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Abstract: Automatic building extraction has been applied in many domains. It is also a challenging
problem because of the complex scenes and multiscale. Deep learning algorithms, especially fully
convolutional neural networks (FCNs), have shown robust feature extraction ability than traditional
remote sensing data processing methods. However, hierarchical features from encoders with a
fixed receptive field perform weak ability to obtain global semantic information. Local features
in multiscale subregions cannot construct contextual interdependence and correlation, especially
for large-scale building areas, which probably causes fragmentary extraction results due to intra-
class feature variability. In addition, low-level features have accurate and fine-grained spatial
information for tiny building structures but lack refinement and selection, and the semantic gap of
across-level features is not conducive to feature fusion. To address the above problems, this paper
proposes an FCN framework based on the residual network and provides the training pattern for
multi-modal data combining the advantage of high-resolution aerial images and LiDAR data for
building extraction. Two novel modules have been proposed for the optimization and integration
of multiscale and across-level features. In particular, a multiscale context optimization module is
designed to adaptively generate the feature representations for different subregions and effectively
aggregate global context. A semantic guided spatial attention mechanism is introduced to refine
shallow features and alleviate the semantic gap. Finally, hierarchical features are fused via the feature
pyramid network. Compared with other state-of-the-art methods, experimental results demonstrate
superior performance with 93.19 IoU, 97.56 OA on WHU datasets and 94.72 IoU, 97.84 OA on the
Boston dataset, which shows that the proposed network can improve accuracy and achieve better
performance for building extraction.

Keywords: building extraction; multiscale feature fusion; deep learning; convolution neural network;
semantic segmentation

1. Introduction

Building extraction is important for updating geographic information and urban
construction using remote sensing technology. Building information has been used in a
wide range of domains such as urban management and expansion, intelligent city construc-
tion, 3D semantic modeling, autonomous driving, and traffic navigation [1–6]. Accurate
building spatial information can provide vital decisions and analyses for urbanization,
especially land use and cover. In the maintenance of urban geographic information systems,
there is often a massive workload involved in updates and modifications due to frequent
urban reconstruction. It is obvious to develop automatic building extraction methods
from remote sensing data instead of manual annotation to avoid waste of time and cost.
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However, buildings have multi-scale and complex background in remote sensing data.
Automatic and precise extraction of buildings is still challenging in the research frontier of
remote sensing.

Many approaches have been applied in building extraction by constructing discrimi-
native features from 2D and 3D data, such as satellite or aerial images [7–9] and LiDAR
point clouds [10–12] or data fusion [13–15]. Nonetheless, these methods are mainly based
on the low- or middle-level feature depending on the specific design of prior knowledge
and are sensitive to parameters, while the types of buildings exhibit diversity and dis-
tribute irregularly, which hardly separate from the complex scenes with specified threshold
setting [11–14]. Due to environmental factors, the building areas are prone to present
shadow, occlusion and solar radiation, and noise, causing confusion with other ground
objects. Therefore, the completion of robust and precise extraction is limited to using
shallow features. The methods mentioned above can effectively extract specific building
regions using hand-crafted features.

In recent years, deep learning technology has achieved revolutionary development in
computer vision research such as semantic segmentation, object detection, and data fusion.
In addition, the deep learning algorithm is also applied in engineering, such as in the three-
dimensional (3D) reconstruction of large-scale, concrete-filled steel tubes [15]. In particular,
deep neural networks can compensate for the drawbacks of hand-crafted features-based
methods, which fail to extract high-level features and rich semantic information. In the
deep learning frameworks, fully convolutional neural networks (FCNs) can automatically
learn features of different levels through training datasets [16,17]. Subsequently, the
improved FCN algorithms have obtained state-of-the-art results for building segmentation
using remote sensing data [18–20]. However, these strategies do not consider feature
selection when reusing earlier information, which could hamper the performance of the
CNNs. Therefore, the attention mechanism was introduced into the FCN model using
high-resolution aerial imagery to select spatial and channel information adaptively [19–21].
To construct multi-scale context information, some pyramid pooling models and encoder-
decoder structures are used to optimize the network architecture. Furthermore, some
network models synthesized the advantages of multi-modal data, including multispectral
images and LiDAR data, to improve the accuracy of building extraction [22–24].

Although the above-proposed methods can effectively improve the performance of
FCNs and achieved the results of pixel-wise building extraction, there are still challenges
to be addressed. First, many deep learning models are trained based on natural scene
images, but the data obtained from long-distance remote sensing platforms with complex
backgrounds and long distances are not suitable for remote sensing ground object inter-
pretation [25]. Although the combination of multi-source data (such as images and lidar
data) can improve the accuracy of building extraction, multi-modal data have different
advantages and characteristics, and thus an effective means of fusion must be explored.
Many methods do not effectively integrate these features to enhance the network gen-
eralization ability. Buildings exhibit scale variability in remote sensing images because
of diverse image resolution and arbitrary size. Convolutional operation with the fixed
filter receptive fields could not generate discriminative representations due to the scale
variability of different buildings in remote sensing images. Some modules aim to establish
multiscale semantic features adopting pyramid pooling structures or encoder-decoder
architecture [26–31]. The local and global semantic information provides competitive de-
scriptors for scale variability. However, these contextual descriptors focus on local feature
dependence but ignore the global correlation existing in multiscale regions and across
levels, causing semantic inconsistency for feature construction and interpretation mistakes
due to high intra-class and low inter-class variabilities. Hence, the multiscale contextual
information needs to adaptively enhance the consistency of semantic features for intra-class
regions and suppress background information. Second, buildings possess rich geometric
details, such as sharp corners, edges, and some tiny structures. Pyramid pooling models
working on high-level feature maps with coarse resolution struggle to capture small objects
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because pooling operation dramatically reduces image resolution. Low-level features
contain irrelevantly redundant information without semantic guidance in encoder-decoder
architecture, which probably hinders accurate boundary segmentation [22]. Semantic
difference from across-level features brings segmentation ambiguity and reduces feature
fusion efficiency.

