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Abstract: Classification of crops using time-series vegetation index (VI) curves requires appropriate
modeling of phenological events and their characteristics. The current study explores the use of
capsules, a group of neurons having an activation vector, to learn the characteristic features of the
phenological curves. In addition, joint optimization of denoising and classification is adopted to
improve the generalizability of the approach and to make it resilient to noise. The proposed approach
employs reconstruction loss as a regularizer for classification, whereas the crop-type label is used
as prior information for denoising. The activity vector of the class capsule is applied to sample the
latent space conditioned on the cell state of a Long Short-Term Memory (LSTM) that integrates the
sequences of the phenological events. Learning of significant phenological characteristics is facilitated
by adversarial variational encoding in conjunction with constraints to regulate latent representations
and embed label information. The proposed architecture, called the variational capsule network
(VCapsNet), significantly improves the classification and denoising results. The performance of
VCapsNet can be attributed to the suitable modeling of phenological events and the resilience to
outliers and noise. The maxpooling-based capsule implementation yields better results, particularly
with limited training samples, compared to the conventional implementations. In addition to the
confusion matrix-based accuracy measures, this study illustrates the use of interpretability-based
evaluation measures. Moreover, the proposed approach is less sensitive to noise and yields good
results, even at shallower depths, compared to the main existing approaches. The performance of
VCapsNet in accurately classifying wheat and barley crops indicates that the approach addresses the
issues in crop-type classification. The approach is generic and effectively models the crop-specific
phenological features and events. The interpretability-based evaluation measures further indicate
that the approach successfully identifies the crop transitions, in addition to the planting, heading,
and harvesting dates. Due to its effectiveness in crop-type classification, the proposed approach is
applicable to acreage estimation and other applications in different scales.

Keywords: deep learning; phenological curves; VENµS; classification; denoising

1. Introduction

Crops in a particular environment have specific phenological stages at defined time
intervals in the season [1,2]. Modeling periodic events in the life cycle of crops is essential
for distinguishing these crops. The derived information forms the basis for decision making
in various irrigation scheduling activities to evaluate crop productivity [2,3]. Phenology-
based analyses aim to track the change of phenological trajectories that vary from one crop
to another in terms of the start, duration, and occurrences of crop events [2–5]. Although
single-date satellite images have been widely employed for crop-type mapping, the tradeoff
between spatial and spectral resolution of satellite sensors and the spectral similarities
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between the crops result in the misclassification of crop types [6]. Hence, phenology-based
metrics have been employed for crop type mapping tasks to overcome the issues related to
conventional crop classification methods [7]. A noticeable number of studies in agriculture
focus on the extraction of phenological features using remotely sensed data [2,3,8]. Most
recent studies use vegetation index (VI) time-series derived from multi-temporal remote
sensing data to determine specific phenological events [9,10].

Different conventional classifiers have been employed to classify the time-series VI
data [11–13]. Most of these studies illustrate the need to consider the specific nature of
the data. Maselli et al. [14] employed a semi-empirical approach using multi-temporal
meteorological data and normalized differential vegetation index (NDVI) images to esti-
mate actual evapotranspiration. To address the issue of the effect of mixed pixels in crop
area estimation, Pan et al. [15] proposed a crop proportion phenology index to express the
quantitative relationship between the VI time-series and winter wheat crop area. Zhang
et al. [8] integrated crop phenological information from the MODerate resolution Imag-
ing Spectroradiometer (MODIS) to estimate the maize cultivated area over a large scale.
Gumma et al. [16] used MODIS data to map the spatial distribution of the seasonal rice crop
extent and area in a related work. Similar work by Kontgis et al. [16] highlights the impor-
tance of considering flooded and cloud-covered scenes within the dense time stacks of data
to achieve effective mapping of seasonal rice cropland extents. Although the lengths and
timings of different phenological events provide the distinguishable signatures for different
crop types, the variations in these characteristics due to different plant-, environment-,
and sensor-related constraints may affect the effectiveness of phenology-based crop fin-
gerprint estimation [2,3,17]. Hence, there is a need to derive the most important events
from the data to distinguish different crops while resolving the issues of modeling errors.
Some phenology-based classification approaches [9,18–22] have shown that mapping effi-
ciency can be improved by adding important features that lead to better discrimination
between the crop types. In this regard, phase and amplitude information derived using
the Fourier transformation (FT) of the time-series data are employed to describe the veg-
etation status over time [9,19–21]. In addition to the Fourier-based harmonic analysis,
thresholding and moving average of VI curves [23–26], slope and valley point analysis of
the VI curves [27–29], and curvature-change rate analysis of logistic vegetation growth
models [10,24,30–32] are applied to detect phenological events in the time-series remote
sensing data [9]. However, most of these approaches require manual fine-tuning, are either
supervised or semi-supervised in nature, and are sensitive to noise.

Deep learning (DL) approaches, which learn abstract representations to transform
inputs into intrinsic manifolds in an unsupervised manner, have reported better results
than the conventional machine learning approaches for various Earth observation (EO) data
applications [33,34]. Variational autoencoders (VAEs) [35,36] learn the latent space as com-
posed of a mixture of distributions enabling latent variable disentanglement and facilitate
interpretability. Wang et al. [37] adopted an adversarial training process to adapt VAEs to
model the inherent features of the spectral information effectively. Although convolutional
neural networks (CNNs) have illustrated the capability to generate task-specific features,
the handling of sensor limitations and acquisition errors requires these networks to have
flexibility in defining the receptive fields [38]. The generative adversarial network (GAN)-
based approaches applicable for the classification of VI curves generally use a one-to-one
correlation-based similarity measure and are prone to shifts and distortions prevalent in
the VI curves [33,39,40]. Long Short-Term Memory (LSTM)-based approaches adopt a re-
current guided architecture to model the sequential patterns. However, most of the existing
DL classifiers, including LSTMs and GANs, consider the spectral curves as vectors that
ignore the characteristics of physically significant features [41]. Although dynamic time
wrapping (DTW)-based approaches consider the shape similarity and shifting in VI curves,
the parameter tuning requirements affect their effectiveness and generalizability [42]. A
recent advancement in CNN, called capsule networks, adopts capsules (a group of neurons)
to address the issues of translation invariance prevalent in conventional CNNs [41,43,44].
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Shi et al. [45] employed capsule blocks to model the spectral–spatial features to achieve
high accuracy and interpretability in HSI-based classification tasks. Similar research has
also been reported in [41,46–49], in which capsule networks were explored for EO data
classification. However, few studies have reported the use of capsules for time-series
classification [50,51].

