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Abstract: Due to the high temporal repetition rates, median/low spatial resolution remote sensing
images are the main data source of change detection (CD). It is worth noting that they contain a large
number of mixed pixels, which makes adequately capturing the details in the resulting thematic
map challenging. The spectral unmixing (SU) method is a potential solution to this problem, as it
decomposes mixed pixels into a set of fractions of the land covers. However, there are accumulated
errors in the fractional difference images, which lead to a poor change detection results. Meanwhile,
the spectra variation of the endmember and the heterogeneity of the land cover materials cannot
be fully considered in the traditional framework. In order to solve this problem, a novel change
detection approach with image stacking and dividing based on spectral unmixing while considering
the variability of endmembers (CD_SDSUVE) was proposed in this paper. Firstly, the remote sensing
images at different times were stacked into a unified framework. After that, several patch images
were produced by dividing the stacked images so that the similar endmembers according to each
land cover can be completely extracted and compared. Finally, the multiple endmember spectral
mixture analysis (MESMA) is performed, and the abundant images were combined to produce the
entire change detection thematic map. This proposed algorithm was implemented and compared to
four relevant state-of-the-art methods on three experimental data, whereby the results confirmed
that it effectively improved the accuracy. In the simulated data, the overall accuracy (OA) and Kappa
coefficient values were 99.61% and 0.99. In the two real data, the maximum of OA were acquired
with 93.26% and 80.85%, which gained 14.88% and 13.42% over the worst results at most. Meanwhile,
the Kappa coefficient value was consistent with the OA.

Keywords: spectral unmixing; change detection; stacked images; endmember

1. Introduction

As is known, change detection (CD) is the main application of remote sensing tech-
nology, which is the process of analyzing changes of surface features with multitemporal
remote sensing imageries in the same area [1]. Sensors with median spatial resolutions,
such as Landsat TM and Sentinel, can always be applied to different CD techniques to cap-
ture changes, because they always have high temperatures for appropriate areas. Therefore,
to characterize, model and analyze the changes from the median/low spatial resolution,
remote sensing images are very meaningful. Some learning-based approaches, just like
the post-classification comparison (PC) [2], the change vector analysis (CVA) [3], support
vector machine (SVM) [4], decision trees (DT) [5], Markov random field (MRF) [6], aug-
mented linear mixing model (ALM) [7], etc., have been known and used in the past several
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decades. They utilize the empirical rules or learned strategies to create feature difference
maps. A simple method is to calculate the feature difference maps and separate changing
areas by thresholding. These kinds of techniques always assume that a pixel belongs to a
single class, and the determination of change or no-change is considered under a “full-pixel
“condition, which means that the traditional used methods may have to analyze this issue
at the pixel level [8]. However, different materials can jointly occupy a single pixel due to
the limitation of the spatial resolution; thus, lots of mixed pixels occur widely in the images.
If a mixed pixel can be regarded as a combination formed by several different classes rather
than a single class, then a loss of information and low CD accuracy are inevitable during
such a “full-pixel-level” CD process [9,10].

The spectral unmixing (SU) technique is regarded as one of the most important
means to solve a problem by giving an abundance of images of surface cover classes
constituting the area of a pixel [11,12]. The process can be described as follows. Firstly,
different endmember spectra are extracted from the multitemporal images. After that,
the abundances of each land-cover are estimated, and the differential proportions are
compared to obtain the final change map. In this way, the change detection process
is performed from the “full-pixel level” to the “sub-pixel level”, which can be called
CD_SU. The performance of CD_SU has been proven better than that of the traditional CD
methods [13]. Therefore, this processing method has been receiving more attention with its
unique advantages. It is necessary to develop the advanced techniques in CD studies for
analyzing sub-pixel-level spectral changes. In references [14,15], a linear spectral mixture
analysis was proposed for estimating impervious surface distributions by addressing
the differencing fraction images. In reference [16], a hyperspectral mixture analysis was
developed in the multitemporal images for feature selection for the species mapping. In
reference [17], different combinations in the multitemporal images were effectively explored
in the sub-pixel-level CD approach and improved the result accuracy. In reference [18],
a change vector analysis model was integrated in the CD_SU model to reduce the effect of
the cumulative error in a post-classification comparison. Moreover, it was closely related to
some image processing technologies, such as sub-pixel mapping [19], target detection [20],
feature information extraction [21], data fusion [22], etc.

