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Abstract: Abandoned agricultural land (AAL) is a European problem and phenomenon when
agricultural land is gradually overgrown with shrubs and forest. This wood biomass has not yet
been systematically inventoried. The aim of this study was to experimentally prove and validate
the concept of the satellite-based estimation of woody above-ground biomass (AGB) on AAL in the
Western Carpathian region. The analysis is based on Sentinel-1 and -2 satellite data, supported by
field research and airborne laser scanning. An improved AGB estimate was achieved using radar
and optical multi-temporal data and polarimetric coherence by creating integrated predictive models
by multiple regression. Abandonment is represented by two basic AAL classes identified according
to overgrowth by shrub formations (AAL1) and tree formations (AAL2). First, an allometric model
for AAL1 estimation was derived based on empirical material obtained from blackthorn stands.
AAL2 biomass was quantified by different procedures related to (1) mature trees, (2) stumps and (3)
young trees. Then, three satellite-based predictive mathematical models for AGB were developed.
The best model reached R2 = 0.84 and RMSE = 41.2 t·ha−1 (35.1%), parametrized for an AGB range
of 4 to 350 t·ha−1. In addition to 3214 hectares of forest land, we identified 992 hectares of shrub–
tree formations on AAL with significantly lower wood AGB than on forest land and with simple
shrub composition.

Keywords: farmland overgrowth; shrub–tree formations; biomass estimation; satellite data; radar
backscatter; coherence; regression model; integrative management

1. Introduction

Between 1990 and 2015, the world lost 1.29 million square kilometres of forest [1].
Contrary to the global trend, forest area in Europe expanded by 0.17 million km2 between
1990 and 2010 [2]. The expansion of European forests was the result of afforestation
(planting and seeding of trees on land that was not previously forested) and the natural
expansion of forests, such as on abandoned land.

The phenomenon of the abandonment of the agricultural landscape is especially
notable in the countries of Eastern and Central Europe, where formerly intensively worked
farmland was abandoned due to deep social and political changes such as the disintegration
of socialist agrarian policies, the accession to the EU and countries joining the global
markets [3,4]. An example of such agricultural land changes is in Slovakia, where unused
areas amount to 424–452 thousand hectares (ha), representing ~18% of the country’s
farmland. The use of these areas does not correspond to the records of land categories at
the Office of Geodesy, Cartography and Cadastre. The process of overgrowth with shrubs
and trees is largely associated with unused “permanent grasslands” and represents up to
~336 thousand hectares [5].
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After years of disinterest, areas of abandoned agricultural land (AAL) have become
the subject of societal debate due to the extraction of wood intended for combustion in
bio-energy facilities. This extraction results from broader strategic decisions. The EU 2030
climate and energy framework set a target to increase the share of energy production
from renewable sources to 32%. Moreover, continuous forest and shrub growth outside of
actively managed forests must be included in the carbon storage accounting (EU Regulation
2018/841).

The most common approaches applied to identify AAL in the Central European region
are based on comparing land cover from two or more time periods. Using satellite images or
existing maps, the comparison is based on the changes in spectral and textural properties
or forest boundaries from long-term forest mappings [6–8]. The height of vegetation
derived from aerial orthophotos or lidar data has been used as an indicator of AAL and its
timing [9,10]. A review paper [11] analysed studies published from 1992 to 2019 to identify
agricultural land abandonment by applying satellite optical and microwave data. The
authors concluded that the studies mostly did not consider detailed field surveys, and an
assessment of natural vegetation overgrowth in AAL was also missing. Only a few studies
specifically addressed the issue of estimating woody above-ground biomass (AGB) on AAL
in Europe from satellite images, such as [12] from the point of view of carbon sequestration.
The authors in [13] emphasised the role of new technologies such as Google Earth Engine
(GEE) that makes much of the free satellite imagery available online so that researchers can
analyse changes to the Earth’s surface in near real-time and can run algorithms on a large
archive of georeferenced images.

As the wood biomass outside of forest land has not been precisely inventoried [11],
only limited information is usually available on the national level from surveys such as the
National Forest Inventory (NFI). There are several problems here: (i) deriving reliable data
at levels lower than the national level poses a problem because of the applied sampling rate;
(ii) due to cost, repeat surveys are carried out mostly at 10-year intervals; (iii) allometric
models that allow the prediction of AGB have not yet been developed for shrub species;
and (iv) studies on woody biomass are mainly related to economically important forest
trees species. Although there are models for successive trees with characteristic occurrence
on AAL (e.g., birch, aspen, pine, rowan, goat willow), these refer to trees growing in
continuous canopies. On AAL, these species occur mainly as solitaires. Without precise
information on the AAL area, structure, volume and increment, it is impossible to set up a
sustainable management system. Such a situation is unsatisfactory in terms of biodiversity
and landscape aesthetics as well.

Due to the extensive overgrowth of agricultural land [2], satellite RS is an effective way
of identifying and quantifying AGB on AAL. The relationship between the SAR backscatter
and the AGB shows that the reflection intensity increases with increasing biomass until it
reaches a saturation level. Due to issues with backscatter saturation of shorter wavelength
X- and C-bands [14], relatively longer wavelength SAR systems such as L- and P-bands
have been promoted for characterizing AGB in dense or intact forested landscapes for
many years [15,16]. A comparison of Sentinel-1 and PALSAR-2 data showed a Sentinel
C-band saturation at around 50 t·ha−1, while the L-band PALSAR-2 had a saturation point
around 150 t·ha−1 at VH polarization [17]. Similarly, it was concluded in [16] that current
space-borne sensors (radar and optical) are inadequate for accurately estimating AGB
beyond 100–150 t·ha−1.

Besides saturation, another problem is the variation in the radar backscatter, mainly
during freeze–thaw cycles accompanied by large variations in temporal coherence [18].
Most of the studies tried to solve the problem of radar signal saturation and temporal
data variation to achieve the highest accuracy in quantifying the amount of biomass
by integrating multi-frequency SAR data from different sensors [19], combining radar
and optical satellite or airborne data [20,21], using multi-temporal data [17,22] or using
new or improved algorithms for biomass retrieval. A review of SAR techniques and
methods showed several approaches using both parametric and nonparametric methods
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to estimate AGB, further grouped into data-driven and model-driven methods [16,20].
Biomass estimation remains challenging, especially in areas with complex shrub and tree
stand structures and diverse forests and environmental conditions [23].

The primary goal of this study was to propose, experimentally prove and validate the
concept of satellite-based AGB estimation on AAL in the Western Carpathian region.

Therefore, the first objective was to propose a method for AAL identification, with a
preference for using publicly available and free data. In the study, we verified a combination
of Sentinel-2 satellite images with data from the Land Parcel Identification System and the
National Cadastre.

The second objective was to derive an allometric model for shrub AGB estimation on
AAL. Due to the lack of such models, we carried out a precise quantification of shrub AGB
biomass on AAL sample plots in line with the recommendations for reducing uncertainty
in AGB enumeration [20].

From an RS point of view, the problem of nonlinearity and satellite signal saturation
with increasing AGB and the occurrence of complex structures formed by shrub and tree
formations can be eliminated by combining Sentinel-1 (C-band) and Sentinel-2 data. The
preference for Sentinel data follows from two assumptions: (i) their free availability creates
a condition for the operational deployment of the proposed concept of AGB estimation;
(ii) as the biomass on AAL is expected to be markedly lower than in forest stands, the
problem of saturation could be solved e.g., by the selection of suitable bands and period
of acquisition. Therefore, the third objective was to separately analyse Sentinel-1 and -2
data to find the optimal band combinations, testing the backscattered amplitude and the
interferometric coherence and their seasonal variation to determine the optimal period for
AGB retrieval on AAL.

The fourth objective was to verify whether AGB estimation could be improved by
integrating our individual results with promising partial conclusions from previous stud-
ies [17,21,22] which have not yet been tested in synergy. This meant creating and testing
integrated AGB regression models that combined radar and optical satellite data, multi-
temporal data, polarimetric coherence and backscatter. The decision to apply empirical
multiple regression models for AGB estimation came from their simplicity, comprehensibil-
ity and good performance, which are important for operational deployment. At present,
the application of advanced techniques for AGB estimation was particularly limited by an
insufficient amount of in situ data necessary for their use.

