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Abstract: In recent decades, substantial changes have occurred in the spatial structure and form of
landscapes in metropolises; these have greatly impacted ecosystem provision capacities. Clarifying
the impact mechanism of landscape patterns on ecosystem services can provide insights into regional
ecological conservation and sustainable development measures. Although previous studies have
explored the impacts of landscape patterns on ecosystem services at multiple scales, few studies have
been conducted using the buffer gradient analysis approach. Using land-use/cover change data,
this study measured the evolution of spatiotemporal features of landscape patterns and ecosystem
services value (ESV) with 1, 2, and 3 km buffer-zone scales in Wuhan, China. Econometric models
were then used to analyze the impacts of landscape patterns on ecosystem services at different buffer-
zone scales. The results demonstrated that rapid urbanization in Wuhan has led to significant changes
in landscape patterns, and the landscape pattern metrics exhibited significant spatial heterogeneity.
The ESV in Wuhan exhibited a steady decline during the study period. Hydrological regulations and
waste treatment functions contributed to the largest proportion of ESV, and raw material production
functions contributed to the lowest proportion. Landscape pattern metrics exerted a significant
influence on ESV; however, this influence varied greatly. The results of this study provide a new
understanding of the influence mechanism of landscape patterns on ecosystem services at 1, 2, and
3 km buffer-zone scales. These findings are critical for facilitating landscape planning and regional
sustainable development.

Keywords: landscape pattern metric; ecosystem services value; econometric model; buffer gradient
analysis approach; Wuhan; China

1. Introduction

Rapid urbanization in metropolises has intensified changes in landscape patterns and
ecosystem functions [1–3]. Landscape pattern evolution affects material circulation, energy
flow, and information transmission in ecosystems [4]. Exploring the influence mechanism
of landscape patterns on ecosystem services is vital for environmental sustainability plan-
ning [5]. Existing studies have proved that many metropolises are expanding outward in a
circular pattern [6–8]. Such urban sprawl has been widely discussed from the perspective
of concentric partitioning [7,9–12]. Within this body of literature, gradient analysis has
been used to reveal the spatial distribution rule and the gradual evolution of the spatial
characteristics of a research target along a certain direction, thereby revealing the concentric
partitioning rules of urban sprawl [7]. From this point of view, the evolution characteristics
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and interaction mechanisms between landscape pattern metrics and ecosystem services
should be explored with a multiscale buffer gradient analysis approach. Although previ-
ous studies have investigated the interaction mechanism of landscape pattern metrics on
ecosystem services at multiple scales [13–16], few studies have explored the relationships
between landscape patterns and ecosystem services using a multiscale buffer gradient
analysis approach.

With the acceleration of urbanization and industrialization in metropolises, changes
in natural and human landscape patterns have become increasingly drastic. Consequently,
the degradation of ecosystem services in many cities has accelerated [17]. In this context,
Wuhan, one of the national central cities of China undergoing rapid urbanization, was
selected as a case study to analyze the impact of landscape pattern metrics on ecosystem
services. In addition to being the geographical center of the country, Wuhan is also the
largest metropolis and the economic center of central China. It is also the largest water,
land, and air transportation hub in inland China, as well an important shipping center in
the middle reaches of the Yangtze River [6]. Wuhan has an extensive network of rivers,
lakes, and ports, where hundreds of mountains and numerous rivers and lakes form a
particularly distinctive ecosystem [18,19]. Wuhan, one of three intelligence-intensive areas
in China, is a core city in the Yangtze River Economic Belt, a strategic pivot point for the
development of central China, and a comprehensive innovation and reform experimental
zone. Its rapid urban expansion has resulted in drastic changes in the spatial structures and
features of the landscape, and these changes have contributed to ecosystem degradation.

With increasing urbanization in Wuhan, construction has expanded outward in a
circular form, and urban expansion now occupies a large amount of what was formally
natural landscape [7]. At the same time, the increased intensity of human activities has
had an impact on the landscape pattern in the marginal area, and the degree of landscape
fragmentation in this area has increased. Analyzing the interactions between landscape
patterns and ecosystem services at the buffer-zone scales can provide a new perspective on
their relationships. In addition, Wuhan aims to build itself into a national central city with
the following four functions: a national economic center, a high-tech innovation center, a
trade and logistics center, and an international exchange center. In this context, its central
resource integration shows a more obvious trend, and the original edge areas of the city
center are expected to show a gradient pattern. Therefore, where the trends of resource
and central area integration are more apparent, the original gradient pattern of the central
urban and fringe areas is more intense. Understanding these relationships at buffer-zone
scales can help to clarify the rules of landscape pattern evolution and to build a healthy
and stable landscape ecosystem.

Previous studies have used gradient analysis methods to analyze the changes in
landscape patterns [20–22] and ecosystem services globally [23–29]. A multiscale buffer
gradient analysis approach can be used to effectively explore the differences among land-
scape patterns and ecosystem services between urban, suburban, and rural areas that
are different distances from the city center [29–32]. Gradient analysis can be used to an-
alyze the spatial structure of a city and the changes in landscape pattern characteristics
and ecosystem services that take place in the process of urbanization. This, in turn, can
provide references for the sustainable use of land resources and for effective land-use
planning, management, and decision making. To explore the spatial gradient effect of the
landscape pattern on ecosystem services in different periods, the current study applies
the buffer gradient analysis method to analyze the spatiotemporal evolution character-
istics of the landscape pattern and ecosystem services according to the spatial layout of
Wuhan [6–8,33,34]. The buffer gradient analysis method is based on a series of equidistant
buffer zones established outward from the center of a circle that is used as the research unit
to describe the spatial heterogeneity of the landscape pattern and ecosystem services [35].

Previous studies concerning the interaction mechanism between landscape patterns
and ecosystem services have been conducted at the grid [36], watershed [37], and ad-
ministrative region scales [9]. However, few studies have explored this phenomenon at
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buffer-zone scales [38]. Compared with previous research scales, the buffer-zone scale can
better reveal the spatial heterogeneity characteristics of the landscape pattern and ecosys-
tem services in a certain direction, and it can effectively demonstrate the influence of urban
expansion on surrounding elements [7,12,39]. What the spatial distribution characteristics
of the landscape pattern and ecosystem services at the buffer-zone scales are and how the
landscape pattern affects ecosystem services at the buffer-zone scales need to be further
explored. Therefore, it is necessary to explore the impact mechanism of the landscape
pattern on ecosystem services based on the buffer-zone scale.

