In particular, mangrove pixels were consistently labeled as mangrove
with a high consistency rate of over 85% (i.e., considering pixels with values of eight to
ten). Additionally, the tidal zone, deep water, and mudflat classes achieved reasonable
rates of stability of over 70%. In contrast, the classes of shallow water and aerial roots
obtained lower stability rates. In general, most inconsistencies occurred at boundaries and
fragmented locations, where mixed pixels exist, suggesting the necessity of satellite images
with a higher spatial resolution for more accurate mapping. For instance, the aerial roots
had the highest rate of inconsistency of about 13% (i.e., considering pixels with values of
one). This is probably rooted in the fact that these roots grow around mangrove areas and
in mudflat conditions, and thus, the classifier may encounter difficulties in distinguishing
them. This was more serious in distinguishing aerial roots from mudflat. Furthermore,
another source of inconsistency was found between the shallow water and deep water
classes, which is in fact associated with their greater similarity. The inconsistency revealed
the effect of different training sets and also implied that incorporating the majority voting
step could increase the reliability of the final thematic map.
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Figure 5 presents the average values of PA and UA along with their standard devia-
tion computed for ten iterations of producing mangrove ecosystem maps. The proposed
classification framework obtained high average OA, KC, and F-scores of 93.23% (±1.1),
0.92 (±0.012), and 0.92 (±0.011), respectively. Furthermore, almost all classes achieved
high PAs and UAs of over 90%, demonstrating the high potential and applicability of the
proposed method for detailed mangrove ecosystem mapping. It is evident that the man-
grove classes obtained significant average PA and UA of about 94.4% and 94.5%, indicating
the applicability of the implemented approach for accurate mangrove delineation. In fact,
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the results proved that the proposed approach can not only be used for detailed mangrove
ecosystem mapping but also can be effectively employed for accurate mangrove extent
mapping. The highest and lowest accuracies were related to deep water and aerial roots,
respectively. The aerial roots acquired moderate average PA and UA of approximately
77.6% and 78.2%, respectively, illustrating the challenging task of delineating aerial roots
with high accuracy, which is also in accordance with [25]. Furthermore, Figure 5 demon-
strates that the proposed approach obtained stable PAs and UAs in all ten iterations, since
their standard deviation values ranged between 1.6% and 3.8% for all classes, except for
the aerial roots, for which the standard deviation of PAs and UAs were 7.4% and 5.9%,
respectively.
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The confusion matrices of the classifications were also investigated, to provide an
in-depth statistical assessment in each iteration (see Figure 6). Generally, the proposed
approach obtained acceptable accuracy since less confusion happened between classes,
and confusion matrices were almost diagonal. However, there are several spots where
some confusions are observable in Figure 6, such as the confusion between deep water and
shallow water, which occurred in all iterations. Additionally, relatively high confusions
were also found between aerial roots and other classes of mangrove and mudflat, which
were the reasons for the moderate accuracy of aerial roots.
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An average confusion matrix (i.e., by averaging and rounding of the corresponding
elements in 10 confusion matrices) is also provided in Table 3 to provide a comprehensive
overview of all ten confusion matrices at a glance. Table 3 shows that the proposed approach
obtained high average OA and KC values of 93.23% and 0.92, respectively, indicating the
high potential of this approach for detailed mangrove ecosystem mapping. Moreover, the
average omission error (OE) and commission error (CE) values were respectively 7.56%
and 7.18%. The dominant confusion was associated with the aerial roots class, causing the
highest OE and CE values of 23.06% and 21.92%, respectively, which are also in accordance
with [25]. In particular, the two highest confusions occurred interchangeably between
aerial roots/mudflat and aerial roots/mangrove. This was because these roots are grown
in mudflat areas, exactly around mangroves. Therefore, it was challenging to separate
aerial roots from two other classes due to the spectral/backscattering similarities and also
the existence of mixed pixels at 10 m spatial resolution. Additionally, the second highest
confusion was also observed between deep water and shallow water, which was actually
because of their spectral/backscattering similarity.

Table 3. Average confusion matrix of mangrove ecosystem mapping using the random forest (RF) algorithm and a
combination of the Sentinel-1 and Sentinel-2 satellite images processed within the Google Earth Engine (GEE) platform.