2. Materials and Methods
2.1. Study Area

The study area is situated in the Western Carpathians in central Slovakia in the geo-
morphological units of the Zvolenská kotlina basin and the Javorie Mountains (Figure 1a)
with centre coordinates of 48◦32′N, 19◦21′E. The region belongs to the European temperate
climate zone. The experimental territory area was 12,518 hectares and corresponded to
the boundaries of the Viglas forest management unit (FMU) (Figure 1b). Agricultural land
covers 8477 hectares, and forest land covers 3214 hectares. The altitude of the area ranges
from 320 to 944 metres a.s.l. The agricultural exploitation of the territory is described in
detail in our previous study [10].
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Figure 1. (a) Location of the Viglas study area in central Slovakia (black polygon); (b) localization of the field survey plots 
on abandoned agricultural land (blue circles) and the plots from forestry database (red circles) in study area. 
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The estimation of wood biomass on AAL was based on freely available data from 

satellite archives (Sentinel hub), the National Cadastre and the Land Parcel Identification 
System (LPIS). Data availability was essential for the operational deployment of the meth-
odology. Empirical modelling using Sentinel-1 radar backscatter and coherence and Sen-
tinel-2 DN values was applied to predict wood AGB on AAL. Airborne laser scanning and 
digital aerial images were used for sampling design and for precisely identifying and dis-
tinguishing the sampling plots. Figure 2 depicts a simplified flowchart of the concept. 

 
Figure 2. Flowchart of the spatial identification and estimation of AGB on AAL. LPIS, Land Parcel Identification System; 
ALS, airborne laser scanning; DAP, digital aerial photography. 

The study was based on a general definition of AAL: land devoid of any activities 
associated with agricultural production until it becomes overgrown by vegetation other 

Figure 1. (a) Location of the Viglas study area in central Slovakia (black polygon); (b) localization of the field survey plots
on abandoned agricultural land (blue circles) and the plots from forestry database (red circles) in study area.

2.2. Concept of Biomass Estimation on Abandoned Agricultural Land

The estimation of wood biomass on AAL was based on freely available data from
satellite archives (Sentinel hub), the National Cadastre and the Land Parcel Identifica-
tion System (LPIS). Data availability was essential for the operational deployment of the
methodology. Empirical modelling using Sentinel-1 radar backscatter and coherence and
Sentinel-2 DN values was applied to predict wood AGB on AAL. Airborne laser scanning
and digital aerial images were used for sampling design and for precisely identifying and
distinguishing the sampling plots. Figure 2 depicts a simplified flowchart of the concept.
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The study was based on a general definition of AAL: land devoid of any activities
associated with agricultural production until it becomes overgrown by vegetation other
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than agricultural crops [11]. For the purpose of selecting training plots within field surveys,
two basic AAL classes were identified according to the physiognomy of overgrowth by
various species of wood vegetation, and their height, density and clustering:

AAL1: Abandoned agricultural land overgrown by medium-sized vegetation (shrub
formations): originally agricultural land (arable land, meadows and pastures, vineyards
and orchards) fully overgrown by grasses and broad-leaved herbs and shrubs with canopy
closure of >20% and with a maximum height of 3 m.

AAL2: Abandoned agricultural land overgrown by tall vegetation (tree formations):
originally agricultural land (arable land, meadows and pastures) fully overgrown by
grasses and broad-leaved herbs and shrubs with a varied canopy closure and with >20%
tree canopies taller than 3 m.

2.3. AAL Identification

In spatially identifying AAL in the study area without distinguishing classes, we used
a straightforward approach based on a combination of available cadastral data, LPIS and
Sentinel-2 imagery.

The National Cadastre is a public land registry and information system containing,
inter alia, geometric determinations and data about the types of land parcels. Cadastral
parcels coded as arable land, permanent grassland (meadows and pastures) and orchards
in the GIS vector format from 2018 were used in the study.

The Land Parcel Identification System (LPIS) is an integrated administrative and
control information system based on photographs of agricultural parcels used to check
payments made under the EU Common Agricultural Policy (CAP). The LPIS contains a
vector layer of agricultural parcels and information about crop and land use, which are
used on farmers’ applications for subsidies. We assumed that such parcels represented
actively managed agricultural land. Data in the shapefile vector format from 2018 were
used in the study.

The LPIS vector boundaries of actively managed agricultural land (arable land, mead-
ows and pastures) and cadastral parcels registered as agricultural land (of the same type)
were overlaid to identify the land considered by LPIS as uncultivated. Those cadastral
parcels that fell outside the LPIS blocks were considered as potentially abandoned agri-
cultural land. Then we filtered out pixels under snow cover using Sentinel-2 imagery
from the winter season; i.e., we masked arable land, meadows and pastures. Thus the
remaining areas represented real abandoned agricultural land with woody vegetation.
For accurate assessments, we compared the classifications with a reference dataset on 127
points randomly selected in areas identified as potentially AAL. As a reference dataset, we
used airborne CIR images.

2.4. Field Survey

Field data on AAL were collected during field surveys in the study area in 2018 and
2019. In all, 56 plots ranging in their biomass from 4 to 350 t·ha−1 were selected on AAL to
represent the height range and heterogeneity of shrub and shrub–tree formations. Square
plots were established with sides varying from 10 to 30 m according to the shrub–tree stand
density. There were 30 pure shrub plots, 10 mixed plots with shrubs and trees and 16 pure
tree plots. To ensure a more even representation of the plots in the whole range of AGB,
the database was extended by tree plots from a stand-wise forest inventory (available from
the National Forestry Database). A total of 21 plots were selected by random sampling,
ranging in their biomass from 100 to 350 t·ha−1. The size varied from 1.02 to 21.6 hectares,
with a mean of 4.58 hectares (see Table 1). In total, the reference database was comprised of
77 plots (Figure 1b). In the first group, 56 shrub–tree plots were predominantly covered by
blackthorn (Prunus spinosa L.) and dog rose (Rosa canina L.). In the second group, 21 tree
plots were predominantly covered by broad-leaved species such as European beech (Fagus
sylvatica L.) and European hornbeam (Carpinus betulus L.). Other tree species, such as black
locust (Robinia pseudoacacia L.), small-leaved lime (Tilia cordata Mill.), sessile oak (Quercus
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petraea, Matt.), field maple (Acer campestre, L.), European ash (Fraxinus excelsior, L.), Norway
spruce (Picea abies L.) and wild cherry (Prunus avium L.) occurred individually or in small
groups in some of the plots in both groups.

Table 1. Reference database: descriptive statistics of ground plots.

AGB

Number of
Plot

Mean Size
(ha)

Mean
(t·ha−1)

Min–Max
(t·ha−1)

Percentiles
25–75% (t·ha−1)

All plots 77 1.36 117.5 4.4–336.6 26–210

Shrub-tree plots on AAL 56 0.16 76.9 4.4–336.6 22–99

Tree plots on FL 21 4.58 225.5 110.3–328.9 166–281
AAL, abandoned agriculture land; FL, forest land.

2.4.1. Shrub Biomass Estimation

As regional biomass tables are not available for shrub vegetation, the allometric model
for calculating the dry matter of the above-ground biomass of shrubs was derived based
on the empirical material obtained from blackthorn stands in the study area, which made
up about 90% of all the bushes.

All the above-ground shrub biomass was cut out from 20 pure shrub plots and weighed
on a sub-area of 2 × 2 m (Figure 3a). The mean height was calculated from five heights
measured in the corners and middle of each 2 × 2 m sub-area. The fresh weight of the
removed biomass was determined using a hanging scale. The sub-samples were then dried
to a constant weight in an oven at 105 ◦C, and the dry matter content of the wet samples
was determined. An allometric model was derived for the calculation of AGB of blackthorn
(Prunus spinosa L.), which was the most abundant shrubby species in the model areas. This
model was used to calculate the biomass of other, less represented shrub species.

The model was based on one independent variable (mean height) and was expressed
as the dry matter of the above-ground biomass per 1 m2 at full canopy. The following
allometric equation was used to calculate the biomass:

mAGB = b0hb1 (1)

where m is the weight of AGB in kilograms per m2, h is mean height in metres, and b0 and
b1 are regression coefficients.