To solve the above issues, we proposed an end-to-end FCN model architecture based
on a residual network structure using high-resolution aerial images and LiDAR data. The
residual network can extract high-level features and effectively alleviate the problem of
accuracy degradation as the depth of the network increases. Two novel modules are applied
to the model to obtain multi-scale global context information and refine features.

The main contributions of this paper are summarized as follows:

• We redesigned the FCN architecture using modified residual networks (ResNet50) as
the backbone encoder network to extract features and obtain a large receptive field.
The residual branch network assists the backbone network to convert features and
enhance multi-modal data fusion. Feature pyramid structures with the proposed
decoder modules effectively optimize and fuse across-level multiscale features.

• The proposed multiscale context optimization module (MCOM) can obtain multiscale
global semantic features and generate the contextual representations of different
local regions to adaptively enhance the semantic consistency of intra-class and the
discrepancy of inter-class for multiscale building regions.

• A semantic guided spatial attention module (SAM) is developed that leverages fea-
tures from shallow and deep layers. This module can generate an attention map using
across-level features to acquire long-distance correlation for pixel-wise spatial position
and refine low-level features by filtering redundant information.

2. Related Work
2.1. Contextual Feature Aggregation

Building extraction in remote sensing images can be regarded as a binary classification
processing by using FCNs. In the complex background, rich context information provides
crucial clues for feature selection. ParseNet [32] adopts a simple solution to obtain global
features through GAP (global average pooling). The pyramid pooling model has a pyramid
structure to generate multiscale context vectors. For example, PSPNet employs the spatial
pyramid pooling model to aggregate the feature vectors of different regions, but after
multiple parallel pooling layers, the resolution and detail features of objects are reduced.
Inspired by the spatial pyramid pooling model (SPP), ASPP uses convolution of various
dilated rates to capture context and keep the resolution, while the effective wights of
convolution kernel decrease with large dilated rates [31], which is harmful for large building
segmentation. Moreover, these modules all ignore the correlations of different regions and
semantic levels for object segmentation.

Previous works combine encoder-decoder architecture to recover detail features and
capture multiscale context simultaneously by employing skip-connections and the pyramid
pooling model module [27]. However, low-level features in the decoder lack semantic
information, while high-level context features have limited spatial information, which can-
not effectively fuse multiple features and leverage benefits between different hierarchical
features by merely simple channel concatenation or pixel-summation. In this work, we
design decoder modules to optimize the features from encoders at different stages of the
network. Deep and middle features are reused to generate multiscale semantic descriptions
and obtain rich global context. Shallow features are recalibrated by the spatial attention
mechanism to keep semantic consistent with deep features.

2.2. Attention Mechanism

The attention mechanism aims to select the information that is more critical to the
current tasks. Many attention mechanism models have been applied to deep convolution
neural networks to optimize the process of feature extraction. For instance, the Squeeze-and-
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Excitation Networks (SENet) [33] uses GAP operation to obtain global representation along
the channel axis and automatically learn the weight parameters to remark each feature. The
convolutional block attention module (CBAM) [34] combines the attention mechanism in
channel and space. Similarly, the Dual Attention Network (DANet) [35] proposes position
attention and channel attention mechanism from enhancing the global feature fusion and
the correlation between semantic features. To capture long-range dependencies, Non-local
Neural Networks (NLnet) [36] transform the features to linear embeddings via conv1×1
and then calculate the global attention value for each pixel. However, the high cost of
computing and GPU memory occupation limit its application.

Many methods have improved the previous work to reduce the computational cost
of similarity matrix in non-local attention modules, such as APNB and Ccnet [37,38].
However, this operation ignores the semantic gap between different level feature maps
by concatenation or sum directly. Due to the lack of semantic information of low-level
features, the fused feature map easily generates redundant information and noise. In
this work, inspired by CBAM [34] and NLnet [36], we design a spatial attention decoder
to refine shallow features and filter redundant information. To alleviate the semantic
feature gap, deep features and shallow features are cascaded to construct the similarity
map recalibrating the shallow features.

2.3. Multiscale Feature Fusion

In FCNs, the reconstruction of a high-resolution feature map is crucial for accurate
pixel-level extraction, which requires both enhanced semantic information and fine-grained
spatial information to achieve classification and divide the precise boundaries in the fore-
ground. Some methods employ the encoder-decoder method, such as U-Net structure [29],
to fuse the multi-level feature maps from the backbone network by skip-connection. The
decoder requires up-sampling, such as deconvolution and bilinear interpolation [28], to
gradually fuse and recover resolution from high-level to low-level feature maps.

Similarly, some methods construct the feature pyramid to merge corresponding fea-
tures from multiple resolutions, reducing the computational cost by adding the feature
maps of different levels after up-sampling. In this network, the feature pyramid model is
applied to fuse hierarchical features after the decoder and generate a prediction map with
rich semantic and spatial information.

3. Proposed Method

The developed network based on residual FCNs aims to build the encoder-decoder
architecture using multi-modal high-spatial resolution remote sensing data for building
extraction. A modified residual model as a baseline with an auxiliary network branch
encodes hierarchical features. Two novel modules as decoders are proposed and ef-
fectively integrate the deep and shallow features in different stages. Finally, a binary
classification map can be generated for the prediction of buildings. We first described the
overall network framework, and then the proposed decoder architecture was introduced
in subsequent sections.