Mangrove Tidal
Zone

Deep
Water

Shallow
Water Mudflat Aerial

Roots Urban Bare
Ground Vegetation

Mangrove 1582 0 0 0 0 75 0 0 0
Tidal Zone 0 1613 0 72 31 0 0 0 0
Deep Water 0 0 2235 60 0 0 0 0 0

Shallow Water 0 46 108 1645 0 0 0 0 0
Mudflat 0 0 0 0 2091 140 22 0 0

Aerial Roots 94 0 0 0 152 823 0 0 2
Urban 0 0 0 0 9 0 923 48 6

Bare Ground 0 0 0 0 7 0 60 1964 3
Vegetation 2 0 0 0 4 16 14 4 518

PA (%) 95.47 93.99 97.38 91.44 92.81 76.94 94.47 96.56 92.83
UA (%) 94.27 97.22 95.39 92.57 91.51 78.08 90.57 97.42 98.29
OE (%) 4.53 6.01 2.62 8.56 7.19 23.06 5.53 3.44 7.17
CE (%) 5.73 2.78 4.61 7.43 8.49 21.92 9.43 2.58 1.71

Overall Accuracy (OA) = 93.23% Kappa Coefficient (KC) = 0.92

5. Discussion
5.1. General Findings

Mangrove ecosystems are routinely inundated and are located in inter-tidal zones [21].
Therefore, it is difficult to carry out field surveys to collect reference samples with global
positioning system (GPS) devices [15]. The availability of highly accurate reference samples
through field surveys is critical for reliable mapping; however, precise visual interpretation
of high-resolution satellite images can compensate for this limitation. The proposed
method was able to achieve high average OA and KC values, suggesting the suitability
of applying this method when conducting fieldwork is difficult. It should be noted that
generating reference samples even from high-resolution satellite imagery through precise
visual interpretations can cause uncertainties and does not obviate the importance of in
situ reference sample collection for more reliable mapping.

Despite the importance of mapping the mangrove extents, which have been conducted
more frequently using either traditional or cloud computing-based approaches, fewer stud-
ies were devoted to producing detailed mangrove ecosystem maps. However, mapping
relevant classes within a mangrove ecosystem (i.e., aerial roots and mudflat) is required
to enhance condition assessment and also to suggest appropriate solutions for protection
and conservation [25]. In particular, mapping the distribution and condition of aerial roots
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are highly required for mangrove status monitoring since these roots provide different
morphological and physiological adaptions to adverse environmental conditions [70]. For
instance, these roots facilitate gas exchange to adapt mangroves to live in oxygen-poor
locations [71], protect mangroves from flood effects and hurricanes [70], and mitigate shore-
line erosion to prevent mangrove loss [72]. Furthermore, these roots support mangrove
growth and accretion by stabilizing mudflat conditions [71,73]. Therefore, obtaining precise
information about aerial roots helps to conduct more profound monitoring of mangroves
and also to determine the locations for efficient reforestation programs.

In this study, the GEE cloud computing platform was employed for mangrove ecosys-
tem mapping. GEE provides an unprecedented opportunity to employ dense time-series
data from free-of-charge satellite images, and also it contains many built-in machine learn-
ing and image processing algorithms for satellite data manipulations [29,30]. Furthermore,
the existence of ready-to-use data, along with other characteristics, contributes towards
developing efficient methods with higher rates of automation and, thus, decreases the
dedicated time for data acquisition, calibrating, and preprocessing [26]. Despite these
advantages, GEE also has several limitations, such as restrictions on using numerous
features and training samples (i.e., encountering limit exceed), which were also addressed
in previous studies [32].

5.2. Comparison with the Latest Global Mangrove Maps

The obtained results indicated the high applicability of the proposed method for
mangrove ecosystem mapping and also mangrove extent delineation. Therefore, the man-
grove extent derived from the proposed method was compared with the recent available
global mangrove extent map [74]. This global mangrove map was produced at 25 m (0.8
arc-second) spatial resolution using multi-source remote sensing data of the Advanced
Land Observation Satellite (ALOS) Phased-Array L-band SAR (PALSAR) and optical data
of Landsat-5 and Landsat-7 through an Extremely Randomized Trees (ERT) classifier [74].
Figure 7 presents the mangrove extent resultants of two products, along with the cor-
responding high-resolution satellite images for better visualization. Based on Figure 7,
it is obvious that the proposed approach outperformed the global mangrove product.
Clearly, based on Figure 7a–c, the proposed method was resistant to misclassification,
probably of mudflat and aerial roots (i.e., generally unvegetated areas between mangrove
patches). Likewise, Figure 7d–f also illustrates that the proposed method was successful at
delineating narrow mangrove patches which occurred along the tidal zone areas. Despite
the subtle differences in the classification algorithms and the considered classes in each
workflow, the main discrepancies between the two maps were almost associated with the
spatial resolution of remote sensing satellite data, which suggests the use of Sentinel-1 and
Sentinel-2 data. Therefore, the synergistic use of Sentinel-1 and Sentinel-2 can definitely
enhance the recent global mangrove extent mapping [53]. Although the utility of 10 m
spatial resolution indeed enhanced the mangrove extent mapping, as the results suggest,
it is still necessary to use satellite images with a higher spatial resolution to permit the
production of more precise detailed mangrove ecosystem maps. This is rooted in the fact
that higher spatial resolutions are necessary to discriminate between different classes that
are located near each other, and to reduce the mixed pixel effect, such as separating aerial
roots from two other classes of mangrove and mudflat. However, the current high cost of
acquiring commercial high-resolution images is the main limiting factor.
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5.3. Contribution of Multi-Source Remote Sensing Data