Although great progress has been made in the research, the CD problem in multitem-
poral images was addressed from the spectral unmixing point with supervised techniques.
There are accumulated errors in fractional difference images that can produce lots of false
change and noises. It is hard to choose a suitable threshold value to identify the changes,
which makes the adequate capturing of details in fractional differential images challenging
and leads to poor change detection results [23]. Some researchers have proposed that the
spectral signatures of the multitemporal images were considered to be a stacked feature
space, and changed and unchanged classes can be analyzed in a uniformed unsupervised
framework dealing with the issue [24,25]. Thus, the accumulated errors are effectively re-
duced, and this format makes it easy for us to find the typical changed land cover type [26].
However, small spectral changes usually occur and need to be regarded as a potential land
cover change in stacked image data. Meanwhile, land cover spectral properties may show
a high variability due to the inevitable external conditions, such as sunlight conditions and
seasonal changes, etc. [27,28]. If this situation is not considered, the atypical endmembers’
spectral signatures cannot represent the real abundance images and, thus, decrease the
separability. In order to overcome the mentioned problem, several patch images are pro-
duced by dividing stacked images so that similar endmembers, including changed and
unchanged land cover types, can be completely extracted and compared. The optimal
endmember matrix is generated, and a multiple endmember spectral mixture analysis
(MESMA) is performed. Thus, the variability of the base endmembers according to each
land cover can be taken into full consideration.

In view of this way of thinking, a novel change detection approach with image
stacking and dividing based on spectral unmixing while considering the variability of
endmembers (CD_SDSUVE) is proposed in this paper. Firstly, the spectral signatures
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of the multitemporal images are considered to be a stacked feature space. Thus, the
considered CD problem is transformed to analyze the spectral variations within a single
pixel. After that, the stacked image is divided into several small patch images, to which
the endmember groups are built, and combined into an integrated endmember pool.
The optimum endmember combinations associated with the changed and unchanged
endmember types are identified in the pool. In this way, the endmember variability
is addressed by allowing the endmember number and type to vary at the pixel level.
Finally, all of the changed and unchanged regions are unmixed based on the MESMA. The
proportions of the different endmember types are compared, and the maximized one is
taken to obtain the final CD results.

The organization of this article is as follows. Section 2 describes the relevant back-
ground of CD_SU. Section 3 presents the proposed CD_SDSUVE, pointing out the main
properties of the stacking, dividing and endmember with a variety of domains and their
roles in CD. Section 4 describes the experimental images and analyzes and discusses the CD
results. Section 5 is the computational complexity analysis. Section 6 draws the conclusions
of this work.

2. Relevant Background

For the past few years, CD_SU have been used in multitemporal remote sensing
images and achieved good results. The general approach is based on two processes. In
the first process, the mixed pixels of the images with different periods are decomposed,
respectively, to obtain the land cover abundances. Due to the simple computation and
clear physical interpretation, the linear mixture model (LMM) has been widely used, which
assumes that the observed spectra are the linear combinations of endmembers weighted
by their corresponding abundances, and distinct endmembers are independent from each
other [29]. The spectral signature of a mixed pixel is expressed as:

x = Sα + n (1)

where x is the spectral vector value of a mixed pixel, S is the built endmember matrix, α is
the abundance column vector according to each endmember and n is the noise. The least
squares (LS) method is utilized to obtain the most suitable abundance α. Moreover, there
are two important qualifications to the abundances, nonnegative and sum-to-one [30,31].
Under this constraint, the abundances according to every land cover type are significant.
If the number of endmembers in the image is M, then the above Equation (1) can be
described as:

x =
M

∑
i=1

siαi + n (2)

where si and αi are the ith endmember spectral and corresponding abundance values.
In the second process, the different images are produced by the abundance of different
land cover types, and the binary image is regarded as the CD map. During the process,
a comparison is performed for each pixel pair in the multitemporal images to generate
the initial proportional differences of each class. For example, if αk,t1 and αk,t2 are the
abundance values at time t1 and t2 for the kth endmember types, then the abundance
differences value can be defined as

∣∣αk,t1 − αk,t2
∣∣. In general, the distribution of changed

and unchanged classes is different in the difference image histogram. The former ones are
always spread out over the sides of histogram, and the latter are mainly gathered in the
center [32,33]. Therefore, the threshold value can be set as twice the standard deviation of
the unchanged land cover distribution. With an appropriate thresholding value based on
the experience, the changed area is achieved from the correlated resultant image.

3. The Proposed CD_SDSUVE Algorithm

Different with the traditional CD_SU method, we use image stacking, blocking and
consider variability of endmembers in different patches, where the most suitable endmem-
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ber combination is used in the multiple endmember spectral mixture model, to obtain the
CD map.

3.1. Stacking and Patch Generation of the Multitemporal Images

In order to intuitively describe the changed classes and avoid process errors, image
stacking is considered in this study. The multitemporal images are stacked in the uniformed
framework. The change land cover type can be directly judged by the combined spectral
curve in the stacked image, which is more intuitive, and the spectral features are easy to be
captured. The conventional process of constructing the differential image is replaced by
selecting the changed spectrum of the stacked image, which makes the proposed algorithm
more practically useful. For example, if there is a change for the pixels, the first half and
the second half of the pixel spectrum seem to be significantly different. On the contrary,
they have strong similarities when there is no changed for the pixels. After that, the
stacked image is divided into several image patches that highlight the small endmember
features. In this situation, the changed and unchanged endmember spectral signatures can
be sufficiently analyzed in each small block. The image patch size is much smaller than the
entire image after the dividing process. The patch scheme simultaneously handles both the
issue of a possible large number of endmembers and small local spectral variability effects.
Although the number and type of endmembers are increased, the redundant endmembers
generated can be merged or eliminated later. In this case, the relative change of deformation
can be fully considered, which effectively reduces the errors of the endmember extraction.
If M1 and M2 are the two remote sensing images at different times for CD (see Figure 1),
then M1 and M2 can be stacked into a MS pile. If the divided scale is defined as s, then MS
is divided into p (p = s2) regularly shaped patches. MS-p is the pth patch of MS, which is
dominant. Note that the parameter s is defined depending on the size of the image and the
significance of the occurred change targets in the scene.
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3.2. The Initial Endmember Group Construction for Small Patch Image