Exploring the relationship between landscape patterns and ecosystem services value
(ESV) can provide a scientific basis for landscape planning and ecological protection. To
reveal the spatiotemporal variation characteristics of the landscape pattern and ecosystem
services in different sections outside of the city center, this study estimated the landscape
pattern and ecosystem services in Wuhan from 2000 to 2015 at the buffer-zone scale, based
on land-use/cover change data. Then, the influencing mechanism of the landscape pattern
on ecosystem services was analyzed using the econometric model. The objectives of
this study are as follows: (1) to explore the spatiotemporal features of landscape pattern
metrics using Fragstats v4.2.1 software (Oregon State University, Corvallis, OR, USA), (2)
to estimate the spatiotemporal evolution features of ecosystem services using the benefits
transfer method, and (3) to analyze the impact of landscape patterns on ecosystem services
based on non-spatial panel regression models at 1, 2, and 3 km buffer-zone scales in Wuhan
from 2000 to 2015. The remainder of this paper is organized as follows. Section 2 presents
a literature review of the gradient analysis approach and the impacts of the landscape
pattern on ESV. Section 3 describes the research area, methods, and data sources. Section 4
presents the research findings. Section 5 summarizes these findings and presents the policy
implications and limitations of the study. Finally, Section 6 summarizes the conclusions of
the study.

2. Literature Review
2.1. Gradient Analysis Approach

Sokolow [40] first used the gradient analysis method to analyze landscape changes
from urban to rural areas. Whittaker [41] applied the gradient analysis method to vegetation
analysis. McDonnell [42] proposed that the landscape pattern would affect the structure
and function of an ecosystem. Subsequently, the gradient analysis method has been applied
in ecological studies and has been widely used to study the impact of urbanization on
vegetation distribution and landscape ecology [21,27,28,42–45].

Geographic information system (GIS)-based gradient analysis has proved to be a
highly effective method for analyzing the evolution of landscape patterns and ecosystem
services. Gradient analysis methods, such as the cross-section method and buffer gradient
analysis methods, are commonly used to analyze changes in landscape patterns and
ecosystem services [30,42,46–48]. The cross-section method focuses on the analysis of
changes in elements in several set directions, whereas the buffer gradient analysis approach
is suitable for studying the macroscopic form of the agglomeration distribution of elements
that can be used to study the structure of an urban circle layer [18]. Starting from the
center of the study area, the circular buffer zone with equal step lengths is divided using
transects [19,20,31]. The buffer gradient analysis approach can display the distribution rule
of the research target on the circle layer. Therefore, it can be used to study gradient change
in the landscape patterns and ecosystem services of the “agricultural landscape-suburban
landscape-urban landscape” caused by urbanization, especially in metropolises [22,49,50].

In terms of urban planning and form, Burgess [33] proposed the theory of concentric
zones that focuses on the functional zoning of an urban space. The gradient analysis
approach has proved to be a useful tool for analyzing urban expansion and its impact
on the landscape as the distance from the city center increases [22,32,46,47,51–53]. For
example, Yeh and Huang [47] analyzed the change characteristics of landscape diversity
along the urban-to-rural gradient using the buffer gradient analysis method. Li et al. [51]
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analyzed the urban expansion characteristics of Shanghai using the buffer gradient analysis
method. Kong et al. [46] used the gradient analysis method to analyze the spatiotemporal
evolution of urban green spaces in Jinan. In addition, previous empirical studies investi-
gated ecosystem services on the “urban-rural” gradient [23,29,43,54–56]. For example, Ou
et al. [48] analyzed the supply–demand surplus of ecosystem services in the three gradient
zones of the Yangtze River Delta using the gradient analysis method. Luck et al. [22] used
gradient analysis to analyze changes in the urban spatial landscape pattern of the Phoenix
Metropolitan Area of the United States. Hutyra et al. [57] and Larondelle and Haase [58],
respectively, analyzed the evolution of ecosystem services in Seattle, USA, and Europe
using the gradient method.

2.2. Impacts of Landscape Pattern on ESV

As a crucial focus area within landscape ecology research, landscape pattern indexing
is an important analytical method for studying land-use changes [58]. Additionally, land-
scape pattern research can reflect the impact of human activities on regional ecological pat-
terns and the spatiotemporal response of the environment to land-use changes [2,15,59,60].
Ecosystem services are the ecological functions and utilities that humans depend on for
survival, and they are formed and maintained by ecosystems and ecological processes [61].
Ecosystem services have gained increasing research attention in the field of ecology, partic-
ularly in terms of ecosystem assessments [62,63]. Dynamic changes in landscape patterns
impact the material circulation and energy flow within a regional ecosystem, thus affect-
ing the provision capacities of ecosystem services [59]. Previous studies have integrated
ecosystem services and landscape patterns to explore the spatiotemporal distribution of
ecosystems and regional resources, as well as ecological issues related to ecological pro-
cesses [4,64,65]. In rapidly urbanizing areas, the expansion of developed land reduces
the amount of cultivated land and therefore also reduces the supply capacity of ecosys-
tem services and regional biodiversity. The expansion of traffic networks can intensify
landscape fragmentation, damage habitats, and affect the ecosystem services balance [66].
Changes in landscape patterns can also lead to an increase in ecosystem services, such as
those occurring through land consolidation engineering and afforestation projects. There
are typically significant differences in the characteristics of landscapes among different
buffer-zone areas. For example, supply services are mainly distributed in the peripheral
areas of a metropolis, where agricultural land is dominant. In addition, previous studies
have demonstrated that the provision capacity of biodiversity and aesthetic landscape
services significantly increases from the core of the buffer zone and to outside the buffer
zone [67–69].

Research on landscape pattern evolution [33,70,71], ESV estimation [62–64], and their
interaction mechanisms in the context of rapid urbanization [16,37] has attracted transdis-
ciplinary interest and has become a core area of landscape ecology. Recently, research has
been conducted on the impact of landscape patterns on ESV [16,37,71]. For example, Su
et al. [71] explored the relationships between landscape patterns and ecosystem services
using a stepwise regression at the eco-regional level. Yushanjiang et al. [37] analyzed the
relationships between 13 landscape patterns and nine types of subcategory ecosystem
services in the Ebinur Lake Basin, Xinjiang, China, using multiple linear regression models.
Liu et al. [16] identified the impact of landscape patterns on supplying services, regulating
services, supporting services, and cultural services in the middle reaches of the Yangtze
River Urban Agglomeration, China, using spatial regression models. To date, few stud-
ies have combined landscape patterns and ecosystem services to explore their evolution
characteristics and interaction mechanism in metropolises at buffer-zone scales.