Biomass (mAGB-SC in kg) over known areas (S in m2) and canopy closure (C in %) was
calculated as:

mAGB−SC = b0hb1·S· C
100

(2)

Canopy closure on all the AAL plots was estimated with rounding to 5%. The model
accuracy of 23.9% (Table 2) is slightly lower than in similar models, where it is around
10–20% [24].

Table 2. Allometric model for quantifying above-ground woody biomass of shrubs on abandoned
agricultural land.

Vegetation Formation Model n R2 RMSE (%) p-Value

Shrubs (blackthorn) mAGB = 1.2417 × h1.45361 20 0.81 23.9 <0.001

2.4.2. Tree Biomass Estimation

Tree biomass was quantified by 3 procedures related to (1) mature trees, (2) stumps
and (3) young trees:

1. Mature tree volume was determined according to Czech–Slovak volume tables [25].
This empirical material includes 18,087 sample trees from areas across Slovakia and
Czechia. The model predictors are tree height and diameter at breast height (DBH) for
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selected tree species. The volume tables contain volume equations for 11 economically
important tree species and 4 volume units (stem, over 7 cm thick, over 3 cm thick,
whole tree) with or without bark. We used the volume of the whole tree with the bark
(m3). This unit represents the volume without the stump.

2. Stump volume was calculated according to [26] using the following formulas, for
broadleaf and coniferous trees, respectively:

Vp = 0.465337× (1.0376× h−0.0274
p ·d1.3)

2.094175·h1.060645
p (3)

Vp = 0.724703× (1.0376× h−0.0274
p ·d1.3)

2.014485·h1.026424
p (4)

where Vp is the stump volume (m3 with the bark), d1.3 is the breast diameter (cm), and
hp is the stump height (m), and a default value of 0.3 m was used in the calculations.

3. The biomass models for young trees up to 10 m were taken from [27]. The models
calculate the dry above-ground biomass of individual trees based on tree height and
thickness at the base of the trunk for 11 tree species.

The growing stock volume (GSV in m3) of mature trees on the plot was determined
by adding up the volume of all the individual trees and stumps. Dividing the GSV by the
plot area, we obtained the GSV per unit area (m3·ha−1). When determining the dry AGB in
t·ha−1, we made a conversion based on the specific weight (bulk density) taken from [28].

In the case of young trees, we summed the AGB of all individual trees and divided
the result with the plot area to calculate the AGB per unit area in t·ha−1.

In the case of the co-occurrence of shrubs and young or mature trees, the total AGB on
the plot in t·ha−1 was calculated as the sum of their AGB on the plot per hectare. Note that
assimilatory organs were not included in the calculations.

2.4.3. Shrub-Tree Ground Plots Extension

The derivation of statistical characteristics for 56 square shrub-tree plots 100 to 900 m2

in size could be negatively influenced by speckle noise, mainly in the radar data. Therefore,
a further step involved preparing a vector layer from the field survey data on all AAL plots.
This included (i) defining the homogeneous areas around the plots and (ii) assigning the
database of measured data (AGB and woody composition) to the vector layers:

1. The homogeneous areas around the plots were derived using aerial images (Figure 3b)
and a normalised digital surface model (nDSM) layer (Figure 3c). Around each plot,
an area with homogeneous vegetation cover was designed by a human operator with
experience in GIS and remote sensing. The size of the identified homogeneous areas
varied from 0.05 to 0.52 hectare, with a mean of 0.16 hectare (see Table 1).

2. Measured and calculated data on AGB per hectare of each plot were stored in the
database and joined to the field plot vector layer created in step 1. The result was a
spatially georeferenced vector layer with attributes of the AGB and the woody species
composition, which enabled the next step to be performed: the extraction of the plot’s
statistical characteristics from the satellite data using zonal statistics.

2.5. Satellite Data

Satellite data from Sentinel-1 and Sentinel-2 mission acquired from the Copernicus
Open Access Hub were utilized in this study (Table 3).
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Table 3. Sentinel-1 and Sentinel-2 data and derived products used in the study.

Sensor/Product Bands/Predictors Remark

Sentinel-1/Level-1 SLC VV, VH
60 images from ascending pass (track 175) and
60 images from descending pass (track 51):
1 September 2017 to 30 September 2018

Sentinel-1/
stack average

γ◦VH
γ◦VV

Whole sample for ascending and descending pass:
1 September 2017 to 30 September 2018

Stratum 1: Leaf-on period, 1 September to 13 October
2017 and 21 April to 30 September 2018

Stratum 2: Leaf-off period with snow cover,
6 December 2017 to 22 March 2018

Stratum 3: Leaf-off period without snow cover,
17 October to 30 November 2017 and 30 March to
17 April 2018

Sentinel-1/coherence CohVH
CohVV

26 coherence image pairs in 6-day steps based on a
combination of S1A and S1B acquisitions

Sentinel-2/S2A B4, B5,
B8, B11

4 images: Leaf-off season with snow, 28 January 2017;
leaf-off season without snow, 29 March 2017; top of
vegetation season, 22 June 2016; end of vegetation
season, 30 September 2018
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September 2017. The data were co-registered to master images selected at the beginning of
the vegetation period on 3 April 2018 (DSC pass) and 17 April 2018 (ASC pass). TOPSAR-
split was applied to reduce the bursts for selected the AOI. Then precise orbit files were
applied, followed by calibration for beta-zero (β◦) creation as prime backscatter information.
For relative co-registration to one selected master the back-geocoding approach was used,
with a Shuttle Radar Topography Mission (SRTM) 1 arc-second digital elevation model
(DEM) and bisinc 5-point interpolation. The next step was to create two stacks of images for
ascending and descending passes and averaged products for polarization VV and VH. The
last steps involved performing earth and terrain correction using the SRTM 1 arc-second
DEM, speckle filtering using a refined Lee filter, and creating gamma-zero (γ◦) using band
mathematics (γ◦ = β◦/tanθ, where β◦ is the radar backscattering coefficient and tanθ is the
projected local incidence angle).

The pre-processed database was divided into 3 groups (leaf-on period and leaf-off
periods with and without snow cover) to examine the influence of the seasonal variability
of the radar backscatter on the accuracy of biomass estimation (Table 3). Interferometric
coherence (ρ) was estimated from co-registered complex images using a window size of 10
in range and 3 in azimuth direction.
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Sentinel-2 satellite data (processing Level-2A, bottom of atmospheric reflectance) were
acquired from 4 periods (Table 3), representing the peak vegetation season, the leaf-off
vegetation season with snow, the leaf-off vegetation season without snow and the autumn
season. Bands from the red, near and short-wavelength infrared spectra were included
in the analysis: B4 (664.6 nm), B5 (704.1 nm), B8 (832.8 nm) and B11 (1613.7 nm of central
wavelength), with a 10 and 20 m resolution for all 4 periods. The digital number (DN)
values, which represent reflectance multiplied by 10,000, were analysed.

All products were transformed into the WGS1984 UTM Zone 34N cartographic refer-
ence system with a final pixel resolution of 10 × 10 m.

2.6. Statistical Models for AGB Estimation

The mean of the topographically corrected backscatter γ◦, the mean of coherence ρ

(Sentinel-1 HV, VV) and the mean of DN (Sentinel-2 bands 4, 5, 8, 11) were extracted for
individual plots, including the homogeneous areas defined around the plots. GIS zonal
statistics were used for the mean calculation. Thus, modelling was based on per-object
information. Derived prediction models were applied at the pixel level, i.e., the AGB
was estimated for each pixel. We used this approach because, unlike forest stands, wood
biomass on AAL is not mapped and therefore, there are no spatial units to which the
derived model could be applied.

We defined 3 statistical models—MR1, MR2 and MPW—to link the AGB with the
satellite observables. MR1 represents a multiple linear regression model where stepwise
backward regression was applied to find an optimal band combination to estimate the
AGB:

yi = β0 + β1x1i + β2x2i + β3x3i + . . . + βnxni + εi (5)

The MR2 model is an extension of MR1 that includes additional terms. It is expected
that by including them in the AGB model, the model performance will increase. We tested
additional terms that account for the interaction between any two predictor variables i.e.,
one variable divided or multiplied by another. Using R2 we selected terms that were most
beneficial to the model’s explanatory power.