Firstly, the principal component analysis (PCA) is adopted to estimate the number of
endmembers in the small patch image, because it is based on variant information and more
effective in multispectral images [34]. After that, the initial endmember spectra signatures
E of each patch image are identified by the N-FINDR algorithm, since it is robust and
universal [35]. This procedure does not require any input parameters. The set of pixels
that define the simplex with the maximum volume was found within the dataset. First,
a dimensionality reduction in the original image is accomplished by using the minimum
noise fraction (MNF) transform. Next, randomly selected pixels qualify as endmembers,
and a trial volume is calculated as follows. The matrix of the endmembers is defined as E,
and a row of unit elements is added to construct an augmented matrix:

E =

[
E1 E2 · · · Em
1 1 · · · 1

]
(3)

where Ei is the ith endmember spectrum, and m is the defined endmember number of
the dimensions occupied by the data. The volume of a constructed simplex using the
purest pixels is assumed the largest. Then, the algorithm begins with randomly selected
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pixels, and the volume V of the formed simplex according to the specified endmembers
is calculated.

V =
abs(|E|)
(m− 1)!

(4)

The process is repeated for every pixel in the image. If the recalculated volume
is increased, the new endmember is replaced. This procedure continues until no more
replacements are done in the execution [36].

3.3. Construction of the Endmember Pool for the Stacked Image

In this section, the differentiation and combination of the endmember spectra are com-
pleted in the blocks, and the endmember pool is constructed. For the sake of description,
the divided scale s is defined as 2. There are 4 patches, and the initial endmember groups
G1~G4 are performed in Figure 2.
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Firstly, the difference value d is defined to discriminate the changed land cover classes
in the endmember group. The Euclidean distance of the spectral differences is analyzed
according to a change vector analysis as follows:

d =

√√√√ B

∑
b=1

(sb+B − sb)
2 (5)

where sb and sb+B are the bth and (b + B)th channel in the stacked image, representing
the former and latter part. B is the number of the spectral channels. Therefore, the
changes are associated with the high values, and no changes are associated with the low
values. An appropriate threshold T is automatically set based on the histogram of the
B-dimensional difference image computed by subtracting the multitemporal images pixel-
by-pixel. Since the intensity change values often follow the Gaussian mixture model, the
expectation maximization (EM) algorithm and Bayes discriminant criterion are used to
estimate the threshold T [37,38]. If d is larger than T, it is considered significant, indicating
a certain change. Otherwise, it is not. According to the given rule, the ith patch image
endmember group can be defined as Gi = {Gic, Giu} and I = [1, 4], where Gic and Giu
are the changed and unchanged groups, respectively. Secondly, a comparison should be
implemented to combine the endmember spectra in each separated changed or unchanged
endmember group. The defined rule is obviously the key factor in the procedure. Due to
the explicit physical meaning, the spectral angle mapper method (SAM) technique is used
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to discriminate the similarity by calculating the angle [39]. The formula for calculating the
spectral angle a between the two specified endmembers is Equation (6):

a(es, et) = arccos(
eT

s et√
eT

s es

√
eT

t et

) (6)

where es and et are the two spectra representing the specified endmembers. The smaller
the angle is, the more similar the two spectra are. If the two endmembers are less than
the empirical threshold, they belong to the same type. In this way, all of the possible
endmembers’ spectra are classified and labeled. Thus, all of the changed groups G1c~G4c
and unchanged groups G1u~G4u are combined into separated endmember pools Pc and Pu,
respectively. The endmember pool P is constructed based on the above process.

3.4. Multiple Endmember Spectral Mixture Analysis

Due to the integration of several different groups, one class may correspond to several
different endmember spectral signatures in the endmember pool P. Therefore, the variability
of endmembers should be considered. The MESMA, which is the extension of LMM, is
adopted to obtain the abundance image of the changed land cover types and generate the
CD result. The main idea is to exhaust all endmembers in the endmember pool P and
make sure the endmember spectrum for each class is the most suitable. However, a mass
of redundant computation arises when there is a lot of candidate endmember spectra.
Especially, the blocking easily caused many similar spectra according to the same land
cover type. In this case, the endmember average root mean square error (EAR) indicator
is proposed to optimize the selection of the endmember spectrum [40,41]. The EAR can
determine the average error of an endmember modeling spectra within its land cover type.
The minimum EAR endmember is the most representative endmember for a land cover
class within several similar spectra. For example, there are N candidate endmembers’
spectra