Multivariate regression, spatial regression analysis, multiple linear regression models,
and Pearson correlation analysis are commonly used to measure the relationships between
ecosystem services and landscape patterns [14,15,50,71,72]. However, few studies have
utilized panel models to measure the multiscale interaction mechanism between ecosystem
services and landscape patterns [37,50,64,71]. The existing literature has demonstrated
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that there are significant scale effects on the relationship between landscape patterns and
ecosystem services [15,37,64]. Thus, the scale effects of landscape patterns on ecosystem
services should be investigated. The impacts of landscape patterns on ecosystem services
have been found to vary greatly across different study areas and at varying scales [50].
Some studies have discussed the difference in urban land density gradient changes in
relation to whether Wuhan should be considered a single or multicenter city and whether
to establish a regular buffer depending on its status [7]. The urban form has an important
impact on regional land-use change, ecosystem services, and landscape patterns [72]. It is
therefore necessary to select appropriate buffer-zone scales to analyze the gradient change
among landscape patterns and ecosystem services.

3. Materials and Methods
3.1. Study Area

Wuhan (29◦58′–31◦22′ N, 113◦41′–115◦05′ E), the capital of Hubei Province, is the
largest city in central China, with an area of 8,494 km2. It is located in the middle and lower
reaches of the Yangtze River and east of the Jianghan Plain (Figure 1). To better display the
landscape characteristics of different districts in Wuhan, we provide some photographs of
Wuhan (Figure 2). The Yangtze River and the Han River confluence in Wuhan, forming the
spatial pattern of Wuchang District, Hankou District, and Hanyang District. As the core
city of the Wuhan urban agglomeration, Wuhan benefits from an extensive, interconnected
road network that greatly promotes the socioeconomic development of the city. The city’s
high-speed rail network extends across half of China, and it is the only city in central
China with direct flights to five continents. The population of Wuhan increased from
8.048 million in 2000 to 10.608 million in 2015. Wuhan’s gross domestic product (GDP)
increased from CNY 115.34 billion in 2000 to CNY 1054.77 billion in 2015, and its per
capita GDP increased from CNY 14,473 in 2000 to CNY 100,714 in 2015 [73]. Increasingly,
rapid economic development and urbanization in Wuhan have led to the rapid outward
expansion of construction land; this has had a substantial impact on ecosystem services
and landscape patterns. Therefore, it is of great importance that we study the impact of
landscape patterns on ecosystem services in Wuhan at the buffer-zone scale.

3.2. Data Sources

Wuhan’s land-use data for 2000, 2005, 2010, and 2015 were sourced from the Resource
and Environmental Science Data Center of the Chinese Academy of Sciences (http://www.
resdc.cn). The spatial resolution of the land-use data in this study was 30 × 30 m. The
Landsat Thematic Mapper/Enhanced Thematic Mapper and Landsat 8 remote sensing
images were the primary data sources. Liu et al. generated a land-use dataset with a long
time series with 5-year intervals using human visual interpretation with a high degree of
accuracy (≥90%) [74–76]. Based on previous studies [77], ArcGIS 10.3 tools were adopted in
the present study to reclassify land-use/cover change data into seven categories: cultivated
land, construction land, water area, wetland, unused land, forestland, and grassland
(Figure 3). In addition, the per-unit area yields of wheat, rice, corn, and soybean were used
to calculate the ESV; the data were derived from the Wuhan Statistical Yearbook from 2000
to 2016, and the grain price data were obtained from the 2016 China Agricultural Product
Price Survey Yearbook and other statistical data.

The selection of the buffer object and buffer distance is the key in the buffer gradient
analysis. In a single-center ring city, the city center is generally chosen as the buffer object.
Thus, the districts of Hankou, Hanyang, and Wuchang were considered as the research
centers because Wuhan is divided into three towns. According to the “Ecoframework
Planning of Wuhan Urban Development Area”, the control width of the ecological corridors
between the six new towns is generally required to be 0.5–1 km. Considering the scope of
the study area, 1 km was selected as the basic buffer distance. Scales of 1, 2, and 3 km were
selected in this study (Figure 4) to explore the relationship between landscape patterns and
ecosystem services at different buffer-zone scales [6,19,78].

http://www.resdc.cn
http://www.resdc.cn
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Figure 1. Location of the study area. (a) is the location of Wuhan in China; (b) is the location of Wuhan in Hubei Province;
(c) is the different districts in Wuhan.

3.3. Methods
3.3.1. Landscape Pattern Metrics

Landscape pattern metrics can highly condense landscape spatial pattern information
using a simple quantitative index that reflects their structural composition and spatial con-
figuration features [79]. These can then be used to evaluate and compare changes in varying
or same landscapes across different periods or under different planned designs [72,80].
Therefore, this study used landscape pattern metrics to characterize the landscape pattern
features in Wuhan. A series of landscape pattern metrics (including number of patches
(NP), patch density (PD), largest patch index (LPI), patch edge density (ED), landscape
shape index (LSI), area-weighted mean patch area (AREA_AM), area-weighted mean patch
shape index (SHAPE_AM), area-weighted mean patch fractal index (FRAC_AM), conta-
gion index (CONTAG), percentage of landscape (PLAND), interspersion juxtaposition
index (IJI), patch cohesion index (COHESION), landscape division index (DIVISION),
splitting index (SPLIT), Shannon diversity index (SHDI), and aggregation index (AI)) were
selected at both the class and the landscape level to measure the landscape pattern features
of Wuhan. However, some landscape pattern metrics were redundant; therefore, we con-
ducted a multicollinearity test using SPSS19.0 and finally selected PD, LSI, AREA_AM,
FRAC_AM, CONTAG, IJI, DIVISION, SPLIT, and SHDI to measure the landscape pattern
characteristics of Wuhan. The equation of the landscape pattern metrics was adopted from
McGarigal (1995) [79]. To calculate the landscape pattern indices at different buffer scales,
Fragstats v4.2.1 was used to analyze the landscape pattern metrics of the study area. We
first used ArcGIS10.3 software to cut out the land-use raster data of different buffer zones
in batches, and then calculated landscape pattern metrics in batches in Fragstats v4.2.1.
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Figure 2. Photographs of different district in Wuhan (a–h). These photographs were taken by the authors:(a) is the urban
landscape (streets) in the Jiang’an District; (b) is the urban landscape in Hongshan District (Optics Valley Square); (c) is the
water landscape in Wuchang District (Wuhan Yangtze River Bridge); (d) is the transition zone between urban and rural
areas in Hongshan District; (e) is the urban and water landscape of Wuchang District; (f) is the urban landscape in Jianghan
District; (g) is the natural landscape in Hongshan District (Jigong Mountain Park); (h) is the rural area in Huangpi District.
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Figure 3. Spatial pattern of land use in Wuhan from 2000 to 2015. (a) is the spatial pattern of land use in Wuhan in 2000;
(b) is the spatial pattern of land use in Wuhan in 2005; (c) is the spatial pattern of land use in Wuhan in 2010; (d) is the
spatial pattern of land use in Wuhan in 2015.
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Figure 4. 1, 2, and 3 km buffer-zone scales used in this study (a–c), (a) is 1 km buffer zone scale in Wuhan; (b) is 2 km buffer
zone scale in Wuhan; (c) is 3 km buffer zone scale in Wuhan.