Phenology-based index curve classification requires that VI curves are denoised to
produce a smooth time-series [52]. Different algorithms, such as iterative weighted mov-
ing filters [53–57], nonlinear curve fitting [57–62], filtering in the Fourier domain [63,64],
and spline-based smoothing [52,65,66], are being widely used for VI curve smoothing.
However, most of these approaches either do not consider the phenological events, or
require manual fine-tuning to avoid extraneous oscillations and to consider the specific
nature of the phenological index curves. Although DL-based denoising approaches learn
nonlinear feature spaces to avoid linear events, sparsity, and low-rank assumptions of
the traditional interpolation methods [67–69], they generally do not consider the irregular
sampling of the data and phenological events [70]. The DL-based approaches that have
attained success in processing irregularly distributed point data [38,70,71] are not directly
applicable to denoising VI curves. Moreover, the existing phenology-based classification
approaches consider denoising, data imputation, outlier elimination, and classification as
independent problems.

In this research, we hypothesize that capsule-based feature learning can adequately
model the characteristic features of the VI curves and the crop-specific phenological events,
such as growth transitions, planting, heading, and harvesting. The DTW-based neural units
and interpolated convolution are hypothesized to dynamically learn kernels for estimating
feature-specific shape similarity correspondences of the VI curves. It is also proposed that
the joint optimization of denoising, data imputation, outlier elimination, and classification
stages yields better results than the conventional approach of independently optimizing
them. In addition, variational encoding conditioned with time-series aggregation is hy-
pothesized to facilitate the consideration of the intra-crop phenological event variations
and resolution of outliers. The current study also verified that the high measurement
accuracy results from an appropriate latent representation and not from the exploitation of
artifacts in the data [72–74]. The main contributions of the study are: (1) an interpretable
VI curve classifier is proposed to consider the specific characteristic phenological events
and the available prior knowledge; and (2) denoising, imputation, and classification stages
are jointly optimized, considering the modeling errors and outlier effects, with a minimal
number of training samples.

2. Materials and Methods
2.1. Datasets

The current study employed the Vegetation and Environment monitoring New Micro-
Satellite (VENµS) data collected over three agricultural farms in Israel for phenology-based
crop classification. The VENµS sensor is characterized by a high spatial resolution of 5 m,
a high spectral resolution of 12 narrow bands in the visible to near-infrared regions of the
spectrum, and a high revisit time of 2 days at the same viewing and azimuth angles. The
NDVI images derived from the multi-temporal VENµS images of barley and wheat crop
fields were used for various analyses. The study area consists of three farms covering
16.1, 13.9, and 2.2 sq. km, as shown in Figure 1. Among these, 40 fields of barley and
90 fields of wheat were considered in this research. The crops were sown during the first
week of December and were harvested towards the end of April of the crop calendar
years. Analysis of the proposed frameworks was conducted for the crop years 2017–2018,
2018–2019, and 2019–2020.
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Figure 1. Map of Israel and a VENµS image showing the location of the experimental fields.

2.2. Proposed Approach

This subsection discusses the proposed variational capsule network, called VCapsNet,
presented in Figure 2. The input VI curve is fed to both the capsule and LSTM streams. The
capsules [43] are a group of neurons that model characteristics of features as the orientation
of their output vectors. The proposed capsule stream constitutes 1D primary and class
capsules representing the features and the crop classes. The output vector of the class
capsules is composed of the mean and standard deviation vectors. The outputs of class
capsules, having the maximum mean vector length, are used to sample the latent code
that is used to predict the label and reconstruct the index curve. It may be noted that
the final cell state of the LSTM stream is employed as a conditional parameter for the
sampling process.
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2.2.1. Deep Capsule Network Stream

Unlike conventional capsule networks [43,44], this study proposes a deep 1D capsule
network (Figure 2) to model the characteristic events and features of the index curves. The
convolutional features of each layer of the capsule stream are squashed and reshaped to
capsule form to be fed to the subsequent layers. In addition to stacking the convolutional
layers in capsule form, another architecture (Figure 3) is also proposed, in which pooling
layers are employed to model the events and features at different hierarchy levels. In
both of the VCapsNet architectures, the feature tensors from the lower-level capsules are
connected to each of the higher-level capsules. The length of the output of each capsule
denotes the likelihood of finding the corresponding feature/pattern, and their orientation
denotes the instantiation parameters.
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VCapsNet, as proposed in the current study, employs DTW-based nonlinear convolu-
tional layers to resolve the issues of minor shifts in phenological events of the index curves
of the same crop. The proposed DTW-based units facilitate one-to-many matchings of the
receptive fields to better match the shapes of the index curve features. The DTW units
match similar features to the input and skip elements with a considerable distance. The
activation of a given DTW node n is computed as:

an = φ

 ∑
(i,j)εS

||wn,i − vj||

 (1)

where ||.|| is the L2 norm, v is the input vector of length m, and wn is the corresponding
weight vector to the node n. The function φ(.) is a nonlinear activation function applied to
the result, and S is a set of all the matched pairs between v and wn computed using the
dynamic wrapping approach discussed in [42]. Aligning of network weights using DTW
is repeated for every stride of the convolution during all forward passes. Consequently,
the alignment is only maintained for the immediate forward and backward round, and
recalculated on the fly for subsequent iterations. Further to modifying the neural units to
implement one-to-many matching for considering the minor variations in phenological
events, a modified form of the convolution is proposed to consider the irregularities in the
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index curves. The interpolation-based convolution of vectorized VI curve v with a kernel
κ(.), centered at a location x̃, is implemented as:

v ∗ κ(x̃) = ∑
x′

1
Nx′

∑
kα

ϕ
(
κα, x′

)
v(x̃ + xα).κ

(
x′
)

(2)

where ϕ(.) is an interpolation function (e.g., Gaussian interpolation) that computes the
weights based on a filter weight vector kα and a given input point x′, and Nx′ is the
density normalization term to make the convolutions sparsity invariant. In addition to
conventional hyper-parameters, interpolation-based convolution uses the kernel length,
defined as the distance between two adjacent weight vectors, to control the receptive field.