{
E1

i , E2
i , . . . , EN

i

}
for the ith class, and the EARs

i indicator is as follows:

EARs
i =

1
N − 1

n−1

∑
t=1

RMSE(E s
i , Et

i
)

(7)

where RMSE(E s
i , Et

i
)

is the average of the root mean square error between the Es
i and

Et
i , and n is the number of endmembers for a class. The lower the EARs

i , the better
the representation of the spectrum. If it is high, the spectrum may be outlines and not
representative. The other endmembers’ signatures for the rest of the land cover types are
confirmed based on the above thought. In this way, all of the possible endmembers’ spectra
are combined to form a variable endmember matrix for the stacked image. The candidate
pixel is decomposed according to the specified endmember matrix. The MESMA model is
revised based on Equation (2) and shown below.

x =
M

∑
i=1

Di

∑
j=1

qsijαij + n (8)

where M is the number of the endmember, Di is the number of spectral according to the
ith land cover type, sij and αij are the jth endmember spectra in the ith class type and the
corresponding abundance value, respectively, q is the label (0 or 1) representing whether
the concerned endmember spectral is used, and n is the noise. Like the LMM, the MESMA

also has two constraints: 0 ≤ sij ≤ 1 and
M
∑

i=1

Di
∑

j=1
qsijαij = 1.Finally, the considered CD

problem is formalized as to estimate the abundance of changed classes within a single pixel
and generate an entire result. The summary of the CD_SDSUVE algorithm is described in
Table 1. The whole process of the CD_SDSUVE methodology is described in Figure 3.
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Table 1. The CD_SDSUVE methodology.

Input: Remote Sensing Data: M1 and M2

Step 1: Two data M1 and M2 are stacked to a new data MS
Step 2: Divided scale s is defined, and MS is divided as p (p = s2) patch images
Step 3: Initialize the endmember group Gi for ith patch image by N-FINDR
Step 4: Analyze each endmember group and generate a whole endmember pool P for the
stacked image
(1) Discrimination of the changed and unchanged land cover types Gi = {Gic, Giu}, i ∈ [1, p]
(2) Combination and analysis of the similar endmember spectrum by SAM
(3) The endmember pool P is built based on all of the endmember groups Gi
Step 5: Construction of multiple endmember spectral unmixing model
(1) Select the suitable endmember class using EAR indicator
(2) Spectral unmixing with the multiple endmember matrix
Step 6: compare the abundance and the final change map is generated
Output: The change map of M1 and M2
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4. Experiments and Analysis

In order to prove the feasibility of the method and steps, three different remote sensing
images were, respectively, presented in this section. Firstly, a simple simulated Landsat TM
image to evaluate the performance of the proposed algorithm. To produce the simulated
changed situation, small areas were cut from the original image and exchanged as different
changes so that the result can be compared with the one from the original image. Secondly,
two pairs of multitemporal images were chosen to test the performance of the algorithm in
real scenarios. The proposed CD_SDSUVE was tested and compared with four different
CD methods, including CD based on the post-classification (CD_PC), CD based on spectral
unmixing (CD_SU). CD with image stacking based on spectral unmixing (CD_SSU) and
CD with image stacking and dividing based on spectral unmixing (CD_SDSU). These algo-
rithms were implemented several times just to keep them fair. Under the same parameters,
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there were very small variations according to their results. Moreover, the experimental
results were checked by visual and statistical accuracy assessments. The percent correctly
classified (PCC) and the Kappa coefficients of agreement were calculated to evaluate and
test the change detection precision of these presented five methods.

4.1. Simulated Multitemporal Image Data

The spatial resolution of the Landsat TM was 30 m with six bands. The wavelength
mainly ranged from visible to near-infrared. A simple image with 400 × 400 referring to
the urban area of Shenzhen, Guangdong, China was chosen to carry out the experiment
(Figure 4a). Through the visual interpretation, there were mainly three classes: water,
vegetation and urban, defined as W, V and U, respectively. To produce the simulated
changed situation, three 20 × 20 square areas regarded as the water, vegetation and urban
classes were cut from the original image (Figure 4b). They were exchanged and represented
as three different changes, described as vegetation-to-water (VW), urban-to-vegetation
(UV) and water-to-urban (WU). Three combined spectral curves are shown in Figure 4c,
whose spectral signatures include two components regarded as changed. Green is UV, red
is VW and blue is WU.
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In view of the image size and the simple distribution of the land cover types, the
divided scale s was defined as 2. Four endmember groups: G1, G2, G3 and G4 were
generated. The number of endmembers for the groups was set as nine, nine, seven and
nine, respectively. Thus, all possible spectra according to the different land cover types
in each group were extracted, and the numbers are listed in Table 2. For example, there
were two similar spectra according to class W, three similar spectra expressed according to
class U, three similar spectra according to class V and only one spectral to class VW in the
endmember group G1. Meanwhile, there was no appropriate spectrum according to classes
WU and UV, which was defined as zero (NULL). It means these two endmember classes
were not included. The endmembers signatures were extracted by the N-FINDR algorithm.
The changed and unchanged endmember spectra were discriminated by Equation (5) with
a threshold 0.47. The similar endmember spectra were combined by SAM with 0.1. The
endmember pool was constructed, and the EAR optimization was performed to select
the ultimate representative spectra for different land cover types. Using Equation (8),
the MEMSA model using different endmember combinations was applied to the entire
stacked image, representing the six actual endmember types included. The acquired
abundance images for each class are shown in Figure 5a–d. The higher the abundance
value, the brighter it was and vice versa. They provided apparent proportions of the
six land covers: W, V, U, VW, UV and WU. The maximum value of each pixel of all
the abundance images was set as the determinate category, and the final entire change
classification map was constructed. The reference land cover change map is shown in
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Figure 6a, and the change detection results by different methods, CD_PC, CD_SU, CD_SSU,
CD_SDSU and CD_SDSUVE, are shown in Figure 6b–e, respectively.