3.3.2. Measurement of ESV

ESV has been widely accepted by the scientific community as one of the primary
indicators for evaluating changes in ecosystems [81]. Based on the benefit transfer method
proposed by Costanza et al. [82], in this study, we used the ESV equivalent table constructed
by Xie et al. [83] to measure the ESV of Wuhan, which was based on Chinese ecosystems
and expert knowledge. The present study primarily considered the yield and price of
wheat, rice, corn, and soybeans in Wuhan and calculated their combined ecosystem services



Remote Sens. 2021, 13, 2551 10 of 30

equivalent value as 322.676 USD/(hm2·a)). Using the ESV equivalent table proposed by
Xie et al. [83] and the equivalent value of ecosystem services in Wuhan, the Wuhan ESV
equivalent table was created (Table 1). As land-use types and ecosystems do not perfectly
correspond with each other, the ecosystem closest to the land-use type was assigned to the
corresponding ecosystem services equivalent coefficient [62]. Although previous studies
have argued that construction land cannot provide ecosystem services, others countered
that it could (e.g., recreational functions); based on this, the present study considers that
construction land can provide ecosystem services [62,84–86]. The specific calculation
equations are as follows:

ESV =
m

∑
i=1

n

∑
j=1

LAjEVij (1)

AESV =
m

∑
i=1

n

∑
j=1

LAjEVij

/
n

∑
j=1

LAj (2)

where ESV is the ecosystem services value; AESV is the average ESV; LAj is the area of the
j-th land-use type; and EVij is the i-th ecosystem function of the j-th land-use type.

Table 1. ESV per land-use type in Wuhan after correction. [USD/(hm2·a)].

Category Subcategory Forestland Grassland Cultivated
Land Wetland Water Area Unused

Land
Construction

Land

Supplying
services

Food production 106.483 138.751 322.676 116.163 171.018 6.454 3.227
Raw material 961.576 116.163 125.844 77.442 112.937 12.907 0

Regulating
services

Gas regulation 1393.962 484.015 232.327 777.650 164.565 19.361 −780.877
Climate

regulation 1313.293 503.375 312.996 4372.265 664.713 41.948 0

Hydrological
regulation 1319.746 490.468 248.461 4336.770 6056.635 22.587 −2423.300

Waste treatment 555.003 425.933 448.520 4646.540 4791.744 83.896 −793.784

Supporting
services

Soil formation
and retention 1297.159 722.795 474.334 642.126 132.297 54.855 6.454

Biodiversity
protection 1455.270 603.405 329.130 1190.676 1106.780 129.071 109.710

Cultural
services

Recreation and
culture 671.167 280.728 54.855 1513.352 1432.683 77.442 3.227

Total ESV 9073.660 3765.633 2549.143 17672.985 14633.373 448.520 −3875.343

Notes: USD 100 could be exchanged for CNY 622.84 in 2015.

3.3.3. Econometric Model

To measure the impact of landscape patterns on ecosystem services, a set of non-spatial
panel models was adopted in this study [87]. Commonly used non-spatial panel models
include the mixed-, fixed-, and random-effects models [88]. The mixed-effects model
assumes that there is no significant difference in the time at which different individual
panel data were collected, and that there is no significant difference between different
sections. A model is typically called a mixed model if certain coefficients are random and
others are fixed. The application of the fixed-effects model assumes that the direction and
effects of the research results are similar; that is, the results of all independent studies
are similar, and there is no significant difference in the consistency test. Therefore, the
fixed-effects model is suitable for studies with little or no difference between independent
studies. The random-effects model is a generalization of the classic linear model; the
original regression coefficient is regarded as a random variable, which is typically assumed
to originate from a normal distribution. From the above description, it can be seen that the
difference between the fixed-effects model and the random-effects model lies in its basic
assumption, i.e., whether individual variables that do not change over time are related to
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predicted or independent variables [89]. The specific form of the non-spatial panel data
model is as follows:

AESVit = α + β1PDit + β2LSIit + β3 AREA_AMit + β4FRAC_AMit + β5CONTAGit
+β6 I J Iit + β7DIVISIONit + β8SPLITit + β9SHDIit + δi + ηi + εit

(3)

where AESVit represents the average ecosystem services of the i-th unit at time t; α is
the intercept term; β is the regression coefficient; εit are the random disturbance terms;
δi represents the individual effect; and ηi denotes the time effect. In panel models, the F
test is typically used to select either the mixed-effects or the fixed-effects model, and the
Hausman test is typically adopted to select either the fixed- or random-effects model.

4. Results
4.1. Landscape Patterns in Wuhan from 2000 to 2015

Figures 5 and 6 illustrate the changes in landscape pattern metrics at the landscape
and class levels from 2000 to 2015, respectively. In Wuhan, at the landscape level, the
PD, LSI, SHDI, DIVISION, and SPLIT indices increased during the study period, whereas
AREA_AM, CONTAG, and FRAC_AM decreased. The IJI index increased in volatility
during the study period (Figure 4). Significant changes occurred in the class-level land-
scape pattern index in Wuhan (Figure 5). Specifically, the PD of different landscape classes
increased, the highest of which was construction land, and the most significant increase
occurred for cultivated land. The LSI of construction land was the highest of all the land-
use types; that of forestland, cultivated land, construction land, wetland, and grassland
increased during the study period, and that of the water area and unused land decreased.
The AREA_AM and FRAC_AM of cultivated land were significantly higher than those of
other landscape types. In addition, the AREA_AM of forestland, cultivated land, wetland,
unused land, and grassland decreased, whereas that of the other land-use types substan-
tially increased. During the study period, only the IJI index of cultivated land decreased,
whereas the IJI of the other landscape types significantly increased. The DIVISION index of
cultivated land significantly increased, whereas the DIVISION index of the other landscape
types did not significantly change. The SPLIT index of unused land was noticeably higher
than that of the other landscape types, and the SPLIT index of cultivated land was the
lowest.