The third model expresses the dependence between the AGB and the predictor vari-
ables using a multiple power function (MPW) of the form:

yi = β0·x
β1
1i ·x

β2
2i ·x

β3
3i · . . . ·xβn

ni ·θ (6)

where yi is the AGB to be predicted for plot i, x1i–xni are independent variables (γ0, ρ or
DN plot mean), β1–βn are coefficients of the model, εi is the model’s error term (residuals),
and θ is the multiplicative error.

Logarithmic transformation of the power Equation (6) was used to remove het-
eroscedasticity and achieve a normal residue distribution. The relationship has the follow-
ing form:

ln yi = β0 + β1 ln x1i + β2 ln x2i + β3 ln x3i + . . . + βn ln xni + εi (7)

The logarithmic transformation caused a bias. This was corrected by the correction
factor λ using the method introduced in [29] and applied in our previous study [27]. As
a result of interpretation of the linearized model, the original scale (t·ha−1) requires the
retransformation of Equation (7):

yi = e(β0+β1 ln x1i+β2 ln x2i+β3 ln x3i+...+βn ln xni)λ (8)

The regression function, the Pearson correlation, the coefficient of determination (R2)
and the F-test of statistical significance of the regression models (p-value) were calculated to
assess the strength of the relationship between the AGB and the predictor variables. These
were included in the model if they were statistically significant at p < 0.05. The best model
among the regression methods (MR1, MR2, MPW) was selected based on the adjusted R2.
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2.7. Validation of AGB Estimation

The models’ accuracy was assessed using a bootstrap method with 500 repetitions [30].
Measures of the models’ accuracy were obtained using the coefficient of determination (R2),
the root mean square error (RMSE) and the bias. The obtained performance parameters
were subsequently averaged over the 500 bootstrap iterations. The averaged RMSE and
the bias were then divided by the mean AGB value and multiplied by 100 to create RMSE%
and bias%.

In a detailed analysis of the models, we applied the approach used by the authors
in [16]: a set of reference AGB values, B(i)

re f , and their estimates, B(i)
est, where the reference are

restricted to a given range B1 ≤ B(i)
re f < B2 (0–100, 100–200 and 200–350 t·ha−1). For each

range, we calculated bias b as the average value of the error B(i)
est − B(i)

re f and the standard

deviation of the error σ. The RMSE in the specified range is given by
√

σ2 + b2, and the
relative RMSE as RMSE/ Bre f × 100. The coefficient of variation (CV) of the error is given
as σ/b. When CV exceeds 1, RMSE is dominated by a random error; when it is less than 1,
the bias is the dominant error source in the estimator.

All relationships were investigated for the backscatter coefficient, coherence, and
DN value as independent variables (predictors) and the AGB as a dependent variable
(estimates). All the empirical models were evaluated based on the combination of strength,
direction and significance, yielding a categorization of the model’s accuracy in 6 categories
ranging from highly to marginally significant, with positive and negative slopes of the
regression line (see the explanation below the Table 4).

Table 4. Correlation coefficient between AGB and S1 γ◦ radar backscatter in descending order.

S1 γ◦VH r S1 γ◦VV r

leaf-off (des, s3) 0.79 +++ leaf-off (des, s3) 0.77 +++

leaf-off (asc_des, s3) 0.77 +++ leaf-off (asc_des, s3) 0.77 +++

leaf-off-snow (des, s2) 0.76 +++ leaf-off-snow (des, s2) 0.75 +++

leaf-off-snow (asc_des, s2) 0.72 +++ leaf-off-snow (asc_dec, s2) 0.73 +++

leaf-off (asc, s3) 0.64 +++ leaf-on (des, s1) 0.66 +++

leaf-on (des, s1) 0.57 +++ leaf-on (asc, s1) 0.60 +++

leaf-off-snow (asc, s2) 0.57 +++ leaf-off (asc, s3) 0.60 +++

leaf-on (asc, s1) 0.56 +++ leaf-off-snow (asc, s2) 0.54 +++

whole sample 0.57 +++ 0.66 +++

asc, ascending mode; des, descending mode; asc_des, average of ascending and descending images. s1: stratum 1,
leaf-on period; s2: stratum 2, leaf-off period with snow; s3: stratum 3, leaf-off period without snow. +++ highly
significantly positive (p < 0.001).

3. Results
3.1. Predictor Variable Pre-Selection

The relationships between the AGB and the evaluated predictor variables, expressed
by the Pearson correlation coefficient values, are shown in Tables 4 and 5 and Figure 4. The
predictor variables are clustered into three groups: Sentinel-1 radar backscatter, Sentinel-1
coherence data and Sentinel-2 DN.

In the Sentinel-1 radar backscatter, the averages from the multi-temporal images were
calculated for each stratum to reduce the speckle in the single images and to investigate
the impact of the backscatter variation on the AGB estimation. The average γ◦VH and
γ◦VV from a leaf-off period without snow cover were found to have the highest correlation
with the AGB (rVH = 0.79 and rVV = 0.77). Although we achieved the highest correlation
between the AGB and γ◦ at the descending passes, we included in the prediction model
a variable calculated as the average of the ascending and descending passes. Averaging
images from both tracks reduces the problems of artefacts caused by foreshortening and
shadowing. It is worth noting that γ◦ correlated with the AGB better than β◦ (beta-zero).
Therefore, the γ◦ backscatter (VH or VV) was used to create the predictive models.
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Coherence data are the second group of variables significantly correlated with the
AGB. The correlation coefficients between the AGB and the coherence are negative, as the
coherence decreases a with higher AGB. Figure 4 depicts the time series of the correlation
coefficients between the AGB and VV and VH coherence during the year. The figure reveals
that although both channels show a very similar evolution, the correlation coefficients
between the AGB and the VV channels are higher than with the VH channels in most cases.
According to [31], the response from the vegetated areas in the cross-polar channel at the
C-band is expected to be more dependent on the vegetation layer than on the ground. As a
consequence, VH polarization is more influenced by temporal decorrelation than VV. It
was impossible to determine unequivocally the period when the relationship between AGB
and coherence would be stable and significantly higher than in another period. However,
the group with the highest correlations could be observed in the leaf-off period with snow
cover (DOY 40 to 92), with the highest rVV = −0.68 and rHV = −0.64. Based on these
findings, two prediction variables (CohVV_avg and CohVH_avg) were derived for the AGB
estimation by averaging the seven coherence pairs with the highest correlations from DOY
40 to 92. The correlation coefficient of the average coherence (rVV = −0.77 and rHV = −0.72)
was higher than from the single pairs, and the average coherence was less affected by
coherent noise. This confirms the importance of averaging coherent pairs.
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Figure 4. Correlation coefficients between AGB and the coherence of VH (circle) and VV (square)
polarisation during the year. DOY, day of year. The coherence pair temporal baseline is 6 days
combining S-1A and S-1B images. Red indicates the images used for the derivation of the average
products. Correlations stronger than −0.22 (−0.30) are significant at the 0.05 (0.01) level.

In the case of the third group, Sentinel-2 DN values, the highest correlations with
the AGB were observed for band B5 vegetation red edge (rB5 = −0.85) and band B4 red
(rB4 = −0.76) from the top of the vegetation season (22 June 2017). In general, the red
bands (B4 and B5) correlate higher than bands B8, near infrared (NIR), and B11, short-wave
infrared (SWIR). For the analysed Sentinel-2 spectral bands, the relationship between the
AGB and the DN values was negative. The exception is one significant positive case of B8
from the autumn season (Table 5).
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Table 5. Correlation coefficients between AGB and Sentinel-2 bands from 4 periods in descending
order.

28 January 2017 29 March 2017 22 June 2016 30 September 2018

Band r Band r Band r Band r

B5 −0.65 *** B4 −0.65 *** B5 −0.85 *** B4 −0.74 ***
B4 −0.64 *** B11 −0.65 *** B4 −0.76 *** B5 −0.63 ***
B8 −0.57 *** B5 −0.62 *** B11 −0.47 *** B11 −0.56 ***
B11 0.07◦ B8 −0.49 *** B8 0.01◦ B8 0.44 +++

+++ highly significantly positive (p < 0.001); *** highly significantly negative (p < 0.001); ◦ not significant.