In the proposed VCapsNet architectures, the output (ui) of the ith capsule of layer l is
transformed to obtain the prediction vector ûj/i of the jth capsule of the l + 1th layer as:

ûj/i = Tijui (3)

where Tij is the transformation matrix between the ith and jth capsules of layers l and l + 1.
The length of the output vector of the class capsule denotes the membership of the given
index curve to the corresponding class. A nonlinear squashing function is employed to
ensure that the short vectors are shrunk to almost zero length and long vectors are shrunk
to a length slightly below 1. The squash function normalizes the magnitude of vectors
rather than the scalar elements themselves. Hence, the output of the jth spectral class
capsule (vj) is computed as:

vj =
||Sj||

1 + ||Sj||
Sj

||Sj||
(4)

where ||.|| denotes the L2 norm, and Sj is the total input that is computed as the weighted
sum of the prediction vectors (ûj/i) of the capsules that are connected to the jth class capsule,
i.e.,

Sj = ∑
i

cijûj/i (5)

The coupling coefficients (cij) between the ith and jth capsules are determined by a
SoftMax routing procedure as:

cij =
exp

(
bij
)

∑k exp(bik)
(6)

The log priors (bij) are learned in addition to with the network weights and are
iteratively refined by measuring the agreement between vj and ûj/i. However, unlike in the
conventional implementations, a DTW-based similarity measure is employed to consider
the shape of the index curve features, i.e.,

bij
k = bij

k−1 + ∑
m,n∈S

∣∣∣∣∣
∣∣∣∣∣vj

k−1
m − ûj/i

k−1
n

∣∣∣∣∣
∣∣∣∣∣ (7)

where bij
k denotes the logits at each iteration k, ||.|| denotes the L2 norm, S is the set

containing the indices of elements along the warping path between the vj
k−1 and ûj/i

k−1.
The wrapping path between two vectors is computed according to the discussions in [42,75].
It should be noted that the initial value of bij (bij

0) is the log prior probability that the ith

capsule should be coupled to the jth capsule.

2.2.2. Conditional Variational Encoding

The mean (µ) and standard deviation (σ) vectors of the class capsule having the
maximum length are employed to sample the latent space through a reparameterization
trick [35,76]. The final cell state learned by the LSTM, which integrates the sequential
events of the phenological curves, is used to condition the sampling process. The sampled
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latent code is used to reconstruct the index curve and predict the label using two separate
dense layers. The proposed variational encoding accommodates the natural variations
in the index curves of the same crop and improves the generalization capability of the
network. In addition, pre-training of the LSTM using noisy samples ensures the approach
is resilient to noise and other irregularities. The variational encoding loss is composed of a
fitting data term (maximizing the data likelihood) and a latent compression term (ensuring
that the latent code distribution Q(z|v, h) stays close to the latent prior P(v|z , h)) as:

LVAE = E(log P(v|z , h))− βDKL(Q(z|v, h)||P(z|h)) (8)

where E(.) denotes an expectation value, P and Q are probability distributions, DKL(.||.) is
the Kullback–Leibler divergence, v and z indicate the data and latent spaces, respectively, β
is the entanglement penalty factor, and h denotes the condition vector. The condition vector
h is directly involved in the encoding and decoding processes, and the final cell state of
the LSTM is used as the condition vector. Although the penalizing DKL(Q(z|v, h)||P(z|h))
term in Equation (8) facilitates disentanglement, it results in the loss of information about
the input v stored in the latent code z and, therefore, a poor reconstruction for high values
of β. Hence, in this study, inspired by [77], the formulation in Equation (8) is modified as:

LVAE = E
(

Eq(z|v)(− log(P(v|z, h )))
)
− E(DKL(Q(z|v, h)||Q(z)))−βDKL

(
Q(z)||

d

∏
j=1

Q
(
zj
))

(9)

The last term in Equation (9) measures the dependence for multiple variables.

2.2.3. Loss Functions and Regularizations

In this study, the reconstruction and cross-entropy losses are minimized to train the
network weights in accordance with the classification objective. To facilitate denoising in
conjunction with classification, the spectral-dissimilarity- and DTW-based reconstruction
losses are also employed as:

LR =
1

mπ

m

∑
i=1

arccos
(

v.ṽ
|v||ṽ|

)
+ψα(〈A, ∆ (v, ṽ)〉) (10)

where m is the length of the input pixel spectra v, ṽ is the reconstructed pixel spectra,
|.| denotes the L1 norm, ψα(.) is the generalized minimizing function with a smoothing
parameter α, ∆(., .) denotes the cost matrix, and A is the alignment matrix. For training
the network, in addition to the L2 regularization loss, to ensure piece-wise similarity, a
multiscale version of the structural dissimilarity loss is also employed as:

LSD = ∑
p∈P

1−Ω(p) (11)

where:

Ω(p) =
2µpµ

′
p + C1

µ2
p + µ′p

2 + C1
.

2σpσ
′
p + C2

σ2
p + σ′p

2 + C2
(12)

where P ⊆ R denotes the set of all relative locations on the VI curve, C1 and C2 are constants,
µp and µp′ respectively, represent the means of the patches of the reconstructed and ground-
truth VI curves, and σp and σp′ respectively, denote the corresponding standard deviations.
The means and standard deviations are computed in neighborhoods (context) of varied
extents to implement multiscale measurements of structural dissimilarity.