Figures 7–9 illustrate the spatial patterns of landscape metrics in Wuhan in 2015 for
buffer-zone scales of 1, 2, and 3 km, respectively. The spatial distribution of the landscape
pattern metrics exhibited significant spatial heterogeneity. Specifically, PD, LSI, DIVISION,
IJI, SPLIT, and SHDI exhibited similar spatial patterns; that is, the core area of the buffers
was low and, with the expansion of the buffer scale, these landscape pattern metrics
increased and then significantly decreased. In contrast, AREA_AM, FRAC_AM, and
CONTAG exhibited a higher value in the core area of the buffers, and they gradually
decreased with an increase in the buffer, followed by an increasing and then decreasing
trend. Wavy change patterns can be observed at different buffer-zone scales.

4.2. ESV in Wuhan from 2000 to 2015

In 2000, 2005, 2010, and 2015, the ESVs provided by Wuhan ecosystems were USD 4,532.341,
4,439.352, 4,394.293, and 4,293.343 million, respectively, indicating that the ESV supply
capacity of ecosystems in Wuhan declined during the study period. The ESVs in Wuhan
decreased by USD 92.988, 45.059, and 100.950 million during 2000–2005, 2005–2010, and
2010–2015, respectively. The ESV contributed by water area was the highest (>USD 2200
million), followed by cultivated land (>USD 1100 million USD). The ESV provided by
construction land was negative, namely USD −253.817, –305.906, –406.938, and –463.885
million in 2000, 2005, 2010, and 2015, respectively. Among the subcategory ecosystem
function types, the hydrological regulation and waste treatment functions were the highest,
accounting for 24% of the ESV, whereas the raw material production function accounted
for the lowest proportion (approximately 3.5%) (Tables 2 and 3). During the study period,
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the food production, raw material production, gas regulation, hydrological regulation,
and soil formation and retention functions decreased, whereas climate regulation, waste
treatment, and biodiversity protection exhibited a decreasing trend during 2000–2005 and
2010–2015 and an increasing trend from 2005 to 2010. The recreation and culture functions
increased during 2000–2010 and then decreased during 2010–2015. In 2000, 2005, 2010, and
2015, the average ESVs provided by Wuhan ecosystems were 5,289.073, 5,180.539, 5,127.915,
and 5,010.089 USD/hm2, respectively. We mapped the spatiotemporal distribution of the
average ESVs at the 1, 2, and 3 km buffer-zone scales. The average ESV in the core area
of Wuhan was low, and the buffer zone of the low average ESV expanded outward from
2000 to 2015 (Figures 10–12). Additionally, the water area in Wuhan greatly influenced the
average ESV of each buffer.

Figure 5. Change in the landscape pattern metrics of Wuhan from 2000 to 2015.
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Figure 6. Landscape metrics of each land-use type in Wuhan from 2000 to 2015 (a–g).
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Figure 7. Landscape pattern index in Wuhan at the 1 km buffer scale in 2015 (a–i).
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Figure 8. Landscape pattern index in Wuhan at the 2 km buffer scale in 2015 (a–i).



Remote Sens. 2021, 13, 2551 16 of 30

Figure 9. Landscape pattern index in Wuhan at the 3 km buffer scale in 2015 (a–i).

Table 2. ESV provided by different land-use types from 2000 to 2015 (million US$).

Land-Use Types 2000 2005 2010 2015

Cultivated land 1335.110 1300.575 1213.313 1178.165
Forestland 722.118 716.493 706.551 700.760
Grassland 27.224 25.561 29.239 28.933
Water area 2290.105 2389.151 2399.735 2403.493

Construction land −253.817 −305.906 −406.938 −463.885
Unused land 0.479 0.456 0.317 0.282

Wetland 411.123 313.022 452.076 445.594
In total 4532.341 4439.352 4394.293 4293.343
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Table 3. Different categories of ESVs from 2000 to 2015 (USD million).

Category Subcategory 2000 2005 2010 2015

Supplying
services

Food production 208.163 204.220 194.313 189.833
Raw material 162.766 160.748 156.187 153.828

Regulating
services

Gas regulation 228.838 210.913 187.780 171.928
Climate regulation 477.870 452.820 476.028 469.397

Hydrological regulation 1128.758 1108.706 1074.553 1034.598
Waste treatment 1088.254 1077.613 1081.372 1062.655

Supporting
services

Soil formation and
retention 393.014 382.879 371.226 363.688

Biodiversity protection 500.791 497.514 498.231 494.165
Cultural services Recreation and culture 343.886 343.939 354.603 353.250

Total ESV 4532.341 4439.352 4394.293 4293.343

Figure 10. Spatial pattern of average ecosystem services value in Wuhan at the 1 km buffer scale from 2000 to 2015 (a–d),
(a) is the patial pattern of average ecosystem services value in Wuhan at the 1 km buffer scale in 2000; (b) is the patial
pattern of average ecosystem services value in Wuhan at the 1 km buffer scale in 2005; (c) is the patial pattern of average
ecosystem services value in Wuhan at the 1 km buffer scale in 2010; (d) is the patial pattern of average ecosystem services
value in Wuhan at the 1 km buffer scale in 2015.
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Figure 11. Spatial pattern of average ecosystem services value in Wuhan at the 2 km buffer scale from 2000 to 2015 (a–d),
(a) is the patial pattern of average ecosystem services value in Wuhan at the 2 km buffer scale in 2000; (b) is the patial
pattern of average ecosystem services value in Wuhan at the 2 km buffer scale in 2005; (c) is the patial pattern of average
ecosystem services value in Wuhan at the 2 km buffer scale in 2010; (d) is the patial pattern of average ecosystem services
value in Wuhan at the 2 km buffer scale in 2015.
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Figure 12. Spatial pattern of average ecosystem services value in Wuhan at the 3 km buffer scale from 2000 to 2015 (a–d).
(a) is the patial pattern of average ecosystem services value in Wuhan at the 3 km buffer scale in 2000; (b) is the patial
pattern of average ecosystem services value in Wuhan at the 3 km buffer scale in 2005; (c) is the patial pattern of average
ecosystem services value in Wuhan at the 3 km buffer scale in 2010; (d) is the patial pattern of average ecosystem services
value in Wuhan at the 3 km buffer scale in 2015.

4.3. Econometrics Test Results in Wuhan from 2000 to 2015

Mixed-, fixed-, and random-effects models were used to measure the impact of land-
scape pattern metrics on the average ESV at the 1, 2, and 3 km buffer-zone scales. The
regression results of each of the buffer-zone scales are listed in Tables 4–6, respectively. The
p-value of the F test was significant at 0.0001; therefore, the null hypothesis was strongly
rejected. The results demonstrate that the performance of the fixed-effects model was
superior to that of the mixed regression model and that each individual factor should have
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its own intercept term. In addition, the Hausman test was used to determine whether
random- or fixed-effects should be used in the models, and the results also rejected the
null hypothesis. Therefore, a fixed-effects model should be adopted. Additionally, after
comparing the individual and fixed-effects, time and fixed-effects, and individual and time
fixed-effects models, the latter was determined to be the optimal model. Therefore, the
individual and time fixed-effects model was used in this study to explain the influence
mechanism of the landscape pattern index on average ESV.