Considering the most correlated variables and removing the highly correlated predic-
tors leads to a reduction in the number of models for evaluation. According to this rule, the
variables correlating the highest with the AGB were selected from each predictor group.
In total, five variables were included for further analysis: B522vi (B5 band from 22 June
2016), γ◦VH_leaf-off and γ◦VV_leaf-off (average from ascending and descending images) and
CohVH_avg and CohVV_avg (average of the seven highest correlations).

3.2. Performance of AGB Predictive Models

The MR1 and MPW models were created with the five predictor variables. The MR2
model is an extension of MR1 by including two additional terms, CohVH_avg *× B522v
and γ◦VV_leaf-off/B522vi, as a common function of the predictive variables (Table 6). Their
selection was based on the highest R2 from all possible interactions derived by multiplying
or dividing two predictive variables.

Table 6. Significance of the coefficient (predictors) in AGB models.

Model B522vi γ◦VH_leaf-off γ◦VV_leaf-off CohVH_avg CohVV_avg CohVH_avg × B522vi γ◦VV_leaf-off/B522vi

MR1 ** n.s. +++ ** n.s. n.a. n.a.
MPW *** +++ n.s. n.s. (*) n.a. n.a.
MR2 *** n.s. n.s. *** n.s. +++ +++

n.a., not applicable, and this predictor was not used in the respective model; n.s., not significant; * varies around
significance level α = 0.05 during 500 bootstrap repetitions. +++ highly significantly positive (p < 0.001); *** highly
significantly negative (p < 0.001); ** significantly negative (p < 0.01); * marginally significantly negative (p < 0.05).

The results (Figure 5) show that the MR1 predictive model estimated the AGB on AAL
with the lowest accuracy (R2 = 0.78 and RMSE 48.6 t·ha−1). We tried to improve the perfor-
mance of the MPW model by using the power Equation (6). Detected heteroscedasticity
was eliminated by applying a logarithmic transformation to reach the residues’ normal
distribution (Equation (7)). To interpret the results, a back-transformation was performed
(Equation (8)) with the coefficient of determination R2 = 0.80 and RMSE 46.4 t·ha−1. Bands
B5 and γ◦VH were found to be the most effective in estimating the AGB. The coherence
VV polarisation channel contributed at a borderline 0.05 significance level. Other bands
were not significant. This leaves open options for finding other explanatory variables and
further improving the MPW model.

The most robust model (MR2), combining Sentinel-1 and Sentinel-2 bands, was derived
from the predictive variables B522vi and CohVH_avg and two additional terms, CohVH_avg ×
B522vi and γ◦VV_leaf-off/B522vi. The accuracy statistics reached RMSE = 41.2 t·ha−1 (R2 = 0.84).
Although CohVH_avg was slightly more weakly correlated with AGB than CohVV_avg, its
influence in the predictive MR2 model was more significant. The presence of significant
interactions indicates that the effect of one predictor variable on the response variable
is different at different values of the other predictor variable. The effect is evident by
the higher performance of the model and the lower RMSE reached by reducing the bias
(Figures 5 and 6, Table 7).
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Figure 5. Reference versus predicted AGB for different regression models: (a) MR1, (b) MPW and (c) MR2. Predicted values
were calculated using regression coefficients averaged from 500 bootstrap runs.

The correlation coefficients of the predictive models (MR1: r = 0.88; MPW: r = 0.90; MR2:
r = 0.92) based on a combination of the Sentinel-2 band B522vi, the average γ◦_backscatter
from leaf-off without snow and the coherence from the leaf-off period from Sentinel-1
showed an improvement in the AGB estimates compared to the single predictive variables
(Tables 4 and 5, Figure 4). B5 and coherence (VH or VV polarisation) were significant in all
three models. The γ◦ backscatter and the VH or VV polarisation significantly improved the
AGB estimation in models MR1 and MPW. We consider that the term γ◦VV_leaf-off/B522vi
better explains the relation to AGB than γ◦VV_leaf-off, therefore the last one was not sig-
nificant in the MR2 model. Further improvement in MR2 was reached by including the
interaction term CohVH_avg × B522vi.

Dividing the reference AGB into three categories allows us to better understand and
compare the performances of the MR1, MPW and MR2 models. The selected ranges ap-
proximately correspond with the AGB of shrubs (4–100 t·ha−1), shrub–tree formations
(100–200 t·ha−1) and tree formations (200–350 t·ha−1) and reflect the need to have a suffi-
cient amount of reference data within each range. The assessment was based on quantifying
the root mean square error (RMSE), bias and standard deviation of the error within each
range (Figure 6, Table 7)
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Figure 6. Comparison of the observed and predicted AGB averages per 3 reference AGB ranges for 3 models: (a) MR1, (b)
MPW and (c) MR2. Error bars indicate a random error (σ = SE) of the predicted AGB per reference AGB range. The dotted
line indicates a fitting curve to calculated points (3rd order polynomial), and the dashed line corresponds to y = x line. If
error bars do not overlap y = x line, bias is the dominant error in that AGB range.

The accuracy analysis reveals several commonalities in the predictive models (Table 7).
The distribution of the RMSE, the RMSE%, the bias and the coefficient of variation (CV)
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of the error across the reference AGB range is common to all three models. The models
overestimate the AGB under ~200 t·ha−1 and underestimate above this level. The most con-
siderable overestimation bias occurs in the AGB middle range between 100 and 200 t·ha−1

(Figure 6). This is not typical for a regression-based approach, where the regression curve
passes through the point defined by the mean value of the reference and estimated data [16].
One explanation for this could be the distribution of the AGB in the sample plots with a
lower representation in the range 100–200 t·ha−1. In all models, the RMSE (in absolute
units t·ha−1) rises with a higher AGB. Relative RMSE and CV are the opposite, sharply
decreasing with a higher AGB (Table 7).

However, there are remarkable differences in the balance between bias and random
error in the RMSE. The bias error dominates in MR1 in the middle and highest range, while
the random error dominates in the lowest AGB range. For the MPW and MR2 models,
the random error is the dominant error source for all the ranges of AGB. It is also evident
that the random error (SE) does not vary greatly across the different AGB ranges for all the
models (Table 7, Figure 6).

Table 7. Accuracy of the models in terms of the averaged metrics from 500 bootstrap repetition
stratified by the reference AGB range: sample size (N), root mean square error (RMSE), relative
RMSE (RMSE%), bias, mean absolute deviation (MAD), standard deviation of the error (σ = SE) and
coefficient of variation (CV) of the error (when CV > 1, random error dominates; when CV < 1, bias
dominates).

Model
Reference

AGB
(t·ha−1)

N RMSE
(t·ha−1) RMSE%

BIAS
(t·ha−1)
(MAD)

SE
(t·ha−1) CV

MR1

0–100 42 40.0 121.2 8.2 39.2 4.8
100–200 15 53.2 34.9 43.0 31.2 0.7
200–350 20 61.1 22.8 −49.4 36.0 0.7
Overall 77 48.6 41.4 0 (42.4) 48.6 -

MPW

0–100 42 29.3 88.8 7.7 28.3 3.7
100–200 15 55.1 36.2 37.5 40.4 1.1
200–350 20 64.9 24.2 −44.3 47.4 1.1
Overall 77 46.4 39.5 0 (32.9) 46.4 -

MR2

0–100 42 23.7 70.5 5.1 22.7 4.5
100–200 15 56.4 37.0 31.6 46.7 1.5
200–350 20 55.0 20.5 −34.3 42.9 1.3
Overall 77 41.2 35.1 0.3 (32.3) 41.2 -

3.3. AGB Estimation on AAL in the Study Area

AAL was identified according to the methodology described in Section 2.3. The overall
accuracy of the AAL map was verified on 127 randomly selected points and reached 89.8%,
which confirms the potential for the operational deployment of the proposed method of
AAL identification. In addition to 3214 hectares of forest land listed in the National Forestry
Database [32] for the Viglas forest management units, we identified 992 hectares of shrub
and tree formation on AAL. The total area covered by woody biomass is then 4206 hectares.
Thus the proportion of AAL covered by woody biomass is 23.6% in the study area.