The reconstruction loss of VCapsNet is constrained to fine-tune the latent representa-
tions z for the classification task as:

LCR = α
m

∑
i=1
−[yi log(χ(we, zi)) + (1− yi)(1− log(χ(we, zi)))] + λ|zi| (13)
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where yi is the label for the ith sample, χ(.) corresponds to the normalization of the length
of the class capsule’s outputs, we is the weight matrix of the encoding layers, α and λ
are the scaling factors, zi is the latent representation of the ith sample, |.| denotes the L1
norm, and m is the number of samples. An additional classification loss is employed to
incorporate the label information of the source domain into the embedding space as:

LCE = − 1
n

n

∑
i=1

c

∑
j=1

Ipi=yj
log

epi

∑c
r=1 epir

(14)

where I is an indicator function, yj is the expected output of the ith sample corresponding
to the jth class, pi is the predicted label for the ith sample, n is the number of samples, and
c denotes the total number of classes. The indicator function Ipi = yj

outputs one when the
predicted label (pi) matches the expected label yj.

2.2.4. Transparency and Interpretability

This Section attempts to understand the concepts/prototypes learned by the network
and how the input features contribute to a given decision. These approaches are used to
compare the DL models in terms of their interpretability and the physical significance of
the learned features. The training data and hyper-parameters are also refined based on the
analysis of learned prototypes and relevance score assignments. In the current study, the
crop-specific characteristic phenological events, such as planting, heading, harvesting, and
growth transitions, serve as the interpretability parameters; that is, the timing of different
phenological events is the physically interpretable feature that distinguishes a crop type
from others.

Inspired by [74,78,79], to interpret the proposed VCapsNet, an approach based on
activation maximization was employed. The representative/prototype of the class ωc,
which corresponds to the most likely input x for class wc, is found by optimizing:

max
x

(log p(ωc |x ) + log p(x) ) (15)

where x is the input, and p(ωc |x ) and p(x) are the class conditioned data density and data
model, respectively. Although interpreting the concepts/prototypes learned by DL models
helps compare and contrast different models, learning the contribution of input features
for each concept is also equally important. A modified version of layer-wise relevance
propagation (LRP) was employed to assign quantitative values to input features based on
their relative significance in the output prediction. As shown in [80], the relevance can be
distributed to input-layers using local redistribution rules as:

R(l−1)
j = ∑

i

a(l−1)
i w(l−1,l)

ij

∑k a(l−1)
k w(l−1,l)

kj

R(l)
i (16)

where wij denotes the weight between neurons i and j, a(l−1)
i denotes the activation, and

i indexes all neurons of layer l joined to neuron j. Equation (16) is applied backward
through the network from the output layer to produce the relevance map. It should be
noted that the summation of the relevance at any layer is conserved in the network. By
analyzing the relevance scores, regions or patterns in the inputs that mainly contribute to a
classification decision are identified. As the probability of an input belonging to a specific
class depends on the value at the output layer neuron, relevance scores can represent
evidence for (positive values) and against (negative values) the classification decision.

2.3. Implementation of the Proposed VCapsNet

This subsection discusses the implementation of the proposed VCapsNet model in the
classification of VI index curves. The NDVI curves derived from multi-date VENµS images
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were used to train and validate the network. The cloud masks were used to eliminate
noisy pixels for NDVI computation. The shapefiles of crop fields, and the cropping and
harvesting information obtained from farmers, served as ancillary data for labeling and
analyzing the VI curves. It is noteworthy that the temporal index curves, having a vector
length of 36, were used as inputs for analyzing the models. Data augmentation techniques,
similar to those adopted in [81,82], were used to increase the number of training samples.
In addition to other systematic noise simulations [53,56,83,84], a random approach was
employed to remove values or add Gaussian noise at irregular intervals to train the models
to facilitate denoising. Different downscaling strategies, such as bilinear, bi-cubic, and
nearest neighbor interpolations, were employed for a specific number of VI curves to
generate training and testing samples for data imputation. Multiple downscaling strategies
were adopted to avoid the bias of the trained network towards a particular approach.

The VCapsNet implementation adopted in this study uses multi-sized kernels of
sizes 1 × 2, 1 × 3, 1 × 5, 1 × 7, and 1 × 9 in the capsule streams of architectures-1 and
-2. ReLU activations follow the padded convolutions in all layers. The number of filters
and the stride of pooling layers are respectively set to 256 and 2 for the capsule stream of
architecture-1 (Figure 2). For the capsule stream of architecture-2 (Figure 3), the number
of filters is set to 256, 128, and 64. As the input vectors are of length 36, the LSTM stream
employed in both architectures uses 36 layers. The variational encoding is implemented as
an encoding-decoding architecture consisting of four convolutional and deconvolutional
units and a fully connected sampling layer. The convolutional units are followed by
maxpooling, whereas deconvolution units are preceded by upsampling layers. The number
of filters in the eight-layer deep variational stream is set to 256, 192, 128, 64, 64, 128, 192,
and 256. Gaussian interpolation is used in all of the architectures as the convolutional
interpolation function, and the Gaussian bandwidth (3σ) is fixed to 0.1. It is important to
note that, for implementing multiscale structural dissimilarity measurements, the context
extents are varied among 1, 3, 5, 7, and 9.

In the current implementation, rather than using a standard dropout algorithm [85],
which may change the properties of the entity that the capsule represents, the approach
discussed in [86] was adopted. The mean squared error (MSE)-based loss and cosine
dissimilarity loss [87] and the proposed losses are minimized to learn the network weights.
Hyper-parameter optimization, proposed in [88], is employed to optimize the hyper-
parameters, such as kernel size, number of filters, depth of the network, and number of
epochs. Architecture-1 was trained using ADAM optimization for 300 epochs with an initial
learning rate of 0.01 and a decay rate of 0.5 for every 100 epochs. Similarly, architecture-2
was trained using ADAM optimization for 250 epochs with an initial learning rate of 0.008
and a decay rate of 0.5 for every 100 epochs. A batch size of 50 was employed for training
of both networks.