Table 2. The possible endmember spectral numbers in each group.

Group

Class Number

W U V WU UV VW

G1 2 3 3 0 0 1

G2 1 3 2 0 3 0

G3 2 3 1 0 0 1

G4 1 3 2 3 0 0
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The reference land cover change map in Figure 6a is produced by these manmade
exchanged areas. The VW is shown in red. The UV is shown in cyan, and the WU is
shown in white. Through the visual comparison to the reference map, CD_PC is the worst



Remote Sens. 2021, 13, 2550 10 of 19

result. There are many isolated pixels that lead to a false change and unreliability in
Figure 6b. CD_SU is much better than CD_PC. There is an obvious improvement when
the SU is implemented in the CD process in Figure 6c. Even so, the misclassifications
of another class type, more or less, still affected the results. After the image is stacked,
the performance of CD is improved in Figure 6d. The CD_SSU method can influence the
occasional noise, and identification is presented to reduce erroneous judgments on failures,
especially in W (blue). The acquired CD map in Figure 6e is closer to the reference. Due to
the dividing process, CD_SDSU can measure a subtle but detectable change. It is found that
most of the misclassifications of W, V and U in the former methods are fixed. In the end,
Figure 6f is the most acceptable result, because it can fix all of the misclassifications. The
proposed CD_SDSUVE reached the optimal performance considering the variations of the
endmembers. The special treatment could be further in accord with the practical situation
when the CD is implemented under the sub-pixel level. The statistics are consistent with
the visual comparisons in Table 3. The proposed CD_SDSUVE provides the best results,
with the maximum of OA and Kappa of 99.61% and 0.99, respectively.

Table 3. The accuracy statistics for the simulated data.

Method CD_PC CD_SU CD_SSU CD_SDSU CD_SDSUVE

OA 88.09% 93.83% 94.07% 97.53% 99.61%

Kappa 0.76 0.91 0.91 0.96 0.99

4.2. Real Multitemporal Image Data 1

The real multitemporal image data 1 was chosen by the Sentinel-2 satellite, which had
13 bands with a spatial resolution of 20. The wavelengths ranged from 0.44 to 2.2 µm. Due
to the low spatial resolution, three bands of 1, 9 and 10 of the images were removed. The
subtracted images (400 × 400 pixels) of 2016 and 2018 in Hong Kong, China are shown
in Figure 7a,b, respectively. The area is mainly covered by urban, water and vegetation.
A visual analysis on Google Maps with high resolution may contribute to the definition
of the change areas and, thus, change classes. Through comparative analyses, there are
four major class changes, which are defined as the vegetation changed to urban (VU), the
vegetation changed to bare soil (VB), the water changed to urban (WU) and the urban
changed to water (UW). Figure 7c describes the typical changed land cover type spectral
curves. There are four different colors in the figure: Green is VU, red is WU, blue is UW
and magenta is VB.
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Like the simulated data, the stacked image was divided into four patches. Firstly,
the initial endmember spectra were extracted in each patch image and collected to form
four endmember groups: G1~G4. All of the possible numbers according to a determined
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land cover class in the different groups were acquired. All of the possible endmember
spectral numbers in each endmember group are listed in Table 4. The number of the
endmembers in the four groups were 17, 16, 14 and 18, respectively. After that, the changed
and unchanged endmember spectra were discriminated using a threshold of 0.79. The
similar endmember spectra were combined by SAM with 0.12. The EAR optimization was
performed on the endmember pool, and the suitable endmembers were kept to establish
a variable endmember matrix for the MEMSA model. Finally, the whole image was
decomposed, and the fractional abundance images are shown in Figure 8a–h, respectively.
It seems that there are significant differences among the different unchanged land cover
types U, V and B. Additionally, the changed land cover types VU, VB, WU and UW all
provided acceptable separations.

Table 4. The possible endmember spectral numbers in each group.