The AGB was estimated using the MR2 model for each pixel identified as AAL. The
estimated AGB was divided into individual categories to clearly show its distribution
on AAL. In determining the nine categories, we used the total range of AGB from 4 to
350 t·ha−1 and established a simple interpretation of the legend, which we achieved by
defining the step of 50 t·ha−1. The MR2 results of AGB estimation grouped into nine classes
are presented in Table 8 and Figure 7.
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Table 8. Biomass estimation in Viglas according to MR2 model.

Class Area AGB

t·ha−1 ha % Tonne (t) %

<0 47 5 0 0
0–50 194 20 4858 4

50–100 221 22 16,590 14
100–150 183 18 22,913 19
150–200 145 15 25,410 21
200–250 104 10 23,352 19
250–300 60 6 16,401 13
300–350 26 3 8479 7

350+ 12 1 4343 3

992 100 122,346 100

Applying the MR2 model, parameterized for the range 4–350 t·ha−1, the above-ground
biomass on AAL was ~122,000 tons. The estimated AGB on forest land is ~750,000 tons
according to the National Forestry Database for the Viglas FMU [32]. Total wood AGB is
then ~872,000 tons in the whole area of the Viglas FMU. Thus the proportion of AGB on
AAL is 14.0%, significantly less than the area proportion (23.6%). This indicates a lower
mean AGB on AAL than on forest land. Indeed, the average AGB on AAL is 123 t·ha−1,
and on managed forest land it is 233 t·ha−1. The obtained results for wood AGB on AAL
according to the area of individual classes show an uneven representation (Table 8). The
first three classes, with biomass from 0 to 150 t·ha−1, represent up to 60% of the area. The
occurrence of classes with AGB above 250 t·ha−1 is only 10%. The predominance of low
AGB classes indicates the dominance of shrub formations on AAL.

Abandoned agriculture land (AAL), agricultural land (AL) and their share according
to altitude and altitudinal classes are depicted in Table 9. The three altitudinal classes were
defined according to prevailing agricultural use associated with the slope of the terrain.
The first altitudinal class (320–400 m a.s.l.) represents floodplains and slightly undulating
hilly lands with compact urban and rural settlements and large-block arable land used
for the production of feed cereals, potatoes and fodder. The third class (600–944 m a.s.l.)
represents broken-up and inclined upland, traditionally exploited for agricultural in small
plots of arable land, meadows, pastures and orchards, especially around the dispersed
settlements. The second class (400–600 m a.s.l.) is a transition zone between the first
and third class, with large-block arable land at lower altitude and extensive grasslands
exploited for cattle and sheep breeding, and small plots of arable land at higher altitude.

Table 9. Occurrence of abandoned agricultural land (AAL) and agricultural land (AL) and AAL
proportion on AL according to altitude.

320–400 m 400–600 m 600–944 m Overall

Total area of agricultural
land (ha) 2894 4587 996 8477

Area of abandoned agricultural
land (ha) 162 554 276 992

Share of AAL from AL (%) 5.6 12.1 27.7 11.7

The spatial distribution of woody vegetation on AAL is uneven. The share of AAL
increases with altitude and the distance from the populated part of the valley in the territory
from 5.6 to 27.7% (Table 9). The abandonment process is evident in the second and third
altitudinal classes (Figure 7).
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4. Discussion
4.1. Remarks on the Proposed Approach of AGB Identification and Enumeration on AAL

The study’s main goal was to propose and validate the concept of the satellite-based
estimation of wood biomass on AAL. We designed the concept so that it could be practically
implemented at the lowest possible cost. Therefore, when quantifying the biomass, we
focused on the freely available Sentinel-1 and Sentinel-2 satellite data sources.

In identifying AAL, we used a combination of available cadastral data, LPIS and
Sentinel-2 imagery. Although it is a practical and straightforward approach combining
land use and land cover data, it is not used in national or large-scale AAL identification.
The advantage of our approach is that, by combining layers, it eliminates the shortcomings
of individual approaches. With the independent use of the LPIS layer, usually derived
from aerial orthophotos, distinguishing small heterogeneous areas within land parcels is a
problem due to the time-consuming task of interpreting images. The cadastre’s legal status
makes it possible to separate the wood vegetation growing on forest land and in urban
areas, but it does not capture the actual land cover on agricultural land. By overlapping the
plots outside the LPIS and cadastral data, we created a layer of potential AAL. Although
verified only in the study area, it is expected that the proposed identification of potential
AAL could be applied on the country level, and minimally on the European level, where
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LPIS and cadastral data are available in a similar data structures. Specific to our approach,
in the last step, we filtered out pixels under snow cover using Sentinel-2 imagery. In this
way, we were able to mask arable land, meadow and pasture: thus, the remaining area
represents real AAL with woody vegetation. It should be noted that the method must be
modified in regions without snow cover.

Most of the earlier AGB studies suffered from difficulties related to the collection
field data, resulting in inconsistencies between the field measurements and the AGB
estimations [20]. A source of uncertainty is DBH and height values entering into allometric
equations or not having a suitable allometric model for calculating the AGB [33]. Therefore,
the essential prerequisite for AGB estimation modelling in our study was to prepare the
high-quality reference data. We found from the field survey that wood vegetation on
AAL creates heterogeneous structures formed by shrub, shrub–tree and tree formations.
This heterogeneity required the use of specific AGB models for shrubs, young and mature
stands and stumps. The volumes of mature trees, young trees and stumps were derived
according to models parametrized for the Western Carpathian region [25–27]. Such models
are missing or insufficiently documented for shrub vegetation [11]. For that reason, we
derived the model from field measurements based on the mean height of Prunus spinosa
as the dominant shrub species in the area of interest (Equation (1)). It could be argued
that this allometric model will not work for other shrubby species. This may be critical if
applying the model in areas where blackthorn is not the most represented bush species.
We are aware of this critical limit, but this represents the first survey of shrub biomass
quantification in Slovakia. There is no other way than to specify the AGB models for other
shrub species gradually.

4.2. Procedures for Improving AGB Estimation

The remote sensing of AGB (using either reflectance or radar backscatter) is sub-
ject to decreasing sensitivity to AGB as the biomass increases. Besides saturation, other
problems are speckle noise in the radar data and the heteroscedasticity of data, which
mainly occurs when applying the AGB estimation power model. One study objective
was to decrease the influence of the mentioned negative effects on the accuracy of AGB
estimation. The added value of our research was testing and combining existing individ-
ual approaches [16–22,34–44], finding an optimal image processing method and selecting
bands using multiple-linear and non-linear regression. The particular results are discussed
below in three groups of predictive variables: radar backscatter, coherence and DN.

Sentinel-1 radar backscatter: Averaging and filtering the temporal intensity data is a
simple yet effective approach to reducing speckle and temporal variations, as applied in
other studies [34]. The seasonal variation of the relationship between the AGB and the
radar backscatter was also shown in [35]. The authors calculated the correlation coefficients
for 10 stacked and averaged images from 3-month periods in the range of 0.2 to 0.7. This
indicates the importance of choosing an appropriate period for more precise determination
of the AGB. In our approach, the database of 60 images was divided into three strata,
corresponding to a leaf-off period with and without snow cover and a leaf-on period. The
impact of multi-temporal image stack averaging and speckle filtering by the strata was
demonstrated through Pearson’s correlation coefficient between the γ◦ radar backscatter
and the AGB field values. The coefficient varied from 0.54 to 0.79. A comparison between
the best-correlated strata and the whole sample revealed a positive effect of stratification.
This was higher for VH polarisation, where the difference in the correlations was significant
(p < 0.01) than for VV (p = 0.08). Further, we confirmed a higher correlation between γ◦

and AGB in the leaf-off than the leaf-on period. The difference between leaf-off with and
without snow cover was minimal and not statistically significant (Table 4).