3.1. Network Framework

The proposed model architecture consists of the backbone network, branch networks,
building encoder, and decoder architecture, as shown in Figure 1. For the encoder, the
modified ResNet50 [39] as the backbone network is used to generate the multi-level features,
while the branch network is composed of stacked residual convolution blocks to obtain
auxiliary information and enhance feature fusion. Multispectral images were fed into the
backbone network. Meanwhile, the feature of LiDAR-generated nDSM extracted from the
branch network is transmitted into the backbone in different stages.
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Figure 1. Network framework for proposed FCN model. The architecture consists of two patterns for multi-modal data 
inputs. Pattern A is applied to fused features for spectral image and LiDAR data. Pattern B is used for spectral image 
alone. 

Concretely, the backbone network contains an entry block and four residual convo-
lution blocks (resBlock1~resBlock4), as illustrated in Figure 1. At the beginning of the 
backbone network, ResNet50 was modified in the entry block by stacking three 3 × 3 con-
volutions following 3 × 3 max pooling instead of 7 × 7 convolution, where 64 feature maps 
can be obtained through the first layer convolution, and the spatial resolution of the last 
layer is one-fourth of its input resolution. This modification allows the model to support 
multiple channel inputs and reduce parameters using small convolutional kernels. A 
drop-out layer replaces the fully connected layers to prevent overfitting. Each residual 
block applies shortcut and bottleneck structures to avoid degradation of training accu-
racy. Rectified linear unit (ReLU) as an activation layer is used in the model. Downsam-
pling followed the first convolutional layer in the residual block2 with a stride of two but 
is removed in residual block4. Instead, the last residual block using atrous convolutions 
(3 × 3 kernels, 2 dilated rate) simultaneously ensures a large receptive field and constant 
spatial resolution for deep level feature maps to reduce loss of spatial information. There-
fore, the spatial resolution of output from residual block3 and block4 is one-sixteenth of 
the input image. For the branch network, a feature of the nDSM image as one band can be 
extracted via residual blocks with relatively few convolution layers. By skip-connection, 
feature maps from the branch network as input were fed into residual blocks of backbone 
network in different stages. In this process, to acquire robust feature maps, the sets of 
spectral and height features are fused through pixel-wise add operation before transmit-
ting into the backbone network. 

Figure 1. Network framework for proposed FCN model. The architecture consists of two patterns for multi-modal data
inputs. Pattern A is applied to fused features for spectral image and LiDAR data. Pattern B is used for spectral image alone.

Concretely, the backbone network contains an entry block and four residual convo-
lution blocks (resBlock1~resBlock4), as illustrated in Figure 1. At the beginning of the
backbone network, ResNet50 was modified in the entry block by stacking three 3 × 3
convolutions following 3 × 3 max pooling instead of 7 × 7 convolution, where 64 feature
maps can be obtained through the first layer convolution, and the spatial resolution of
the last layer is one-fourth of its input resolution. This modification allows the model to
support multiple channel inputs and reduce parameters using small convolutional kernels.
A drop-out layer replaces the fully connected layers to prevent overfitting. Each residual
block applies shortcut and bottleneck structures to avoid degradation of training accuracy.
Rectified linear unit (ReLU) as an activation layer is used in the model. Downsampling
followed the first convolutional layer in the residual block2 with a stride of two but is
removed in residual block4. Instead, the last residual block using atrous convolutions
(3 × 3 kernels, 2 dilated rate) simultaneously ensures a large receptive field and constant
spatial resolution for deep level feature maps to reduce loss of spatial information. There-
fore, the spatial resolution of output from residual block3 and block4 is one-sixteenth of
the input image. For the branch network, a feature of the nDSM image as one band can be
extracted via residual blocks with relatively few convolution layers. By skip-connection,
feature maps from the branch network as input were fed into residual blocks of backbone
network in different stages. In this process, to acquire robust feature maps, the sets of
spectral and height features are fused through pixel-wise add operation before transmitting
into the backbone network.

In decoder parts, the deep features are passed into MCOM, producing optimized
contextual representation from multiscale spatial areas. Low-level features are selected
and transmitted by SAM from deep decoders. Finally, the feature pyramid network fused
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hierarchical features from the decoders with the upsampling operation and convolutional
calculation. Details of the decoders are described in the following sections.

3.2. Multiscale Context Optimization Model
3.2.1. Model Formulation

Figure 2 displays the structure of the MCOM. Generally, deep and shallow features
are transmitted into the MCOM to generate multi-scale global context information. Then,
global and local features are fused to obtain rich semantic feature maps. Concretely, we
take the scale s as an example, and other branches of the module are conducted in similar
operations. Since deep features (referring to residual block4 in this network) exhibit
strong semantics for classification, high-level features are utilized to guide shallow features
(referring to residual blocks2 and 3 in this network) to construct multiscale global semantic
information. X∈RW×H×C is the feature via the encoder network at different stages, where
W and H are the width and height of input data, respectively, and C is the channel
dimension. Xl and Xh from the shallow and deep feature encoders, and reducing channels
by 1× 1 convolution generates feature xl, xh, which are used to calculate the globally spatial
and semantic information in the subsequent stages. Then, xl and xh are transmitted into a
multiscale global context pyramid structure to achieve feature representations of multiple
scale areas. Hence, the semantic representations Gs corresponding to multiple feature
subregions can be acquired, where Gs = [Gs

1, Gs
2, Gs

3, . . . . . . , Gs
g]. g is the number of Gs

that encodes different global context information in some aspects. Furthermore, if there
are scales of S, the total number of global context vectors is equal to P = S × g. Multiscale
global context vectors GP are generated by learning corresponding weights allocated to
different feature areas. Therefore, an enhanced feature via MCOM is calculated as:

Zi = ϕi(Xl) +
P

∑
s=s1

ψj(Xl)Gs(xh, xl) , (1)

where Gs(·) denotes operation for encoding global context information. ϕi(·) and ψj(·)
denote transformation for the low-level feature Xl by 1 × 1 convolution, mapped into
embedding layers, where i represents any position in the embedding feature map of Xl and
j is any position in the embedding feature map corresponding to Gp. For making feature
fusion and preventing gradient degradation, the residual structure is applied to the result
after the operation of Gs(·) and ψj(·). As a result, Zi contains either local features or global
features from multiscale subregions, which provides some clues for capturing the global
context and enhances semantic features, especially for large-scale building areas.