3. Results

To verify the effectiveness of VCapsNet, extensive experiments were conducted for
phenological curve-based crop classification. The pixel-level NDVI curves derived from
multi-date images were used to train VCapsNet to distinguish different types of crops.
The ancillary data was used to assign labels to ground-truth phenological curves. Data
augmentation, similar to that adopted in [81,82], was used to increase the number of
training samples. In addition, random Gaussian noise was added in irregular intervals
to evaluate the effect of denoising. An example of augmented patterns for the barley
crop is presented in Figure 4. VCapsNet was extensively analyzed using the data of three
farms over three consecutive crop years. A total of 4600 samples were used for training
and testing the model, among which 800 were augmented patterns. Hyper-parameter
optimization, proposed in [88], was employed to optimize the parameters of the different
models analyzed in this study. It should be noted that an early stopping framework using
k-fold validation forms the basis of the parameter selection. For all of the experiments
adopted, k-fold validation was used with k set to 10. The confusion-matrix-based Kappa
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statistic and overall accuracy were used for evaluating the classification results. High
values of Kappa statistic and overall accuracy indicate high accuracy. A Z-score-based
test statistic (discussed in [89,90]) was employed to analyze the significance of the results
presented in the current study. In addition to confusion-matrix-based measures, proposed
interpretability techniques (Section 2.2.4) were used to evaluate the physical significance
and interpretability of the models. The peak signal-to-noise ratio (PSNR) was used to
estimate the denoising accuracy of VCapsNet and other benchmark denoising approaches.
The ablation analysis of VCapsNet is discussed in Section 3.1. A comparative analysis of
VCapsNet with the benchmark approaches is presented in Section 3.2.
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3.1. Ablation Analysis of VCapsNet

This Section evaluates the effect of the proposed architectural variations and loss
functions on the results. The results are summarized in Table 1. It is observed that the
proposed strategies reduce the training sample requirement and significantly improve the
results (in terms of Kappa and overall accuracy). As is evident from Table 1, the imple-
mentation of VCapsNet without a capsule stream results in lower values of Kappa and
overall accuracy. These results illustrate that the capsules model the phenological events
and their characteristic features effectively to distinguish different classes. Moreover, the
use of capsules significantly reduces the network depth. It may be noted from Table 1 that
the implementation of VCapsNet without a variational encoding strategy results in lower
Kappa and overall accuracy values. The improvement in accuracy due to the variational en-
coding strategy can be attributed to the consideration of minor phenology variations in the
same crop type and to the resolution of outliers. The use of DTW-based routing technique
also improves the results by facilitating the consideration of shapes of the phenological
events. In addition, as is observed from the Kappa and overall accuracy values in Table 1,
the use of the cell state learned using LSTM for conditioning the latent space sampling acts
as a regularizer. This resolves the issues of vanishing gradient and convergence. The use of
reconstruction loss as a means to regulate the classification loss facilitates denoising and
data imputation of the index curves. Training of the proposed network for denoising and
imputation ensures the classification is resilient to noise and other irregularities. Similarly,
the use of piece-wise loss, interpolation-based convolution, and DTW-based neural units
improves the classification accuracy. The proposed architectures and losses improve the
modeling of phenological events that are evident from the concepts learned for different
types of crops. The relevance analysis of input features indicates that VCapsNet focuses
on features and phenological events that are physically significant to each crop type. Ad-
ditionally, fine-tuning of the entanglement penalty facilitates the disentanglement of the
latent codes concerning different crop classes.
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Table 1. Analysis of the effect of the proposed architectures and constraints for 50% of the training samples *.

Architectural Variations/Losses Kappa Statistic Overall Accuracy Z-Score

1D Capsule based classifier 0.81 83.46 2.21
Long Short-Term Memory (LSTM) based classifier 0.82 85.91 2.18

VCapsNet without Capsule Stream 0.85 87.18 2.25
VCapsNet without Long Short-Term Memory (LSTM) stream 0.86 89.68 1.99

VCapsNet without variational encoding 0.86 91.24 2.32
VCapsNet without embedding the label information prior 0.86 92.68 2.16

VCapsNet without fine-tuning the latent space for classification 0.86 90.12 2.17
VCapsNet without piece-wise reconstruction loss 0.87 88.56 2.09

VCapsNet without cosine dissimilarity loss 0.88 91.43 1.97
VCapsNet without Dynamic Time Wrapping (DTW) loss 0.87 89.08 1.99

VCapsNet without interpolated convolution 0.89 94.12 2.12

Proposed VCapsNet implementation 0.94 98.57 -

* Z-score > 1.96 shows a significant (>95%) difference between the confusion matrices of the existing approaches and the variational capsule
network (VCapsNet).

A comparison of both of the proposed architectures indicates that, at a lower number
of training samples, architecture-2 is preferred, whereas architecture-1 provides better
results when enough training samples are available. In addition, architecture-2 yields
acceptable results at much shallower depths compared to architecture-1.