Unexpectedly, γ◦ and AGB correlations from the descending pass were higher than
from the ascending pass (Table 5). We did not find a reason for this difference in our study
or a reference to explain it.
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A comparison of the correlation coefficients between the VH and VV polarisations
did not reveal significant differences in general (Table 4). However, as stated in the previ-
ous paragraph, there were significant differences between the VH and (VV) polarisation
variables themselves. Higher correlations were found out in the leaf-off period. This is
in line with research completed by the authors in [35] related to VV polarization in the
autumn–winter season. The opposite was found for VH, as our study showed the strongest,
and the authors in [35] showed the weakest correlations in leaf-off periods. A possible
explanation for the difference could be the AGB range from 100 to 400 t·ha−1. In our
case, shrubby wood vegetation up to 100 t·ha−1 was also included. This suggests that the
structure of the analysed stands may condition the variable selection for the AGB model.

As a predictor variable in biomass models, we used the arithmetic mean of γ◦ from
averaged ascending–descending tracks, as they mostly eliminate the shadowing and
foreshortening problem. Thus, areas of data distortion did not have to be masked out in
our study.

Compared to other studies based on multi-temporal approaches to determining forest
AGB with C-band, our findings indicate a closer relationship between γ◦ and AGB, with
R2 = 0.59 vs. 0.25 achieved from Sentinel-1 in [17]. Laurin [35] noted a max R2 of ~0.49. A
higher AGB accuracy (R2 = 0.73) was achieved [36] through multi-date weighted averaging
using C-band Envisat ASAR in tropical forests. The integration of our results from radar-
backscatter analyses confirmed the assumption stated in objective three, that the averaged
and filtered backscatter intensity from the properly selected period (leaf-off without snow
cover) could improve the AGB estimation in the conditions of deciduous shrub stands in
the Western Carpathians.

Interferometric coherence: Coherence images significantly correlate with the AGB. Ac-
cording to [22,36], a higher level of coherence is associated with winter observations and
a lower level with summer/autumn observations. Our analyses revealed coherence vari-
ations during the entire year (Figure 4). A cluster of higher correlations was observed
in the leaf-off period with snow cover (DOY 40–92), with the highest rVV = −0.68 and
rHV = −0.64. Thus, our results confirm the seasonal behaviour of coherence reported
in [22,36]. A possible elucidation of the variation in coherence between DOY 42 and 90 in
our study is explained in [18,37–40] by variations of backscatter during freeze–thaw cycles.
The authors in [38] compared observations under frozen and thawed conditions and found
that the backscatter was lowest under frozen conditions when the trees and background
were frozen. The highest backscatter was found for thawed and wet conditions because
of the ice and water in the snow cover generating volume scattering. These variations in
backscatter during freeze—thaw cycles, which occur on timescales of hours to days in the
period of alternating plus and minus temperatures, are accompanied by large variations
in temporal coherence [18]. Note that the coherence temporal baseline was 6 days. The
distance between the two antenna positions and the respective height of ambiguity did not
affect the absolute level of coherence in our study.

The coherence of the interferometric pair was more influenced by coherent noise than
the averaged product, calculated from the seven highest correlations during the winter
period with snow cover. Indeed, the correlation coefficient between AGB and average
coherence (rVV = −0.77 and rHV = −0.72) was higher than from any coherence pairs
(Figure 4). Therefore, similar to the backscatter conclusion, the multi-temporal average
of the C-band Sentinel-1 coherence from the winter observations can improve the AGB
estimation on AAL.

Sentinel-2: Our results confirm the suitability of Sentinel-2 B4, B5 and B11 bands
for AGB estimation (Table 5). This set of bands was also well correlated with the AGB
estimation of Scots pine from Sentinel-2 in [21], with the best R2 = 0.25 for B12. Other band
sets were found to be more robust: B8, B11, B12 or B5, B6, B8 in two research areas in [41].
Different sets of best S2 bands were identified depending on the regression method (LM,
RF) [21]. As reported in [42], bands B11 and B6 were the most effective at estimating AGB
in a Mediterranean forest ecosystem, with R2 = 0.46 and 0.38, respectively. In our study,
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we found that band B5 from the peak vegetation season showed a stronger relationship
with AGB (R2 = 0.72) than the above-mentioned studies. One possible explanation is
that lower AGB does not saturate the signal, making the relationship between DN and
AGB closer. Indeed, the AGB per hectare on AAL is markedly lower than in forest stands
analysed in compared studies. Another possible reason for the better results is the more
precise quantification of the AGB biomass on AAL training plots carried out in line with
the recommendations for reducing the uncertainty in the AGB enumeration. This indicates
that the robustness of spectral bands to estimate the AGB should always be analysed for
each particular case.

Comparing the bands among the datasets from four vegetation seasons revealed the
common feature that bands B5 and B4 (Table 5) had a higher correlation with AGB than B8
and B11 in all cases. The June dataset from the top of the vegetation season yielded the
highest predictive accuracy for band B5 (R2 = 0.72). The coefficient of determination from
the other three datasets (January, March and September) for bands four and five varied in
the range of 0.38 to 0.55. The reflectance in the red-edge spectral region (i.e., band B5) is
sensitive to the green leaf area index (LAI), which varies in different phenological stages.
Green LAI, defined as the total one-sided area of green leaves per ground area, represents
a key variable in above-ground biomass estimations [43]. Therefore, it can be expected
that a higher correlation at the top of the vegetation season (22 June) would be associated
with the highest green LAI. In line with our conclusion, the top of the vegetation season
(July) was shown to be the most suitable for predicting the growing stock volume of a
Mediterranean forest from Sentinel-2 imagery [36].

AGB predictive models: Multiple regression is a powerful traditional statistical method
often used in AGB estimation. According to the authors in [21], it is essential and worth-
while to examine its performance before using more advanced methods. We investigated
three regression models linking the AGB with satellite observables (see Section 2.6). The
MR1 multiple linear predictive model estimated the AGB on AAL with the lowest ac-
curacy (R2 = 0.78, RMSE 48.6 t·ha−1), followed by the MPW model (R2 = 0.80, RMSE
46.4 t·ha−1). The MR2 multiple regression model performed the best, with R2 = 0.84 and
RMSE = 41.2 t·ha−1 ∼= 62 m3·ha−1 (35%). The model is based on VH coherence (leaf-off),
γ◦ VV-backscatter (leaf-off without snow) and optical B5 band (leaf-on period) with two in-
teractions between them: CohVH_avg × B522v and γ◦VV_leaf-off/B522vi. This clearly confirms
our assumption defined in study objective four that an improved AGB estimation could
be achieved by combining radar and optical satellite data [19,20,44] and multi-temporal
radar backscatter and polarimetric coherence [17,22] and creating integrated models by
multiple regression [45]. Concerning the components of RMSE, the random error is pre-
dominant, except in MR1, where the bias error occurs at AGB above 100 t·ha−1 (see CV
in Table 7). Both components of RMSE are a challenge for further reduction, e.g., by ap-
plying a post-processing bias reduction technique or, in the case of random error, using
spatial averaging and more precise reference AGB assessment [32,46]. In line with [46], by
defining homogeneous areas around 56 training areas, we have achieved (i) the positive
effects of increasing the plot sizes on the predictive power of the AGB models due to
speckle-noise reduction and positioning error reduction and (ii) a smaller RMSE% for
larger plots compared to smaller plots. Further, by extension of the reference database
by 21 tree plots by random sampling, ranging in their biomass from 100 to 350 t·ha–1, we
ensured (iii) a the similar number of training plots per the whole AGB range and fulfilling
(iv) the even distribution of the plots throughout the territory to avoid pseudo-replication
and to increase the generality of the training data. We are aware of possible inaccuracy
at the delineation of the homogenous area around the plots. However, using available
CIR and nDSM eliminates the problem and is the practical solution because the ground
measurement of large shrub plots is complicated and time-consuming.

We can compare our results only with studies estimating forest AGB (or growing
stock volume (GSV)) due to a lack of studies on shrub AGB. A study in the temperate
forest of Poland [44] reached an RMSE of 60 t·ha−1 (39%) and a saturation level around
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200 t·ha−1 based on fused Sentinel-1 and Sentinel-2 data and the random forest approach.
The capability of the Sentinel-2 instrument to predict the AGB was exploited [41]. Applying
an advanced k-NN method based on the random forest distance matrix in mixed deciduous
broad-leaved forests in Italy, a notable RMSE of 27.1 m3·ha−1 (6.8%) was reached in Lazio
and 41.7 m3·ha−1 (23.7%) in Tuscany. AGB estimation of tropical forest from Envisat
ASAR C-band using a semi-empirical water cloud model (WCM) reached a remarkable
R2 of 0.9 and RMSE of 35.9 t·ha−1 after multi-date weighted averaging [36]. Laurin [35]
achieved good accuracy with AGB predictions in broad-leaved forests in central Italy
(R2 = 0.7, RMSE = 47 t·ha−1 = 14%) by integrating Sentinel 1- and 2 and Sentinel-1 and
ALOS-2 images. However, only 17 plots were analysed, with the AGB ranging from 100 to
400 t·ha−1.