3.2.2. Global Context Description Vectors

In principle, the MCOM aims to generate various contextual descriptions for global
information interpretation. Global context description vectors are the important component
of the module, which recalibrate feature maps to calculate the context information from
different regions. As shown in Figure 2, the MCOM makes the aggregation of information
from high and low feature maps by Gj(·) in the Equation (3). Each block in the context
pyramid consists of two branches. The first branch calculates the feature weight coefficients
of all subregions, while the second branch recalibrates features of subregions to encode
corresponding global information. Details are described as follows.
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Figure 2. Multiscale context optimization model (MCOM). (a) Module architecture; (b) structure details in each branch
block of the MCOM.

First, to generate global context encoders and reduce the computational complexity, Xl
and Xh are linearly transformed into features xl and xh by 1× 1 convolution in Equation (4),
the channels of which are reduced by C/r and g (r is the rate of channel reduction), respec-
tively. Then, they are both transmitted into the spatial pyramid pooling (SPP) [26] model
in a parallel way to obtain multiscale representations. The above process can be expressed
as Equation (2), where fsu and fsl are the feature maps in scale s and pooling↓ denotes
down-sampling operation with pooling layers. Generated feature maps are normalized
by the softmax function. Overall, Gs

i∈Gs represents the i-th unique semantic code in the
s scale. It can be calculated as Equation (3), where (v,w) and (n,m) represent an arbitrary
position on fsl and fsu, respectively. This operation aggregates context in spatial locations
using across-level features and can adaptively construct global information for the network.
Meanwhile, the whole spatial features of fsl can be retained in each channel-wise. The
contextual description vectors are built, capturing global information in different aspects.
Finally, global context descriptions are concatenated into a vector of semantic representa-
tions Gs in scale s, which provides rich global information guided by high-level features
for Xl.

f s
u = pooling↓(xh), f s

l = pooling↓(xl) (2)

Gsi =
si

2

∑
j

exp( f s
u(v, w))

∑n,m exp( f su(n, m))
f s

l(v, w) (3)

x′l = ϕi
(
Xl) =w1Xl , xl = ψj(Xh) =w2Xl (4)

3.2.3. Multiscale Global Context Pyramid

After transformation via SPP and Gs for Xl and Xu, a global context pyramid archi-
tecture can be constructed, where each block can encode the global semantic feature at
different scales. Furthermore, we concatenate these semantic codes and global average
pooling of xh along the channel dimension, which finally generates a global semantic
coding map GP∈RP×C/r (P = g× s) in Figure 2. Then, Xl is transformed to x’l∈RH×W×P by
1 × 1 convolution, and multiscale global context can be obtained by matrix multiplication
with x’l and GP. To fuse local and global features, global context is added to xl using
the skip-connection in the network. Finally, combining with Equations (1)–(4), enhanced



Remote Sens. 2021, 13, 2473 8 of 23

feature Z can be obtained as Equation (5), where concat(·) denotes concatenation operation
and GAP denotes global average pooling.

Z(Xl) = w2Xl +
p

∑
s=s1

w1Xl · concat(GP, GAP(xh)) (5)

3.3. Semantic Guided Spatial Attention Module

Although the deep-level feature map has rich semantic information, it lacks spatial
detail information. The common method is upsampling deep level maps and fusing the
low-level feature using skip-connection to restore fine-grained structural details, especially
the boundaries of buildings. However, on the one hand, across-level feature fusion prob-
ably causes information redundancy without refinement. On the other hand, different
hierarchical features adopt local operations such as bilinear interpolation or deconvolution
to increase resolution in upsampling. However, this method ignores long-range spatial
interdependence for each pixel in global features. To address this problem, many atten-
tion models simulate semantic interdependence in spatial or channel dimensions, such as
DANet and SEnet. However, these attention mechanisms often come from the same en-
coder layer and ignore the semantic gap and dependence relationship between across-level
features. Deep-level features have large receptive fields containing rich semantic features to
guide the filtering for shallow features. Therefore, to alleviate the semantic gap of different
scale features, inspired by non-local networks [36] and CBAM [34], we designed a spatial
attention module to recover the building’s fine-grained features and optimize the decoder
in shallow layers.

First, we construct a similarity matrix using the high-level and low-level feature maps
to capture a wide range of position dependence. As illustrated in Figure 3, a shallow
layer feature Xl∈RH1×W1×C1 and a deep layer feature Xh∈RH2×W2×C2 are transmitted
into 1 × 1 convolution layers to generate two new feature maps fl and fh, respectively, in
Equation (6), where fl∈RH1×W1×C and fh∈RH2×W2×C. Then, they are reshaped into RM×C,
RN×C, respectively, where M = H1 ×W1 and N = H2 ×W2. A similarity matrix F can be
obtained by a matrix multiplication with fl and fh, F∈RM×N in Equation (7). Therefore, we
can calculate average pooling and maximum pooling along N dimension of F to aggregate
feature in all position on M dimension, respectively, and then reshape it into F′∈RH1×W1×2,
where F′ is the new feature map with two channels.

fl = conv(Xl ), fh = conv(Xh) (6)

F = fl ⊗ ( fh)
T (7)

α(F) = σ(conv(AvgPool(F)(c)MaxPool(F))) (8)

A spatial attention map α(·) that integrates the features F′ can be described via in
Equation (8), where conv(·) denotes convolution operation; AvgPool(·) and MaxPool(·)
denote average pooling and maximum pooling operations, respectively; (c) presents the
concatenation operator; and σ(·) denotes the softmax function. In this paper, we use a
convolution 7 × 7 to fuse feature maps with two channels. Finally, shallow feature Xl from
the encoder is converted into a new feature map X′l by matrix multiplication with α(·).