The sensitivity analysis of the proposed VCapsNet models in terms of network pa-
rameters is presented in Figures 5 and 6. For a given set of training samples, an increase in
the network depth improves the Kappa value that, however, deteriorates as the number of
layers increases beyond a limit. Empirically, for input VI curves having a length of 24–36, a
5–9 layered network yields the best results. The increase in the number and sizes of filters
improves the accuracy, which slowly saturates and deteriorates following further blind
increase. The increase in size and number of filters exponentially increases the computa-
tional complexity of the network. As the length of phenological features can vary, the use
of multi-sized kernels significantly improves the results without significantly affecting the
execution time. The reduction in the sensitivity of VCapsNet to network parameters can be
attributed to the effective modeling of characteristic features of index curves.
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3.2. Comparison of VCapsNet with the Commonly-Used DL Based Approaches

The commonly-used classifiers applicable to VI curve classification were compared
with the proposed VCapsNet-based approach. The results are summarized in Table 2. The
significance of the results of VCapsNet (at a confidence level of 95%) in comparison with the
other approaches is analyzed in Table 3. In all of the experiments adopted in this study, the
entire set of 4600 samples was split into disjoint training and testing subsets. For instance,
when the percentage of training samples is 10%, 90% of the samples were used for testing
the model. Based on the discussions in [2,3,7,12,39,83,91], some main existing classification
approaches were selected as the benchmark methods for comparison. In the experiments
discussed in this study, a few of the benchmark approaches were modified to process the
one-dimensional phenological curves. An analysis of the variation in accuracy of different
approaches according to the variation in the percentage of training samples is presented in
Figure 7. Furthermore, Figure 7 presents the variation in accuracies for different folds of
k-fold validation in terms of the standard deviation. A total of 4600 training samples were
used, and 10-fold validation was employed for each of the different sub-experiments (10%,
20%, 30%, etc.). As is evident from the results, VCapsNet better models phenological curves
compared to other prominent approaches. The proper modeling of phenological events and
features significantly improves the generalization capability of the network, resulting in
improved classification accuracies even with a small number of training samples (Figure 7).
The learning of physically significant features and phenological events also resolves the
issues of intra-crop variability of the phenological curves. In addition, the DTW-based
convolutional units and interpolation-based convolutions, and the proposed losses and
regularizations, facilitate the effective transformation of vectorized phenological curves to
a latent space that is more discriminative than the original space.
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Table 2. Comparison of the variational capsule network (VCapsNet) with benchmark deep learning
(DL) classifiers for 40% of training samples *.

Benchmark Classifiers Kappa Statistic Overall Accuracy

Deep learning (DL) based [92] 0.74 80.10
Spectral attention CNN [93] 0.79 84.43
Phenology metrics based [9] 0.85 87.91
Bayesian estimator based [2] 0.83 88.20

Representation learning based [94] 0.86 90.08
Generative Adversarial Network (GAN) based [39] 0.83 88.36

Multivariate Long Short-Term Memory (LSTM)
based [95] 0.87 90.82

Proposed VCapsNet 0.92 96.23
* Z-score > 1.96 shows a significant (>95%) difference between the confusion matrices of the existing approaches
and the variational capsule network (VCapsNet).

Table 3. Z-score-based significance analysis of variational capsule network (VCapsNet) in comparison with the benchmark
deep learning (DL) classifiers *.

Benchmark Smoothing Approaches Z-score of Kappa Statistic as
Compared to VCapsNet

Z-score of Overall Accuracy as
Compared to VCapsNet

Deep learning (DL) based [92] 2.03 1.98
Spectral attention Convolutional Neural Network (CNN)

[93] 1.98 2.21

Phenology metrics based [9] 2.12 2.14
Bayesian estimator based [2] 2.64 2.43

Representation learning based [94] 2.07 2.07
Generative Adversarial Network (GAN) based [39] 2.59 2.46

Multivariate Long Short-Term Memory (LSTM) based [95] 2.18 1.99

* Z-score > 1.96 shows a significant (>95%) difference between the confusion matrices of the existing approaches and the variational capsule
network (VCapsNet).
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In addition to the classification-based accuracy assessment, the models were also
evaluated based on the prototypes learned for each crop, as discussed in Section 2.2.4. For
this purpose, the phenology curves that follow the correct timeline for each crop were
selected based on the ancillary data and generalized using a variational autoencoder. The
benchmark phenological curve for each crop, generated by sampling the mean of such a
learned latent space, was compared with the learned concepts of the corresponding crops
for each model. In this regard, cosine-based, DTW-based, and Fourier-based approaches
were used as the similarity measures. The dates of crop-specific phenological events, such
as growth transition, planting, heading, and harvesting, were adopted as characteristic
features for comparison. A summary of these comparisons is presented in Table 4. The
harmonics of the Fourier transform of the VI curves properly capture the phenological
events, whereas DTW approaches measure the shape-similarity irrespective of the minor
shifts. The high values of similarity measures indicate that VCapsNet accurately learns
the phenological events and physically significant features. A visual illustration of the
predicted and actual NDVIs corresponding to the crop-specific phenological events for
randomly selected wheat and barley fields is presented in Figure 8. As is evident, VCapsNet
provides accurate results.

Table 4. Interpretability based comparison of the different deep learning (DL) models.

Benchmark Classifiers.

Normalized Cosine
Similarity Between the

Concepts Learned and the
Benchmark Phenological

Curves

Normalized RMSE in
Fourier Domain Between
the Concepts Learned and

the Benchmark
Phenological Curves

Normalized DTW Based
Similarity Between the

Concepts Learned and the
Phenological Benchmark

Curves

Deep learning (DL) based [92] 0.9874 0.4290 0.7742

Spectral attention Convolutional
Neural Network (CNN) [93] 0.9870 0.3916 0.7891

Representation learning based [94] 0.9942 0.2396 0.8263

Generative Adversarial Network
(GAN) based [39] 0.9964 0.2246 0.8551

Multivariate Long Short-Term
Memory (LSTM) based [95] 0.9968 0.2389 0.8629

Proposed VCapsNet 0.9989 0.1059 0.9672
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To further explain the network and analyze the contribution of input features, the
LRP approach (Section 2.2.4) was adopted. The propagated relevance of VCapsNet for
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distinguishing different crop types indicates that the model places importance on the time
frames related to phenological events.

To analyze the temporal effectiveness of VCapsNet, a leave-one-out validation strategy
was adopted year-wise. The training samples of two crop years were used to classify the
crop phenology from another crop year. The crop years of 2017–2018, 2018–2019, and
2019–2020 were considered for the analysis. A total of 3500 samples were used for training
and 1500 samples for testing. The result of the experiment is presented in Table 5 and the
significance of the analysis in Table 6. The performance and generalizability of the proposed
approach can be attributed to the effective modeling of the characteristic phenological
features of the crops.