Group

Class Number

U V B W VU VB WU UW

G1 5 3 1 1 3 2 2 0

G2 4 3 2 1 2 3 1 0

G3 3 2 1 2 1 2 2 1

G4 5 2 2 2 2 2 1 2

Remote Sens. 2021, 13, x 12 of 20 
 

 

were significant differences in the results by CD_PC comparing with the reference map 
in Figure 9b. Especially, the typical class type, bare soil, was not even detected. The 
changed and unchanged areas were mixed up to produce many misjudgments. For 
CD_SU, there was a distinct improvement. However, there were still a number of other 
possible uncertainties. For example, more urban shadows are misclassified for changing 
areas in Figure 9c. Some parts of the change WU and VB were not detected either. The 
CD_SSU in Figure 9d can provide more reliable and clearer edge information compared 
with CD_SU. The integrated structure of the image is complete, and an enormous 
amount of details are effectively kept, especially in the boundary. The CD_SDSU is sim-
ilar to CD_SSU, as it maintains a high correct rate in Figure 9e. However, there are still 
some misclassifications, especially in the area of the vegetation change to urban. Figure 9f 
shows the benefits of CD_SDSUVE by providing the most similar result to the reference 
image. The overall accuracy (OA) and Kappa value were used in the quantitative analysis 
of the mentioned CD methods. From Table 5, CD_PC is still the worst one, with the 
minimum of OA and Kappa of 78.38% and 0.44, respectively. CD_SU has a slightly im-
provement compared to CD_PC, a gain of 9.03% with OA over CD_PC. CD_SSU and 
CD_SDSU are similar. Their OA are 92.82% and 91.35%, respectively, and significantly 
better than CD_SU. The proposed CD_SDSUVE provides the best results, with the 
maximum of OA and Kappa of 93.26% and 0.66, respectively. 

Table 4. The possible endmember spectral numbers in each group. 

Class
Group 

Number 
U V B W VU VB WU UW 

1G 5 3 1 1 3 2 2 0 

2G 4 3 2 1 2 3 1 0 

3G  3 2 1 2 1 2 2 1 

4G  5 2 2 2 2 2 1 2 

Table 5. The accuracy statistics for real data 1. 

Method CD_PC CD_SU CD_SSU CD_SDSU CD_SDSUVE 
OA 78.38% 87.41% 92.82% 91.35% 93.26% 

Kappa 0.44 0.58 0.59 0.64 0.66 
 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 8. The abundances in the entire images: (a) urban (U), (b) vegetation (V), (c) water (W),
(d) bare soil (B), (e) vegetation–urban (VU), (f) vegetation–bare soil (VB), (g) water–urban (WU) and
(h) urban–water (UW).

All of the abundance maps were combined to produce the different change categories.
Four colors were used for convenience describing the different changed land cover types.
Green means VU, red is WU, blue is UW and magenta is VB. The unchanged land cover
type was assigned as white. The reference land cover change map is shown in Figure 9a,
which was produced by drawing the original images through visual interpretation in the
same field on Google Maps with a high resolution. It was found that there were significant
differences in the results by CD_PC comparing with the reference map in Figure 9b. Espe-
cially, the typical class type, bare soil, was not even detected. The changed and unchanged
areas were mixed up to produce many misjudgments. For CD_SU, there was a distinct
improvement. However, there were still a number of other possible uncertainties. For
example, more urban shadows are misclassified for changing areas in Figure 9c. Some
parts of the change WU and VB were not detected either. The CD_SSU in Figure 9d can
provide more reliable and clearer edge information compared with CD_SU. The integrated
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structure of the image is complete, and an enormous amount of details are effectively kept,
especially in the boundary. The CD_SDSU is similar to CD_SSU, as it maintains a high
correct rate in Figure 9e. However, there are still some misclassifications, especially in the
area of the vegetation change to urban. Figure 9f shows the benefits of CD_SDSUVE by
providing the most similar result to the reference image. The overall accuracy (OA) and
Kappa value were used in the quantitative analysis of the mentioned CD methods. From
Table 5, CD_PC is still the worst one, with the minimum of OA and Kappa of 78.38% and
0.44, respectively. CD_SU has a slightly improvement compared to CD_PC, a gain of 9.03%
with OA over CD_PC. CD_SSU and CD_SDSU are similar. Their OA are 92.82% and 91.35%,
respectively, and significantly better than CD_SU. The proposed CD_SDSUVE provides
the best results, with the maximum of OA and Kappa of 93.26% and 0.66, respectively.
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Figure 9. The change detection results of real data 1: (a) reference image, (b) CD_PC, (c) CD_SU, (d) CD_SSU,
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Table 5. The accuracy statistics for real data 1.