X′l = α(F)× fl (9)



Remote Sens. 2021, 13, 2473 9 of 23

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 23 
 

 

x’l and GP. To fuse local and global features, global context is added to xl using the skip-
connection in the network. Finally, combining with Equations (1)–(4), enhanced feature Z 
can be obtained as Equation (5), where concat(·) denotes concatenation operation and GAP 
denotes global average pooling. 

1

2 1 h( ) ( ,GAP(x ))
=

= + ⋅∑
p

P
l l l

s s
Z X w X w X conca Gt  (5) 

3.3. Semantic Guided Spatial Attention Module 
Although the deep-level feature map has rich semantic information, it lacks spatial 

detail information. The common method is upsampling deep level maps and fusing the 
low-level feature using skip-connection to restore fine-grained structural details, espe-
cially the boundaries of buildings. However, on the one hand, across-level feature fusion 
probably causes information redundancy without refinement. On the other hand, differ-
ent hierarchical features adopt local operations such as bilinear interpolation or de-
convolution to increase resolution in upsampling. However, this method ignores 
long-range spatial interdependence for each pixel in global features. To address this 
problem, many attention models simulate semantic interdependence in spatial or channel 
dimensions, such as DANet and SEnet. However, these attention mechanisms often come 
from the same encoder layer and ignore the semantic gap and dependence relationship 
between across-level features. Deep-level features have large receptive fields containing 
rich semantic features to guide the filtering for shallow features. Therefore, to alleviate the 
semantic gap of different scale features, inspired by non-local networks [36] and CBAM 
[34], we designed a spatial attention module to recover the building’s fine-grained fea-
tures and optimize the decoder in shallow layers. 

First, we construct a similarity matrix using the high-level and low-level feature 
maps to capture a wide range of position dependence. As illustrated in Figure 3, a shallow 
layer feature Xl∈ H1×W1×C1 and a deep layer feature Xh∈ H2×W2×C2 are transmitted into 1 × 
1 convolution layers to generate two new feature maps fl and fh, respectively, in Equation 
(6), where fl∈ H1×W1×C and fh∈ H2×W2×C. Then, they are reshaped into  M×C,  N×C, re-
spectively, where M = H1 × W1and N = H2 × W2. A similarity matrix F can be obtained by 
a matrix multiplication with fl and fh, F∈ M×N in Equation (7). Therefore, we can calculate 
average pooling and maximum pooling along N dimension of F to aggregate feature in 
all position on M dimension, respectively, and then reshape it into F′∈ H1×W1×2, where F′ 
is the new feature map with two channels. 

lX

hX

W2×H2×C2

W1×H1×C1

×

k k
ncov ×

C

k k
sMPooling ×

k k
sAPooling ×

1 1
ccov ×

×

W1×H1×C

W1×H1×C

N×C

C×M

W1×H1×2W1×H1×C

1 1
ccov ×

M=W1×H1

N= W2×H2

Max pooling layer
Stride=s, kernel size=k

k k
sMPooling ×

×

C Concatenation

Matrix
multiplication

Convolution Layer +
BatchNormalization Layer
Channel=n, kernel size=k×k

k k
ncov ×

k k
sAPooling × Average pooling layer

Stride=s, kernel size=k

Legend
reshape

reshape

reshape

M×2

Softmax

lf

hf

 
Figure 3. Spatial attention module. Figure 3. Spatial attention module.

3.4. Feature Pyramid Fusion Network

The feature pyramid network is an effective structure to fuse multiscale features,
which are usually used for target detection. Currently, it has been used for semantic
segmentation or panoramic segmentation [40] and achieved excellent results. We construct
a feature pyramid structure to fuse different level features and achieve accurate prediction.
The top-down pathway is built with skip-connection, as illustrated in Figure 1. In the
backbone network, middle-level and high-level feature maps from the encoder of residual
block3 and block4 are converted into F4 and F5 via MCOM. Owing to their shared spatial
resolution, we can obtain a fused feature M3 by pixel-wise addition using F4 and F5. Hence,
M3 fused local features and multiscale global context, which assists the network to refine
coarse features and guide upsampling operations. M3 and features from residual block2
or block3 are simultaneously fed into the SAM, and M1, M2 can be obtained. Finally, M1,
M2, and M3 are fused by pixel-wise addition and upsampling to progressively increase the
spatial resolution, generating the final predicted map as shown in Figure 4.
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4. Experiment Design
4.1. Dataset Description

In order to test the effectiveness of the algorithm in three sections, two types of public
datasets are used in the experiment. One is the WHU building dataset [41] with the
high-resolution aerial orthophotos, and the other is the Boston building dataset using the
multi-modal remote sensing data. For the former, aerial images, including R (red), G (green),
and B (blue) bands with 0.075 m spatial resolution, cover 450 km2 in Christchurch, New
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Zealand, and have more than 220,000 independent buildings. The dataset also provides
manually edited labels of buildings for training and evaluating algorithms.

For the Boston building dataset, we collected multispectral high-resolution aerial
orthoimages with 0.3 m spatial resolution that can be obtained from the United States
Geological Survey (USGS) [42]. This dataset consists of eight orthoimages with four bands,
including R, G, B, and near-infrared (NIR), and covering about 18 km2 in Boston, MA, USA.
The whole imageries were processed to correct lens distortion, remove clouds, and make
images color-uniform. Meanwhile, LiDAR point cloud data with 0.35 m estimated point
spacing, 5.2 m vertical accuracy, and 0.36 m horizontal accuracy were obtained from NOAA
for Coastal Management [43]. The shapefiles of building footprints can be downloaded
from the Massachusetts buildings dataset [44] and open street maps (OSM).