Table 5. Comparison of the different deep learning (DL) models across different crop years.

Benchmark Classifiers. Overall Accuracy Kappa Statistic
Normalized DTW Similarity Between the
Concepts Learned and the Phenological

Benchmark Curves

Deep learning (DL) based [92] 67.41 0.62 0.6591

Spectral attention Convolutional
Neural Network (CNN) [93] 71.82 0.65 0.6983

Representation learning based [94] 76.33 0.72 0.7150

Generative Adversarial Network
(GAN) based [39] 74.49 0.66 0.6840

Multivariate Long Short-Term
Memory (LSTM) based [95] 79.09 0.74 0.7651

Proposed VCapsNet 89.72 0.86 0.9439

Table 6. Z-score-based significance analysis of the temporal validation of VCapsNet *.

Benchmark Smoothing Approaches Z-Score of Kappa Statistic as
Compared to VCapsNet

Z-Score of Overall Accuracy as
Compared to VCapsNet

Deep learning (DL)-based [92] 1.97 2.01

Spectral attention Convolutional Neural Network (CNN) [93] 2.17 2.34

Phenology metric-based [9] 2.09 2.16

Bayesian estimator-based [2] 1.99 2.05

Representation learning-based [94] 2.14 2.37

Generative Adversarial Network (GAN)-based [39] 2.08 2.42

Multivariate Long Short-Term Memory (LSTM)-based [95] 1.97 2.14

* Z-score > 1.96 shows a significant (>95%) difference between the confusion matrices of the existing approaches and the variational capsule
network (VCapsNet).

3.3. Comparison of VCapsNet with the Commonly-Used Denoising Approaches

In addition to classification, VCapsNet reconstructs the phenological index curves,
thereby facilitating denoising and data imputation. In this section, the commonly-used
denoising approaches applicable to VI curve smoothing are compared with the proposed
VCapsNet. In all of the experiments adopted in the study, the entire sample set was split into
disjoint training and testing subsets. As the reconstruction is conditioned based on the crop
type information, the proposed approach of joint classification and denoising provides bet-
ter results than the existing denoising approaches. The selected benchmark approaches are
improved versions of those that reported the state-of-the-art results in [52,54,63–65,96,97].
The result of the comparative analysis is summarized in Table 7 and Figure 9. Table 8 con-
firms the significance of the comparison at a confidence level of 95%. It is to be noted that
Figure 9 presents the bar graphs indicating the standard deviation during the k-fold valida-
tion. The local filtering methods (Savitzky–Golay filtering and locally weighted scatterplot
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smoothing) resulted in better performance with optimized parameter settings among the
conventional smoothing approaches. However, fitting methods (asymmetric Gaussian
function fitting and double logistic function fitting) are less sensitive to the parameters. As
is evident from the results, VCapsNet yields higher PSNR (better reconstruction accuracy)
than the benchmark approaches considered in this study. The results of VCapsNet can be
attributed to its ability to model phenological events. In addition, the proposed variational
encoding strategy, LSTM-based conditioning, and loss functions, significantly improve
the generalizability. It should be noted that VCapsNet learns the smoothing parameters
dynamically, whereas conventional smoothing approaches require manual fine-tuning.
Additionally, the phenology event-based latent space resolves the issues of domain bias
and inter-field variability of VI curves of the same crop.

Table 7. Comparison of VCapsNet with benchmark smoothing approaches for 50% of training samples *.

Benchmark Smoothing Approaches PSNR

Least squares fitting to double logistic functions [57] 24.32
Least square fitting to asymmetric Gaussian functions [62] 27.92

Spline smoothing [66] 29.05
Deep learning (DL) based [69] 31.93

Savitzky-Golay filter based [56] 29.51
Deep learning (DL) based [70] 33.74

Savitzky-Golay filter based [53] 31.83

Proposed VCapsNet implementation 37.90
* Benchmark methods are implemented based on the available GitHub implementations and are fine-tuned based
on the related publications.
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Table 8. Z-score-based significance analysis of the results of VCapsNet *.

Benchmark Smoothing Approaches Z-Score with Respect to VCapsNet

Least squares fitting to double logistic functions [57] 2.38
Least square fitting to asymmetric gaussian functions [62] 2.20

Spline smoothing [66] 2.09
Deep learning (DL) based [69] 1.99

Savitzky-Golay filter based [56] 2.29
Deep learning (DL) based [70] 2.20

Savitzky-Golay filter based [53] 2.16
* Z-score > 1.96 shows a significant (>95%) difference between the confusion matrices of the existing approaches
and the variational capsule network (VCapsNet).

4. Discussion

Experiments on VCapsNet (discussed in Section 4) illustrate that the proposed ap-
proaches yield better results than the main existing approaches. A detailed analysis of the
results is presented in the following subsections.

4.1. Modeling Phenological Events

Learning and appropriate modeling of different phenological events and their char-
acteristics, such as relative locations, length, shape, texture, and context, are essential for
crop classification. The architecture of DL models is found to influence the capability in
modeling the phenological curves. The use of capsules enables better modeling of the
relative locations and features of the phenological events compared to the convolutional
networks. The proposed DTW-based routing mechanism facilitates the consideration of
the contexts of phenological events for the effective modeling of VI curves. Although
VCapsNet yields better results than the existing approaches in terms of the Kappa statistic
and overall accuracy, these accuracy measures do not ensure that the network models
the phenological curves correctly. In this regard, interpretability and explanation-based
analyses must be able to indicate if the network has correctly learned the concepts for each
class and confirm if it is appropriately placing importance on the input features. Among
the two proposed architectures of VCapsNet, architecture-2 yields better results when
the samples are limited, whereas architecture-1 performs better when sufficient training
samples are available. The use of variational encoding for fitting the latent distribution to
a normally distributed space resolves the issues of crop phenological variability and the
problem of outliers. However, additional sampling layers in variational autoencoders are
found to adversely affect the modeling of VI curves, especially when training samples are
limited. It is further observed that the use of a LSTM cell state to condition the latent space
regulates the sampling process, resulting in a feature space that captures the characteristic
phenology of each crop. It may be noted that convolutional networks rather than capsules
do not yield acceptable results due to the need to consider the specific characteristics of the
VI curves. The LSTM classifiers only consider the sequential nature of the curves and ignore
the characteristic features of the phenological events and their relative locations. Moreover,
as adopted in conventional capsules, the simple routing ignores the shape similarity of the
phenological events.