Method CD_PC CD_SU CD_SSU CD_SDSU CD_SDSUVE

OA 78.38% 87.41% 92.82% 91.35% 93.26%

Kappa 0.44 0.58 0.59 0.64 0.66

4.3. Real Multitemporal Image Data 2

The real multitemporal image data 2 was chosen by the Landsat TM with farmlands
of Alabaster, AL, USA, which has undergone many changes. This distribution was more
complicated than the former real data. A pseudo-color synthetic image with bands 4, 3, and
2 showed distant scenery around a suburb. The subtracted images with 900 × 900 pixels in
1988 and 2004 after co-registration are shown in Figure 10a,b, respectively. Compared with
the two images at different times, there are three major classes: bare soil (B), rivulet (R)
and agricultural crop (A). Through the original information, Google Maps can be linked
with the test data for the definition of the change classes. The main change was that the
agricultural crop changed to a rivulet (AR), the agricultural crop changed to bare soil (AB)
and the bare soil changed to the agricultural crop (BA). First of all, the two temporal images
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were stacked into an image pile, and then, the changed land cover type’s spectral curves
are as shown in Figure 10c. Green is AB, red is AR and blue is BA.
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In this experiment, the divided scale was set as 3 due to the complexity and size of the
image. There were nine endmember groups included by the extracted initial endmember
spectra. Similarly, the possible numbers of the endmember spectra according to each class
type in each group are described in Table 6. The number of the endmembers in the nine
groups was 12, 12, 12, 14, 12, 12, 12, 12 and 12, respectively. After that, the changed and
unchanged endmember spectra were discriminated using a threshold of 0.83. The similar
endmember spectra were combined by SAM at 0.12. After comparison and discrimination,
these spectra were classified as several land cover types. The EAR optimization was
performed, and the suitable endmember spectra according to each land cover type were
chosen. Next, the entire image was decomposed by MESMA according to the variable
endmember combinations. The fractional abundance images are shown in Figure 11a–f,
respectively. The main distribution land cover type was an agricultural crop. Meanwhile,
bare soil and a rivulet could also be clearly separated. Especially, lots of bright values were
shown in the agricultural crop–bare soil, which means that the abundance of this change
land cover was the largest. The reference land cover change map was still concluded
by manually drawing the original images through interpretation with a high resolution.
Different colors were utilized to describe the changed and unchanged land cover types.
White was unchanged, green was AR, red was AB and blue was BA. In contrast, the five
methods had different results.

Table 6. The possible numbers of the endmember spectra in each group.

Group

Class Number

B R A AR AB BA

G1 3 2 2 3 1 1

G2 2 3 2 2 1 2

G3 4 3 3 0 0 2

G4 5 3 3 0 2 1

G5 2 3 2 3 2 0

G6 3 3 2 1 1 2

G7 3 2 3 0 2 2

G8 2 3 3 0 2 2

G9 3 3 3 1 1 1
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A reference map is shown in Figure 12a. The change detection results by different
methods are shown in Figure 12b–h. For CD_PC, lots of changed areas, especially bare soil
and agricultural crops, were not detected yet in Figure 12b. There were many misclassifica-
tions in the mixed area. Moreover, the shapes were commonly distorted, and the boundary
of the changed land cover types were often blurred or smeared out by antialiasing. The
CD_SU in Figure 12c is much better than CD_PC, but there are still a number of other
possible errors and uncertainties. The CD_SSU in Figure 12d has a lot less misclassification
areas, and it is more complete in the detection of agriculture-to-bare soil change areas
compared with CD_SU. The CD_SDSU has a lot less misclassification areas and are more
complete in the detection of agriculture-to-bare soil change areas in Figure 12e. However,
many changes are still confused due to the existence of a same object with different spectra.
Although the CD_SDSUVE also had misclassifications and undetected change areas, it
outperformed the aforementioned methods in Figure 12f. The visual comparison was also
proven by the accuracy statistics in Table 7. Performance was still evaluated with the OA
and Kappa. In addition, the omission and commission errors are shown in Table 7. The
number of pixels in the changed and unchanged area were 335,267 and 474,733, respectively.
The OA and Kappa value of CD_PC were only 67.43% and 0.31, which were the worst
results among all of the statistical results. CD_SU was better than the former, with a gain of
4.91% and 0.15. Additionally, CD_SSU and CD_SDSU were both increased to some degree.
Their OA and Kappa values were 73.36% and 0.47 and 76.13% and 0.48, respectively. The
proposed CD_SDSUVE had the best results, with an OA of 80.8% and a Kappa value of
0.56. Moreover, the omission and commission errors of CD_SDSUVE were lower than
that of CD_PC, CD_SU, CD_SSU and CD_SDSU in all cases. The largest omission and
commission errors in AR changed with CD_SU were 91.4% and 40.8%, respectively. All
of the CD methods, except for CD_SDSUVE, always produced lots of missed and false
changes, which led to large omission and commission errors.
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Table 7. The accuracy statistics for real data 2.