The two datasets represent buildings with different densities, variable sizes, and a
variety of shapes in the complex background environment, which ensures the robustness
of the algorithm and the prediction ability of multi-modal data fusion. As shown in
Figure 5, many buildings are covered by vegetation and shadows and some roads and
buildings have similar texture features, bringing some challenges to building extraction.
In the urban area, the density and height of buildings are greater than that in the suburb.
In addition, to analyze the robustness of the algorithm for the large-scale buildings and
the regions with uneven density distribution, we selected two typical areas from the test
dataset to analyze and compare with other deep convolutional models.
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Figure 5. Examples for the data subset and corresponding ground truth, where the buildings are
marked red, and the background is marked black. (a) Shows the RGB images and ground truth of
different building areas in the data subset of WHU. (b) Shows the RGB images, NDVI, and nDSM in
the data subset of Boston.
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4.2. Data Preprocessing

In Table 1, the relevant information of the dataset is listed for model testing and
training, including the data type, image resolution, data acquisition time, and location.
For the WHU building dataset, 60% area of the whole aerial image as a data subset
is used and downsampled into 0.15 m spatial resolution with cropping into 9827 tiles
with 512 × 512 pixels. The cross-validation dataset was established, including the training
dataset, validation dataset, and test dataset, which contains 70,456 buildings, 8562 buildings,
and 24,674 buildings, respectively. Correspondingly, vector files of building footprints have
been manually edited, referring to the original aerial image, are also rasterized to the same
spatial resolution.

Table 1. The information of datasets in different groups.

Usage Data Groups Resolution Acquisition
Time Data Type Number of

Buildings Location

Training and
validation

WHU 0.15 m 2011 Aerial image 79,018 Christchurch
Boston 0.30 m 2015 Aerial image+LiDAR 15,667 Boston

Test

WHU test1 0.15 m 2011 Aerial image 13,846 Christchurch
WHU test2 0.15 m 2011 Aerial image 10,828 Christchurch
Boston test1 0.30 m 2014 Aerial image+LiDAR 2416 Boston
Boston test2 0.30 m 2014 Aerial image+LiDAR 716 Boston

The Boston dataset contains multi-modal data, including multispectral imagery and
LiDAR dataset. First, due to polygons of OSM derived from different times, we correct
its errors and compensate the missing building footprints referring to the original aerial
orthoimages and labels of the Massachusetts buildings dataset to generate accurate labels.
Polygon labels are rasterized into 0.3 m spatial resolution label images. Second, outliers and
noise points are removed from LIDAR point cloud data using CloudCompare software [45].
The unclassified clean LiDAR data and ground LiDAR point cloud data are interpolated
using the Kriging interpolation algorithm to generate the digital surface model (DSM) and
the digital elevation model (DEM).

Finally, to distinguish the bare-ground, road, and buildings, the normalized DSM
(nDSM) image as a band data contain the height information of the object through the
difference of DSM and DEM. For feature extraction and training, nDSM image is also
processed to the same spatial resolution as orthoimages. For multispectral images, the
NDVI image is calculated using the R band and NIR band. All data are integrated into
the image format with multiple channels and cropped into 512 × 512 pixels tiles with the
overlap of 512 pixels for training and testing on network models.

Because Boston data training samples are insufficient for training a large number of
parameters, data enhancement methods are used to increase training samples and improve
the model’s generalization ability. All training samples are rotated by 90◦, mirrored in the
horizontal and vertical directions, and random noise is added to 10% of the dataset. Finally,
the enhanced dataset and original data as inputs are used to train the model.

4.3. Experimental Setting

Our model was implemented using the Keras framework with Tensorflow backbend
on the GeForce RTX 2070 GPU. The network was trained using Adam’s optimization
algorithm by minimizing the cross-entropy losses with the initial learning rate of 0.001,
weight decay of 0.0001, momentum of 0.9, and batch size of 6. The backbone network is
initialized using the pre-trained weight parameters of ResNet-50, while other parameters
were initialized using Xavier’s [46] method. When the training loss value decreases, but
validation dataset loss value remains unchanged or increases in four consecutive iterations,
the learning rate will decrease with the attenuation ratio of 0.15. The model stops training
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when the validation dataset loss does not change within 10 consecutive iterations. The loss
value of the WHU and Boston datasets with the increasing epochs are shown in Figure 6.
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In the WHU building dataset, the R-G-B composite images were fed into the different
networks, while R-G-B-NDVI and nDSM as multi-modal images were fed into networks in
the Boston subset. Two branches of networks were adopted for the in Fused-FCN4s, where
R-G-B-NDVI and nDSM were fed into two sub-networks, respectively. The comparative
model configuration is the same as the proposed model without postprocessing.

4.4. Accuracy Assessment

Three commonly used accuracy matrices, including the overall accuracy, mean inter-
section over union, and F1-score, are used to evaluate the performance of the method in
the semantic segmentation task. OA is the ratio of correctly predicted pixels to the total
pixels, and IoU describes the statistical relationship between the set of ground truth and
predicted segmentation as follows:

OA =
TP + TN

TP + FN + FP + TN
(10)

IoU =
TP

FN + FP + TP
(11)

where TP (true positive) is the number of pixels that the prediction and the corresponding
ground true are all positive; TN (true negative) is the number of pixels that the prediction
and the corresponding ground true are all negative; FP (false positive) is the number of
pixels that prediction result is positive, while the corresponding ground true is negative;
and FN (false negative) is the number of pixels that prediction result is negative, while the
corresponding ground true is positive. We can calculate precision and recall in Equation (12)
with TP, FP, and FN. In addition, F1-score is defined in Equation (13) to measure the
accuracy of the binary classification model in statistics.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(12)