This study illustrates that the joint optimization of denoising, data imputation, and
classification yields better results than individually optimizing them. The proposed VCap-
sNet provides not only good classification results, but is also effective in denoising and
data imputation. In VCapsNet, the reconstruction serves as a regularizer for classification,
and class information is a regularizer for denoising and data imputation. The proposed
constraints and losses use the input priors to improve the projected space, thereby resulting
in meaningful and interpretable representations that capture the phenological events and
features. Different experiments in the current study illustrate that using multi-sized kernels
facilitates the modeling of phenological features having variable lengths.

VCapsNet yields good results even at shallower depths compared to the other conven-
tional DL approaches. The proposed regularizations and data augmentations, in addition
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to capsule-based feature modeling, improve the generalizability of the network. VCapsNet
also considers the inter-field variability of the crops through proper modeling of the phe-
nological events and embedding the label information in the latent space. Moreover, the
neural units, convolutions, and routing mechanisms of VCapsNet are modeled to consider
the shape of the receptive fields.

The experiments indicate that the evaluation matrices based on classification or re-
construction accuracy are insufficient for DL models. The interpretation of the concepts
learned and the relevance assigned to the input features for each crop provides insight
into the meaningfulness and physical significance of the features learned by the network.
VCapsNet fares well in terms of interpretability compared to the other DL models consid-
ered in this study. In addition to using the interpretability evaluation for mere quantitative
comparison, the same approach can be used to refine the training data and select the most
relevant features.

Due to its generalizability, VCapsNet is applicable to crop mapping at different scales.
Sub-national and national level mapping requires the generalization of the phenological
index curves. The pixel-level phenological VI curves are generalized to yield the crop
fingerprints at the field level. The field level VI curves are then classified using VCapsNet
to accomplish mapping at different scales. The VCapsNet is generic and can be extended
to different applications.

4.2. Interpretability Based Comparison of the Benchmark DL Models

The analysis of phenological curves requires appropriate modeling of phenological
events in terms of their characteristics such as depth, width, shape, and position. The
interpretability-based evaluation strategies (Section 2.2.4) were found to be useful in the
understanding of the concepts learned by the models. Comparing the concepts learned for
each of the crops with the ancillary data (related to the sowing, growth, and harvesting
time) provides an understanding of the learning capability of the DL models. In addition
to evaluating the learning capability of the network, the learned concepts also provide an
indication of the suitability of the training data and the need to refine this data.

Although analysis of the prototypes learned by DL models provides insights into
the learning capability of the network, analysis of the relevance of the different input
features is required to interpret the manifold accordingly. As discussed in Section 2.2.4, the
LRP approach assigns relevance scores to the input features based on their contributions.
Analysis of these relevance scores with respect to the ancillary data regarding the timing
of crop cultivation and growth provides an insight into the physical significance of the
features learned by the model.

Barley and wheat crops are often indistinguishable from each other and cause issues
for crop mapping algorithms. As can be observed from the results, VCapsNet yields
good results in classifying these crops. The performance of VCapsNet can be attributed
to its ability to appropriately model the crop-specific characteristics of the index curves.
The interpretability-based evaluation indicates that the crop-specific phenological events,
such as growth transitions, planting, heading, and harvesting, are effectively identified
using VCapsNet.

5. Conclusions

The VI curves derived from multi-temporal satellite images yield better results for
crop classification than the use of single-date image spectra. The ability to model the phe-
nological events and their characteristics determines the effectiveness of the VI curve-based
classifiers. However, most of the existing approaches that model the phenological events
require manual fine-tuning and are supervised. Moreover, they are prone to outliers and
noise. In this regard, this study proposes using a capsule network and variational encoding
to model the phenological events and their features. In addition, the approach also allows
joint optimization of classification and denoising, thereby solving the issues of outliers
and noise. Deep capsule networks are needed to model the complex features of the VI
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curves. The current study illustrates that the implementation of higher-level capsules using
maxpooling yields better results than the stacked implementation, particularly when the
training samples are limited. The routing mechanism is modified to consider the contextual
nature of the phenological events. The proposed variational capsule network, called VCap-
sNet, uses the activity vector of class capsules and the LSTM cell state as information priors
to sample the latent space. It was observed that the regularization of classification using
the reconstruction loss and that of denoising using the label information priors improve the
generalizability and convergence of the network. The constraints and encoding schemes,
and the DTW-based similarity measures, achieve effective classification with minimal
training samples. Unlike conventional convolution, a point-based convolution is proposed
to have flexible receptive fields for data imputation. The proposed strategies ensure the
network models the phenological events and characteristic features, and facilitate the use
of the information priors to improve the physical significance. Experiments indicate that
VCapsNet yields better results than the existing classification and denoising approaches for
VI curves. In addition to the confusion-matrix-based accuracy measures, interpretability-
based evaluation measures were also employed to analyze the physical significance of
the learned features. The predictor-conditioned distribution of the input was modeled to
understand the most likely input of the model for a given output. The analysis of these
learned concepts allows evaluation of how well the proposed approaches model the phe-
nological events of different crops. In addition, an analysis of the relevance assigned by the
model to the input features also helps to understand the learnability of the network. The
interpretability-based evaluation measures further facilitate the refinement of the training
sets. It was observed that the improvement in interpretability achieved in VCapsNet signif-
icantly reduces the sensitivity of the network towards hyper-parameters. The discussed
framework and approaches are generic and can also be extended to other applications.
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