Studies based on the L and P bands generally reached better results than those using a
single channel; for example, RMSE of 32.2 m3·ha−1 (34%) was reported in [22] in boreal
forest with L-band ALOS PALSAR when a multi-temporal HHVV coherence was combined
with a multi-temporal HV-backscatter. A promising RMSE of 30.1 t·ha−1 (20.8%) was
reported [47] in a hemi-boreal forest based on airborne SAR data combining L and P bands
with forest height derived from PolInSAR. A comprehensive comparison of the approaches
to forest biomass retrieval from EO in different biomes was published in [16], with RMSE%
varying from 37 to 67%. The authors concluded that all current spaceborne sensors (SAR
and optical) are inadequate for accurately estimating AGB beyond 100–150 t·ha−1, and for a
concave curve, such as the kind produced by saturation, it is inevitable that overestimation
will occur for low biomass and underestimation will occur for high biomass if linear
regression is applied.

By including the additional terms into the regression model MR2, we achieved a shift
in the saturation point to ~230 t·ha−1 and an accuracy (R2 = 0.84, RMSE = 35%) comparable
to more advanced methods applied in studies quantifying forest AGB. We emphasise that
our results are related to complex shrub, shrub–tree and tree formations, and may be a
benchmark for further studies of AGB estimation on AAL. As far as we know, this is the
first such study in a temperate climate zone of the Western Carpathians to include the
derivation of an allometric model for blackthorn (Prunus spinosa L.) in this region. Deriving
the model was a prerequisite to creating a consistent reference database for the whole
examined AGB range from 4 to 350 t·ha−1. We are aware of the limitations of the model,
since it was built for blackthorn. As it is the most abundant shrubby species in the study
area, we assume that the reference database is sufficiently reliable. Note that our AGB
estimation took into account the whole shrub or tree biomass with bark and stump. The
biomass of leaves was not included due to missing models determining the leaf biomass of
shrubs, or in the case of trees, such models are available only for some tree species.

4.3. Economic and Environmental Aspects of Agricultural Land Overgrowth

Our results show that the proportion of AAL covered by shrub and tree formations
(992 hectares) among the total area covered by woody biomass (4206 hectares) is 23.6%
in the Viglas study area. According to the National Forest Inventory, the percentage of
agricultural land covered by tree biomass is 13% of forested land in Slovakia [48]. However,
it is impossible to compare these two percentages, as the share of AAL1 and AAL2 classes
in the study area is unknown.

In terms of AAL occurrence on agricultural land (AL), it depends on the altitude
and related population density. The total share of AAL with woody biomass on AL is
11.7% in the study area and ~18% nationally [5]. Thus, the proportion in the study area is
still lower than the national average. However, this share increases with altitude and the
distance from concentrated settlements in the valley from 5.6 to 27.7%. The abandonment
process is evident in the southwestern, southeastern and northeastern parts of the region in
mountainous and remote areas with less productive soils in the second and third altitudinal
classes. The highest share of AAL on AL is 27.7% in the third altitudinal class (see Table 9
and Figure 7).
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The area of AGB classes shows an uneven representation (Table 8). The first three
classes represent up to 60% of the area, with AGB from 0 to 150 t·ha−1, whereas only 10%
of the classes represent AGB over 250 t·ha−1. The predominance of classes with low AGB
indicates the dominance of the shrub formations on AAL in the first stages of overgrowth.
This is also confirmed by the more or less homogeneous composition of shrubs dominated
by blackthorn (Prunus spinosa) in our 56 training plots. Similarly, findings in a comparable
Budzów region in the Polish Carpathians [9] showed that the abundance of species that
encroach on unmanaged arable land and pastures creates a composition of various plant
heights, sizes and distributions that is more uniform during the early stages and more
varied as time progresses.

In addition to the overgrowing of meadows and pastures, according to [5], historical
landscape elements and mosaics are gradually disappearing under the influence of ongo-
ing secondary succession on a national level. These are narrow-band fields, overgrown
ramparts of collected stone and landscapes with scattered settlements, which represent the
area’s high potential, with extraordinary cultural and natural value. These typical elements
in our study area, Viglas, have been replaced with shrub and tree formations, especially
in the third altitudinal zone over 600 m. Summarising the acquired knowledge about the
AGB, and its spatial distribution and shrub species composition, we can state that the
situation of overgrowing areas is not satisfactory from either an economic or environmental
point of view.

5. Conclusions

In this study, based on the 11.7% share of AAL acreage on agricultural land and an
average AGB per hectare significantly lower than on forest lands (123 t·ha−1 vs. 233 t·ha−1),
we proved that the abandonment of cultivated agricultural land is a phenomenon that is
emerging as a severe economic and ecological landscape problem.

Without precise data about AGB and its area and increment on AAL, it is impossible to
set up a sustainable system for its economic use or assess the negative and positive effects
of land overgrowth regarding biodiversity. Therefore, the problem of agricultural land
overgrowth is still an extremely topical issue. Based on our findings in the Viglas model
area, we propose to focus further satellite-based research on the following: (i) refining
the identification of woody vegetation on AAL, (ii) defining spatial units with similar
overgrowth structure as a basis for economic and environmental planning, (iii) further
improving the models for quantifying wood biomass to a level of accuracy that allows
changes in AGB and its increments to be evaluated in shorter than 10-year cycles and (iv)
setting up an AAL management system. As our study was limited to Sentinel data, we see
potential to improve the AGB estimation on AAL by applying multi-frequency acquisitions
with L and P bands, full polarimetry and the further development of PolInSAR and radar
tomography methods.

For the operational deployment of the proposed concept of AGB estimation on AAL,
we also see the potential of using technology such as Google Earth Engine (GEE), which
allows work with RS data without downloading them and offers appropriate computing
power to classify imagery.
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48. Šebeň, V. Národná inventarizácia a monitoring lesov Slovenskej republiky 2015–2016. Lesnícke Štúdie 2017, 65, 43. (In Slovak)

http://doi.org/10.1214/ss/1177013815
http://doi.org/10.1109/JSTARS.2020.3008096
http://gis.nlcsk.org/lgis/
http://doi.org/10.1016/S0378-1127(00)00460-6
http://doi.org/10.1109/TGRS.2018.2885683
http://doi.org/10.1117/1.JRS.12.016008
http://doi.org/10.1117/1.JRS.6.063588
http://doi.org/10.1109/36.917903
http://doi.org/10.1109/36.843016
http://doi.org/10.1109/TGRS.2009.2023906
http://doi.org/10.1016/j.jag.2017.11.013
http://doi.org/10.1080/2150704X.2017.1295479
http://doi.org/10.3390/s110707063
http://www.ncbi.nlm.nih.gov/pubmed/22164004
http://doi.org/10.1007/s12040-016-0692-z
http://doi.org/10.1186/s13021-015-0021-x
http://doi.org/10.3390/rs10071151

	Introduction 
	Materials and Methods 
	Study Area 
	Concept of Biomass Estimation on Abandoned Agricultural Land 
	AAL Identification 
	Field Survey 
	Shrub Biomass Estimation 
	Tree Biomass Estimation 
	Shrub-Tree Ground Plots Extension 

	Satellite Data 
	Statistical Models for AGB Estimation 
	Validation of AGB Estimation 

	Results 
	Predictor Variable Pre-Selection 
	Performance of AGB Predictive Models 
	AGB Estimation on AAL in the Study Area 

	Discussion 
	Remarks on the Proposed Approach of AGB Identification and Enumeration on AAL 
	Procedures for Improving AGB Estimation 
	Economic and Environmental Aspects of Agricultural Land Overgrowth 

	Conclusions 
	References