F1− score = 2
Precision× Recall
Precision + Recall

(13)
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5. Experiment Results and Analysis
5.1. Ablation Experiments

An ablation experiment was conducted on the WHU dataset and the Boston dataset
with accuracy metrics including OA and IoU to evaluate quantitative performance. The
same experiment condition is set to compare the performance of building extraction with
different parameters. The feature from different modules and encoder layers are fused
by FPN architecture using skip-connection. In this work, we use two patterns to train
the model for suiting different data types. As shown in the decoder parts of Figure 1, the
network uses pattern A (backbone + branch + decoder) to extract features for multi-modal
data, while pattern B (backbone + decoder) extracts features for multispectral data. WHU
data are used for pattern A due to only containing RGB bands, and the experimental results
are shown in the following sections. In Section 5.1.3, we only use the Boston dataset to
explore the impact of multi-modal data on building extraction.

5.1.1. Ablation on Multiscale Global Context Module

To evaluate the effectiveness of the MCOM, we set different hyperparameters, in-
cluding various pooling rates, types, and the number of global description vectors GS in
comparable experiments. MCOM is followed by residual block3 and block3, and SAM is
removed. Specifically, four sets of different pooling rates, 2/3/6, 2/4/8, 3/6/8, and 3/4/8,
are applied in modules, and the number of global description vectors is initially set to 50%
of the feature channel numbers. In addition, the global average pooling is the branch for
the module when using different pooling rates. Max and average pooling were used to
generate comparative results for testing the proposed method.

Pooling rates: In the experiment, the pooling size will influence the performance of
the result, as shown in Table 2. We choose the different pooling sizes from small to large to
capture the feature from various scale local regions. It is reported that the rates of 2/4/8
and global average pooling get the best results that outperform other settings. Thus, they
are adopted in the proposed module.

Pooling types: The statistical result on two datasets displayed that using average
pooling is more around OA of 0.02–0.5% than using max pooling. Therefore, we use
average pooling in experiments.

Table 2. The statistical results are based on different strategies on datasets. The bold values denote the best result in
different methods.

Datasets Method Pooling Types Pooling Rates IoU (%) OA (%)

WHU

Backbone network - - 91.04 94.75

Backbone network + MCOM

average 2/3/6 92.08 97.64
max 2/3/6 92.06 96.57

average 2/4/8 92.13 97.87
max 2/4/8 92.11 97.56

average 3/6/8 92.05 97.43
max 3/6/8 92.08 97.38

average 3/4/8 92.09 97.81
max 3/4/8 92.07 97.39

Backbone network + SA - - 93.41 96.63

Boston

Backbone + Branch network - - 86.73 93.12

Backbone + Branch network +MCOM

average 2/3/6 88.44 96.37
max 2/3/6 89.95 95.19

average 2/4/8 90.36 96.54
max 2/4/8 89.87 96.51

average 3/6/8 89.66 95.17
max 3/6/8 89.47 96.48

average 3/4/8 90.37 96.21
max 3/4/8 88.88 95.23

Backbone + Branch network + SA - - 89.37 96.67
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Global description vectors: As listed in Figure 7, the number of global description
vectors has an impact on the accuracy of results, where it is set ranging from 20% to
100% of the feature channel numbers. It is observed that IoU and OA increased the WHU
dataset and the Boston dataset between 20–40%. However, the accuracy metrics dropped
gradually, especially when the number of global description vectors is over 40%, which is
probably caused by the increase in computation and parameters that will lead to overfitting.
Moreover, the large size feature maps can significantly increase the computational cost.
Therefore, to leverage efficiency and accuracy for the model training, the number of global
description vectors is determinate as 30% of the feature channel numbers.
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Figure 8 shows the heat map of spatial regions response before and after feature
transformation via MCOM or SAM. We calculate the average fused feature from residual
block3 and block4 in the channel dimension. Obviously, compared with the third and
fourth columns, most of the background-related information is suppressed after MCOM.
In addition, the large-scale building area has a more significant holistic response than the
previous local attention, as shown in the red ellipse.
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5.1.2. Ablation on Spatial Attention Decoder

In this section, the spatial attention decoder was tested to evaluate the influence for the
model without the branch of MCOM. In Figure 1, the middle-level and high-level features
(F3 and F4) are transmitted as the attention map to refine the feature of the encoder from
low-level layers. Table 2 reported that IoU increased by about 2.37% in the WHU dataset
and 2.64% in the Boston dataset. Compared with the fifth and sixth columns in Figure 9,
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the boundary features of buildings have a strong response via SAM, and the features of
classification ambiguity have been corrected, as shown in the red ellipse.

5.1.3. Ablation on Different Data Inputs

Different data types in the Boston dataset as input were divided into different data
groups to verify the effectiveness of the model. Table 3 lists the impact on classification
results employed for two network patterns for different data input combinations, where
RGB, NIR, and NDVI as spectral images were fed into backbone network using pattern A,
while nDSM as unique input was fed into the branch network using pattern B. Compared
with using spectral image alone, the fusion of the nDSM feature can help the backbone
network increase by approximately 2.5% of OA and 3.7% of IoU, which implies that LiDAR
data can significantly improve the classification accuracy. Using the “RGB+NDVI” as input
for the backbone network slightly improves the performance over “RGB+NIR”, while the
OA and mIoU increased by approximately 1.2% and 0.7%, respectively, compared to using
“RGB” alone. The combination of “RGB+NDVI” with nDSM obtained a better result than
other data groups, which indicates that the fusion of spectral features with the elevation of
LiDAR can further improve the results for building extraction.

Table 3. The impact on the accuracy with different data inputs. The bold values denote the best result.