Table 4. Estimation results of the non-spatial panel model at the 1 km buffer scale.

Variable Pooled OLS
Individual and

Time-Period
Random Effects

Individual and
Time-Period Fixed

Effects

PD −0.726 ***
(0.194)

−0.020
(0.104)

−0.726 ***
(0.194)

LSI 1.676 **
(0.488)

0.308 ***
(0.092)

1.676 **
(0.488)

AREA_AM −0.382 **
(0.141)

−0.268 ***
(0.058)

−0.382 **
(0.141)

FRAC_AM 3.471 *
(1.649)

2.590 **
(0.958)

3.471 *
(1.649)

CONTAG 0.305
(0.421)

−1.404 ***
(0.258)

0.305
(0.421)

IJI −0.226
(0.188)

−0.772 ***
(0.129)

−0.226
(0.188)

DIVISION −1.688
(0.986)

−1.766 ***
(0.149)

−1.688
(0.986)

SPLIT −0.085
(0.107)

−0.182 **
(0.066)

−0.085
(0.107)

SHDI 0.547 **
(0.211)

0.466 **
(0.135)

0.547 **
(0.211)

R-squared 0.802 0.760 0.509

Constant −2.303
(1.882)

0.878
(1.024)

−2.303
(1.882)

N 352 352 352

Fixed effects VS
random effects Hausmann test

chi2(10)=(b-B)’[(V_b-
V_B)ˆ(-1)](b-B)

=72.83
Prob>chi2=0.000

Fixed effects VS
mixed effects F test F=14.40 p=0.000

Notes: *** p ≤0.001, ** p ≤ 0.01, and * p ≤ 0.05. The standard deviations are in parentheses.

Table 5. Estimation results of the non-spatial panel model at the 2 km buffer scale.

Variable Pooled OLS
Individual and

Time-Period
Random Effects

Individual and
Time-Period Fixed

Effects

PD 0.100
(0.126)

−0.167
(0.128)

−0.609 *
(0.243)

LSI 0.454 **
(0.137)

0.243
(0.139)

1.163
(0.772)

AREA_AM −0.096
(0.209)

−0.259 *
(0.100)

−0.571
(0.415)

FRAC_AM −3.356
(1.682)

1.808
(1.428)

2.960
(2.338)

CONTAG −2.725 ***
(0.679)

−1.606 ***
(0.418)

0.561
(0.734)

IJI −1.239 **
(0.332)

−1.127 ***
(0.225)

−0.432
(0.349)
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Table 5. Cont.

Variable Pooled OLS
Individual and

Time-Period
Random Effects

Individual and
Time-Period Fixed

Effects

DIVISION −1.831 ***
(0.392)

−2.287 ***
(0.293)

−2.823
(1.990)

SPLIT −0.263
(0.145)

−0.088
(0.120)

−0.023
(0.210)

SHDI 0.461
(0.275)

0.852 **
(0.257)

1.290 ***
(0.478)

R-squared 0.741 0.689 0.399

Constant 8.002 ***
(2.008)

2.484
(1.512)

−0.824
(2.618)

N 176 176 176

Fixed effects VS
random effects Hausmann test

chi2(10)=(b-B)’[(V_b-
V_B)ˆ(-1)](b-B)

=27.30
Prob>chi2=0.002

Fixed effects VS
mixed effects F test F=13.17 p=0.000

Notes: *** p ≤0.001, ** p ≤ 0.01, and * p ≤ 0.05. The standard deviations are in parentheses.

Table 6. Estimation results of the non-spatial panel model at the 3 km buffer scale.

Variable Pooled OLS
Individual and

Time-Period
Random Effects

Individual and
Time-Period Fixed

Effects

PD 0.320*
(0.152)

−0.083
(0.178)

−0.825**
(0.262)

LSI 0.312 **
(0.103)

0.543 ***
(0.144)

2.525 **
(0.707)

AREA_AM 0.088
(0.171)

−0.436 ***
(0.118)

−0.764 **
(0.237)

FRAC_AM −4.637 **
(1.459)

−0.460
(1.505)

0.434
(2.045)

CONTAG −3.961 ***
(0.544)

−1.858 ***
(0.454)

1.483 *
(0.654)

IJI −1.203 ***
(0.271)

−0.903 **
(0.282)

−0.027
(0.368)

DIVISION 0.505
(0.765)

−1.748 **
(0.659)

−3.380 *
(1.469)

SPLIT −0.218 *
(0.098)

−0.381 **
(0.116)

−0.513 **
(0.149)

SHDI −0.564
(0.358)

0.301
(0.322)

0.897 **
(0.375)

R-squared 0.848 0.782 0.668

Constant 8.793 ***
(1.516)

4.532 ***
(1.523)

0.703
1.963

N 120 120 120

Fixed effects VS
random effects Hausmann test

chi2(10)=(b-B)’[(V_b-
V_B)ˆ(-1)](b-B)

=54.87
Prob>chi2=0.000

Fixed effects VS
mixed effects F test F=13.27 p=0.000

Notes: *** p ≤0.001, ** p ≤ 0.01, and * p ≤ 0.05. The standard deviations are in parentheses.

The regression results demonstrated that the landscape pattern metrics exerted signif-
icant impacts on average ESV. Specifically, the regression coefficients of LSI, FRAC_AM,
CONTAG, and SHDI at these three buffer-zone scales were all positive, indicating that
an increase in these landscape pattern metrics increased the average ESV; however, not
all regression coefficients were significant. The LSI, FRAC_AM, and SHDI regression
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coefficients were all significant at the 1 km buffer scale, whereas CONTAG was not. Only
SHDI was significant at the 2 km scale, and LSI, FRAC_AM, CONTAG, and SHDI were
significant at a buffer scale of 3 km. The regression coefficients of PD, AREA_AM, IJI,
DIVISION, and SPLIT were all negative; however, they were not all significant. Specifically,
PD and AREA_AM were significant at the 1 km buffer scale, and PD was the only landscape
pattern metric that was significant at the 2 km buffer scale. At the 3 km buffer scale, PD,
AREA_AM, DIVISION, and SPLIT were significant. Based on this analysis, the impacts of
landscape patterns on the average ESVs at different scales varied significantly.