Method CD_PC CD_SU CD_SSU CD_SDSU CD_SDSUVE

Omission
Error

AR 91.4% 25.1% 7.4% 6.1% 5.4%

AB 9.6% 27.8% 7.9% 8.8% 7.3%

BA 9.4% 37.9% 19.9% 17.9% 9.1%

Commission
Error

AR 40.8% 18.5% 16.1% 16.4% 13.5%

AB 22.2% 22.9% 17.5% 18.7% 15.3%

BA 16.3% 25.5% 13.4% 22.8% 10.0%

OA 67.43% 72.43% 73.36% 76.13% 80.85%

Kappa 0.31 0.46 0.47 0.48 0.56

5. Computational Complexity Analysis

The computational complexity of the five contrastive methods was different. CD_PC
and CD_SU had the same process. Firstly, the multitemporal images should be un-
mixed/classified, which had to be processed individually. After that, the classifica-
tion/unmixing images were compared to produce the CD result. CD_SSU did not need
more space to store the intermediate images compared with the CD_PC and CD_SU. Since
it stacked the multitemporal images and directly obtained the change information, less
calculation times and space were needed. As for CD_SDSU, it had a dividing process to
receive several patch images. The time and space cost of the algorithm were related to the
patch number, image size and class number. The proposed CD_SDSUVE had the same
part of the calculation process as the CD_SDSU. Additionally, the multiple endmember
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selection contributed the most to the calculation times and space costs. The actual time
costs of all the methods in the three experiments are listed in Table 8. The hardware and
software conditions were as follows: a Lenovo laptop with Intel(R) Core (TM) i5-4200 CPU
@2.4MHz, 8 Gb RAM, Windows 7 OS and Visual Studio 2010 IDE. CD_PC and CD_SU had
similar times during the two experiments due to their similar computational processes.
CD_SSU was the fastest algorithm, because the calculation time and space costs were
both the smallest among all of the algorithms. CD_SDSU cost more time than CD_SSU,
CD_PC and CD_SU, since it contained the image-dividing process. When the dividing
number was large, each patch image produced more computational memory stress than
the other nondividing algorithms. The proposed CD_SDSUVE was the slowest algorithm.
In addition to the dividing process, the multiple endmember comparison and extraction
led to more calculation time than CD_SDSU, but the time cost was still acceptable.

Table 8. Time costs of all the methods in the three experiments.

Time (ms) CD_PC CD_SU CD_SSU CD_SDSU CD_SDSUVE

Simulated data 1410 1504 780 4126 7862

Real data 1 1486 1513 981 4772 7985

Real data 2 1517 1589 1240 5639 9623

Since the computational complexity of CD_SDSUVE was affected by the divided
scale (s), it was necessary to analyze the effects of setting the parameter when running the
CD_SDSUVE algorithm. For the three experimental data, the parameter of the divided
scale s was set as 1, 2, 3 and 4, respectively. The number of patch images was 1, 4, 9 and
16, accordingly. The OA and time costs of the three experimental images when running
the proposed algorithm are shown in Figure 13. As can be seen, the best performance
appeared when the scale s was 2 and the time cost was 7862 in the simulated data. The
differences in the accuracies among s = 2, 3 and 4 were very small, and the line chart of
OA presented little vibration. A similar phenomenon also occurred in the real data 1. The
best performance appeared when the scale s was 2 and the time cost was 7985. In addition,
it was found that the time costs kept rising when the scale increased from 1 to 4. In the
real data 2, the best performance appeared when the scale s was 3 and the time cost was
9623. Although the increase of the scale produced more patch images, the overall accuracy
was not the more, the better. Thus, a conclusion can be drawn that CD_SDSUVE can reach
an expectable result without more divided scales and time costs. It was critical for us to
choose a reasonable divided scale to obtain the best results.
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6. Discussion and Conclusions

This paper proposed a novel CD_SDSUVE method for change detection of multitem-
poral remote sensing images. There were two main key points to affect the CD results. The
first one was to construct the endmember pool. After the stacking and dividing processes,
the similar endmember spectra in the small, patched images were classified and combined.
The specified endmember spectra according to land cover types were collected into the
endmember pool. The second was to select the most suitable endmember spectrum from
similar endmember spectra. An EAR indicator was proposed to obtain the minimum RMSE
of the unmixing model. The optimal endmember spectrum was chosen by the calculated
EAR indicator to decompose the mixed pixels. Four relevant state-of-the-art algorithms of
CD_PC, CD_SU, CD_SSU and CD_SDSU were compared with CD_SDSUVE. Although the
proposed method tended to consume more time than the other methods, the time costs
were still acceptable. The simulated and real experimental results confirmed the superiority
of the proposed method, whereby the accuracy and visual effects of the resulting change
detection maps were significantly improved.

From the theoretical analysis and the practical experimental results, we can conclude
the following: (1) The change detection problem can be effectively resolved in an unsuper-
vised framework. The entire CD process is under a unified framework, and no training
samples are needed. Furthermore, image dividing based on stacked images can detect
much smaller changes, which increases the number and types of endmembers and is more
conducive to spectral unmixing. (2) The multiple endmember spectral mixture analysis
was more suitable for decomposing the mixed pixels in this situation. The number and type
of endmember spectra could be adjusted according to the real situation of the patch images.
This means the use of multi-endmember information where available is considered by
using the variability of the endmembers. Future works should focus on the improvement
of endmember extractions in patch images and suitable endmember combinations for
spectral unmixing.
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