As mentioned earlier, the Sentinel-1 SAR and Sentinel-2 optical data were combined
to produce an accurate mangrove ecosystem map. It has been well acknowledged that
a combination of optical and SAR remote sensing data could enhance the classification
results of land cover mapping [75]. However, few studies have combined optical and SAR
data for detailed mangrove ecosystem mapping, and they were mainly conducted based
on optical data [25,76]. Therefore, here, the contribution of multi-source remote sensing
data for detailed mangrove ecosystem mapping was evaluated based on two metrics of
OA and KC. In this regard, the explained workflow (Section 3) was repeated with two
other scenarios of using only optical or SAR data. The obtained results for the multi-source
data processing were comprehensively discussed in the previous section, and the average
OA and KC were 93.23% and 0.92, respectively. The average OA and KC achieved for the
scenario, in which only optical data were incorporated, were 90.67% and 0.89, respectively.
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Although the accuracies based on the optical data were still satisfactory, the decline in
the accuracies indicates the contribution of multi-source remote sensing data for more
accurate mangrove ecosystem mapping. In particular, the use of only optical data resulted
in over 1.5% (i.e., averaged over ten iterations) loss of class accuracies of each tidal zone,
deep water, shallow water, and mudflat classes. Additionally, the results using only SAR
data revealed a weak performance (i.e., OA = 62.98% and KC = 0.58); however, the SAR
data was successful at delineating mangrove areas with a high accuracy of over 90% in
almost all iterations. When using only SAR data, the lower accuracy was mainly associated
with the low capability of separating different classes (i.e., except mangrove) within the
mangrove ecosystem, with an average loss of 31.94% in class accuracies. The obtained
results suggest that the inclusion of SAR data in the classification task, along with optical
data, leads to producing a precise and accurate mangrove ecosystem map. This is mainly
due to the fact that these two data sources can provide complementary information about
the spectral and physical properties of different classes [77,78].

5.4. Comparison with Annual Downscaling

The seasonal downscaling approach was implemented for mangrove ecosystem map-
ping. In fact, the dense time-series SAR and optical data, acquired in 2019, were downscaled
to seasonal features for further analysis. This approach takes the benefits of multi-temporal
image analysis, as well as reducing the computational complexity of considering all avail-
able images without downscaling. Furthermore, since the mangrove ecosystems are rou-
tinely located in the inter-tidal zone and are inundated [21], the classifier may be influenced
by the inundation intensity [79], biasing the mangrove extent and area. One solution is to
use a single date image, in which the lowest tidal condition occurred; however, finding
an image with such criteria may be challenging for several reasons, such as the presence
of cloud and low temporal resolution of satellites. Therefore, it is recommended to apply
time-series data to acquire more reliable classification results. In this study, seasonal fea-
tures were used; however, other researchers applied annual downscaling for mangrove
mapping [39]. Consequently, the usefulness of seasonal downscaling is compared with the
annual downscaling approach. In this regard, the mentioned workflow was also applied to
annual downscaled SAR and optical data, and the obtained results were compared with the
seasonal approach. As is clear from Figure 8, incorporating seasonal downscaling achieved
higher OAs and KCs in all iterations and, thus, it suggests that the seasonal downscaling
can provide more discriminative information compared to annual downscaling [80]. This
may be rooted in the fact that annual downscaling would override the tidal fluctuations,
while the seasonal downscaling includes seasonal variations of water level (i.e., dry and
wet seasons), reflecting tidal fluctuations [78].
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6. Conclusions

Producing detailed mangrove ecosystem maps is essential for natural resource moni-
toring and sustainable development goals tracking. In this paper, a straightforward yet
robust workflow was proposed to produce mangrove ecosystem maps with high accuracies.
For this purpose, Sentinel-1 and Sentinel-2 data were inserted into an RF classifier within
the GEE cloud computing platform. The final classification results were comprehensively
evaluated through different analyses, and further discussions were provided. The classifi-
cation results obtained high average OA and KC of 93.23% and 0.92, respectively. Moreover,
all the classes obtained high accuracies, except the aerial roots, which achieved moderate
accuracies in all cases, suggesting the consideration of other possible solutions (i.e., higher
resolution images) for more accurate delineation of this class. Altogether, taking both
qualitative (i.e., visual interpretation) and quantitative (i.e., statistical accuracy assessment)
evaluation criteria into account, the proposed method confirmed its applicability in pro-
ducing a detailed mangrove ecosystem map. Furthermore, the comparison results proved
the contribution of multi-source remote sensing data (i.e., SAR + optical), as well as the
effectiveness of seasonal downscaling. The proposed workflow was implemented based
on an open-source platform and free-of-charge satellite data, making it appealing and
applicable in almost all countries.
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