5. Discussion
5.1. Buffer characteristics of Landscape Pattern Index and ESV

During the study period, cultivated land in Wuhan was the primary land-use type
(>50%), which exhibited a continuously decreasing trend, followed by water area (>18%),
which exhibited a continuously increasing trend. The proportion of construction land also
continued to increase. Substantial differences existed in the landscape pattern metrics [90].
For example, the PD, LSI, DIVISION, SPLIT, and SHDI in Wuhan gradually increased
during the study period, whereas AREA_AM, FRAC_AM, and CONTAG gradually de-
creased. The IJI index increased in volatility during the study period. In addition, the
fragmentation of the Wuhan landscape gradually increased, and the fragmentation degree
was the highest for construction land. Along the gradient of the central urban area to the
fringe area, the Wuhan landscape patterns exhibited a significant buffer-zone structure.
PD, LSI, DIVISION, IJI, SPLIT, and SHDI exhibited similar features in space. The core area
of buffers was low and, with the expansion of the buffer zone, these landscape pattern
metrics increased and then significantly decreased. AREA_AM, FRAC_AM, and CONTAG
experienced similar spatial changes in higher core areas. They gradually decreased with an
increase in the buffer zone, followed by an increasing and then decreasing trend.

The ESV provision capacity in Wuhan exhibited a significant downward trend from
5,289.073 USD/hm2 in 2000 to 5,010.089 USD/hm2 in 2015. This finding is consistent with
that of Wang et al. [91]. The water area provided the greatest proportion of ESV (>50%) and
showed an increasing trend during the period studied. The average ESV in the core area
of Wuhan was low, and the buffer zone containing a low average ESV expanded outward
from 2000 to 2015. Under the influence of the vast water area in Wuhan, the average ESV
from the core area to the fringe area fluctuated. The ESV in the core area declined rapidly,
especially within the 22 km buffer zone at 1, 2, and 3 km buffer-zone scales from 2000 to
2010 (Figure 13). The rapid expansion of construction land in these areas has resulted in
the decrease of ecosystem services. Forestland and cultivated land were the dominant
landscapes in the fringe area of Wuhan during the period studied; the average ESV in these
buffer zones was obviously higher [19]. Specifically, the average ESV in the buffer zones
beyond 22 km did not fluctuate significantly during 2000–2005. A significant increase in the
average ESV was found in the buffer zones between 22 and 60 km, followed by an evident
decrease in the ESV of the buffer zones beyond 60 km. During 2010–2015, the fluctuations
in average ESV changes were not obvious, but the average ESV in the buffer zones within
22 km still exhibited a significant decrease. In addition, the buffer zone with the greatest
reduction in average ESV moved to the outer buffer zone of Wuhan city.
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Figure 13. Average ecosystem services value changes in Wuhan at 1, 2, and 3 km buffer scales.

Wuhan expanded orbitally and now has six ring roads, the first of which has a total
length of 28 km and was completed in 1995; the second is 48 km in length and was
completed in 2015. The third ring road, which is a ring expressway within Wuhan, is 91 km
in length, and it was opened to traffic in 2010. The fourth ring road, a ring highway in
Wuhan, is approximately 143 km long, and it was opened to traffic in 2020. The fifth ring
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road, called the “Wuhan Belt Highway” or “Wuhan Outer Ring Road,” is 191 km long, and
it was opened to traffic in 2007. The Dongxihu, Huangpi, Xinzhou, Hongshan, Jiangxia,
and Caidian districts are connected by the fifth ring road. The sixth ring road, which is also
called the “Wuhan Circle Belt Highway,” is approximately 560 km long. The aim of the
sixth ring road was to build a “1 h traffic circle” in Wuhan and a “2 h traffic circle” in the
surrounding influential cities to promote Wuhan circle traffic integration. Previous studies
have illustrated that roads are important factors in construction land expansion; thus, the
construction of these loop lines promotes landscape heterogeneity in Wuhan. In addition,
changes in the land-use landscape pattern significantly impact ecosystem services supply
capacities at different buffer-zone scales.

5.2. Impacts of Landscape Pattern on ESV

The regression results demonstrated that the LSI, FRAC_AM, CONTAG, and SHDI
regression coefficients at the studied buffer-zone scales were all positive, indicating that
an increase in these landscape pattern metrics promotes ESV improvement. Specifically,
the increase in LSI indicated that the irregularity of the landscape pattern index in Wuhan
increased during the study period, which contributed to the increase in the average ESV.
Similar results were reported by Yushanjiang et al. [37]. However, Liu et al. [16] found
that the LSI was negatively associated with the average ESV. FRAC_AM also reflected
the impact of human activities on the landscape pattern. Natural landscapes that are less
disturbed by human activities typically exhibit a high average fractal dimension index,
whereas artificial landscapes greatly affected by human activities tend to exhibit a low
fractal dimension value. Therefore, an increase in the FRAC_AM index indicates an increase
in ecosystem services. This result is in agreement with those of Yushanjiang et al. [37] and
Zhang et al. [14]. The CONTAG index indicated whether the dominant patch type in the
landscape formed sufficient connectivity; otherwise, it indicated that the landscape was
a dense pattern with multiple elements, and the fragmentation degree of the landscape
was high. High landscape connectivity can lead to an increase in ecosystem services.
Yushanjiang et al. [37] and Hou et al. [42] found that the CONTAG index was negatively
correlated with ecosystem services. The increase in SHDI indicates that an increase in
landscape diversity richness can also lead to a rise in ecosystem services. Yushanjiang
et al. [37] found the same result, while Liu et al. [16] demonstrated that the SHDI was
negatively associated with supplying and supporting services and positively associated
with regulating and cultural services.

The PD, AREA_AM, IJI, DIVISION, and SPLIT regression coefficients were all negative,
indicating that landscape fragmentation and a high degree of patch-type alteration lead
to a decline in ecosystem services. Changes in the landscape pattern lead to changes in
the components, structure, functions, and biochemistry of regional ecosystems, ultimately
leading to a change in ESV. However, the impacts of the landscape index on ecosystem
services varied greatly across different scales and research areas. For example, Yushanjiang
et al. [37] found that an increase in PD leads to an increase in ecosystem services, while
Hou et al. [50] and Liu et al. [16] contended that an increase in PD leads to a decrease
in ecosystem services. According to Liu et al. [16] and Zhao et al. [15], AREA_AM was
positively associated with ecosystem services. Similarly, IJI in Zhao et al. [15] and Liu
et al. [16] was found to be negatively correlated with ecosystem services, whereas Zhang
et al. [14] and Yushanjiang et al. [37] found that IJI was positively correlated with ecosystem
services and food production, respectively. Liu et al. [16], Yushanjiang et al. [37], and
Hou et al. [50] found DIVISION to be positively associated with ecosystem services, while
Yushanjiang et al. [37] also demonstrated SPLIT to be positively correlated with ecosystem
services.

Improved production and living standards and diverse needs drive humans to gradu-
ally increase the development and utilization of ecosystem services. The resulting changes
in landscape patterns have damaged the original components and structures of ecosystems,
severely affected ecosystem functions, and reduced the value of ecosystem services. The
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impact of the evolution of landscape patterns on ecosystem services is a complex process,
and further scientific evaluation indicators should be selected for assessment. Further
exploration of the correlations and mechanisms between landscape patterns and ecosystem
services at different scales should be considered in future studies.

5.3. Policy Implications

Understanding the influence mechanism between landscape patterns and ESV can
provide a scientific reference for ecosystem conservation. The findings of this study demon-
strate that the relationship between landscape pattern and ecosystem services is extremely
complex, with trade-offs and synergies. On the one hand, the spatial heterogeneity of
the landscape pattern leads to ESV spatial heterogeneity, and the multifunctionality of
the landscape is closely related to the diversity and stability of ecosystem services [4,72].
On the other hand, the quality of ecosystem services not only affects land-use quantity
and structure but also affects land-use patterns, scales, and layouts, in addition to hu-
man socioeconomic behaviors [79]. Land development projects can optimize land-use
and improve ecosystem services. For example, the ecologicalization of roads and canals
can reduce species migration resistance and improve energy, material, and information
flows within an ecosystem. Land-use consolidation projects, such as returning cultivated
land to forestland, cultivated land consolidation, construction land consolidation, and
optimization, can promote supplying and regulating services, including boosting land-use
efficiency, labor productivity, quality of life, and the environment [92–96]. Therefore, the
landscape patterns of ecological and construction land should be optimized in land-use
planning, and ecological land should be protected. In addition, during urbanization, the
spatial form of urban areas should be controlled, and scattered construction land expansion
with low efficiency should be avoided where possible to minimize its impact on ecosystem
services [96].

The provision of ecosystem services is closely related to human needs, which can
reflect the value of ecosystem services. The interaction mechanism between landscape
patterns and ecosystem services can be analyzed to reflect the interactions between land-
scape patterns and ecological processes. Within certain spatiotemporal intervals, changes
in landscape patterns are manifested as changes in the type, size, and spatial location of
various land-use types. These changes affect landscape structures and ecosystem spatial
distributions, leading to changes in landscape material, energy, and ecological flows and,
ultimately, the supply and maintenance of ecosystem services. Describing the geometric
features of a landscape pattern without considering the related ecological processes is in-
sufficient for exploring the ecological effects of landscape changes [50]. Ecosystem services
link the ecosystem to the social system. Studying the impact of landscape patterns on
ecosystem services can help deepen our understanding of their interaction mechanisms
and provide scientific references and technical solutions for the sustainable development
of socioeconomic systems and ecosystems.

5.4. Limitations and Future Directions

By measuring the landscape pattern metrics and the spatiotemporal distribution
characteristics of ESV at 1, 2, and 3 km buffer-zone scales in Wuhan, this study used a
non-spatial panel model to evaluate the impact of landscape pattern metrics on ecosystem
services. Scale and pattern are core issues in landscape ecology and geography [97,98].
Previous studies have explored the impact of landscape patterns on ecosystem services
at multiple scales [14,16,37,99]. However, research on the interaction mechanism between
landscape patterns and ecosystem services requires the study of the impact of scale effects
on ecological processes and mechanisms. Selecting a scale that is too large often leads
to relevant details being ignored, whereas selecting a scale that is too small can neglect
an overall rule. Therefore, selecting an appropriate scale is of extreme importance for
landscape pattern and ecosystem services research [36]. The impacts of different or contin-
uous spatial scales on the relationship between landscape pattern metrics and ecosystem
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services should be further studied. This study also adopted the non-spatial panel model
to measure the impact of landscape patterns on ecosystem services without considering
spatial spillover effects; in future studies, dynamic spatial panel analysis can be used to
explore their mechanisms. This study quantified the impact of landscape patterns on
ecosystem services; however, it did not reveal the relationships between landscape pat-
terns, ecological processes, and ecosystem services. Thus, this study ignored the internal
mechanism and response degree of each landscape pattern index impact on ecosystem
services. Therefore, in future studies, it is necessary to acquire field test data and to select
additional scientific evaluation indicators and methods to reveal the relationships between
landscape patterns and ecosystem services and to clarify the influence mechanisms and
scale effects that landscape patterns have on ecosystem services. In addition, although this
study measured the impact of a landscape pattern index on ecosystem services through a
non-spatial panel model, it lacks a comprehensive consideration of other factors impacting
ecosystem services. Further consideration should be given to the impact of additional
factors on ecosystem services in future studies.

6. Conclusions

Based on land-use/cover change data with a 30 m resolution from 2000, 2005, 2010,
and 2015, landscape pattern metrics and ESVs at buffer-zone scales of 1, 2, and 3 km
were measured for Wuhan, China. Then, a set of non-spatial panel models were used to
determine the impact mechanism of the landscape pattern on ecosystem services. The main
findings were as follows:

(1) We demonstrated that rapid urbanization in Wuhan has led to significant changes
in landscape patterns; PD, LSI, DIVISION, SPLIT, and SHDI exhibited significant in-
creasing trends, whereas AREA_AM, FRAC_AM, and CONTAG exhibited significant
decreasing trends. The landscape pattern metrics also exhibited significant spatial
heterogeneity.

(2) In 2000, 2005, 2010, and 2015, the ESVs provided by ecosystems in Wuhan were
USD 4,532.341, 4,439.352, 4,394.293, and 4,293.343 million, respectively, indicating
that the Wuhan ESV capacity declined. Among the subcategory ecosystem service
proportions, hydrological regulations and waste treatment were higher, accounting
for 24% of the ESV, whereas the raw material production function was the lowest,
accounting for approximately 3.5%. The average ESVs in the core area of Wuhan were
low, and buffer layers with low average ESVs expanded over time.

(3) Individual and time fixed-effects models were determined to be the optimal types of
model. The landscape pattern metrics significantly impacted the ecosystem services;
however, these impacts varied substantially. PD, AREA_AM, IJI, DIVISION, and
SPLIT were found to be negatively associated with average ESV, while LSI, FRAC_AM,
CONTAG, and SHDI were positively associated with average ESV. The significance
level was different at different buffer-zone scales. The results of this study can provide
important implications for the formulation of ecosystem protection and landscape
planning policies.
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