Datasets Metrics
Different Data Inputs

RGB RGB+NDVI RGB+NIR RGB+NDVI+nDSM

Boston
IoU (%) 91.02 91.09 90.94 94.72
OA (%) 95.34 96.51 96.47 97.84

5.2. Comparison of Attention Mechanism

The performance of building extraction is exhibited in Figure 8 using different atten-
tion modules. Closer inspection marked in yellow rectangles can be viewed in rows 2, 3,
5, and 6. The model adopts the same FCNs framework (backbone network + attention
modules) with FPN and substitutes for SAM and MCOM to fuse and generate the results
using different attention mechanisms.

In WHU, our networks outperform other attention modules, implying that the combi-
nation of multiple global context attention and spatial attention modules can effectively
improve the result of multiple-scale building extraction. SEnet could identify most build-
ings, but in detail, it struggled with boundaries and corners of the building in zone 1 and
zone 2. Although DANet and CBAM network obtain a better result than SEnet in test1,
pixels are misclassified in zone 3 and zone 4. This result indicates that spatial attention and
channel attention can enhance the ability to filter features with the tragedy of multi-level
feature fusion, but for the varied scale and the large regions of buildings, they have a weak
ability to integrate different scale features. Compared with other models, NLNet did not
perform well due to many FNs in test1. As only using global spatial attention is effective
for long-range dependencies, it neglects the influence of the dependence between channels.
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Figure 10 exhibits the result of building segmentation for the Boston dataset. Visually,
our model and CBAM obtained better global results than other modules. As shown
in the close-ups of rows 2 and 4, compared to CBAM, our model not only achieved
better performance in the boundaries of buildings but can capture different scale receptive
information with fewer FPs for the large scale area. NLNet has a relatively well result in
the sparsely distributed build-up in zone 2, while it tended to misclassify pixels in the
area covered by shadows and roads in zone 1. For DANet and SKnet, many FPs and FNs
existed in zone 1, where it is difficult for them to identify large building areas.
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Table 4 also illustrates the statistical accuracy metrics obtained through classification.
The current result of the proposed method has superior performance over other mentioned
models with the OA, IoU, and F1-score on the datasets. DANet also obtained accurate
results with high OA, but it performs poor results in WHU dataset with an IoU 9.6%
lower and an F1-score 4.8% lower than our method. Meanwhile, it can be observed that
DANet and CBAM outperform SKnet and NLNet in the WHU dataset with high IoU and
F1-score in the Boston dataset, which further proved that the integration of channel and
spatial attention could effectively improve the accuracy of building segmentation. With
auxiliary from feature pyramid network (FPN) and new modules, the backbone network
can significantly improve the OA and IoU by almost 4% and 6% in Table 2. Obviously, that
result manifests that an attention mechanism combining the FPN architecture can enhance
the multiscale feature fusion and increase the accuracy of segmentation. Therefore, a well-
versed feature extraction strategy using our proposed modules is suitable for multiple-scale
building extraction.
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Table 4. The statistical results are based on different attention modules. The bold values denote the
best result, and the underlined values denote the second-best result.

Method

Datasets

WHU Boston

IoU (%) OA (%) F1-Score (%) IoU (%) OA (%) F1-Score (%)

DANet 83.57 97.54 91.03 94.32 97.55 93.97
CBAM 92.16 97.52 94.21 89.44 97.50 92.16
SEnet 88.47 96.41 89.74 79.57 97.57 83.22

NLNet 81.78 97.38 90.47 92.87 97.14 92.81
Ours 93.19 97.56 95.83 94.72 97.84 96.67

5.3. The Proposed Model with Different Network Frameworks

We selected five representative FCN models for comparison in the experiment: Fused-
FCN4s [24], SegNet [28], PSPNet [26], GRRNet [22], and Deeplabv3+ [27]. These methods
are easy to complete with open source code. Figure 11 presents the classification results
of different full convolution models in the WHU building dataset with only input of R,
G, and B bands of high-resolution aerial images and the close-ups (as marked in yellow
rectangles) for the detailed extraction results.

In the test dataset, two sub-areas with uneven distributions of area and density are
used for comparison and analysis. Our method and Deeplabv3 + obtain better classification
performance through visual observation than other models in the densely distributed and
large-area building area. However, Deeplabv3 + did not achieve excellent performance in
WHU zone 4 as large-scale building blocks appeared as some undetected pixels. Although
the ASPP module enhances multiscale receptive field information, they are given the
same weight and lack globally multiscale semantic information. In contrast, the MCOM
can aggregate global semantic features and has good segmentation results in large-scale
building areas. PSPnet has relatively good extraction results in zone 2 and zone 4, while
there are many FNs and FPs in zone 1 and zone 3, where roads are easily misclassified
as buildings, implying that the pyramid pooling model can capture context features of
multiple scales, but it has inferior extraction ability in small and dense building areas.

Visually, SegNet delivered relatively good segmentation results in zone 1 and zone 3.
However, in some local areas, such as bare land and roads, many pixels are misclassified as
buildings, and there are many discontinuous extraction results in the local region of zone
2 and zone 4. As a result, although maximum pooling index technology and multiscale
feature fusion method of SegNet can improve feature extraction, they are not filtered and
selected, which will negatively impact the segmentation results. Fused-FCN4s and GRRNet
obtained better classification results in relatively uniform scale areas of buildings than
multiscale building areas in urban areas. In zone 1 and zone 2, many FNs can be found in
the area shaded by shadows and around trees. Moreover, the segment results of zone 4
display that many building pixels are not detected, which indicates that Fused-FCN4s and
GRRNet have a weak ability to extract large-scale building blocks.
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Figure 12 exhibits the results of building extraction using the Boston dataset for
different methods. Our models outperform other models in the prediction of urban regions,
and only a small amount of FPs are presented, which indicates that the proposed modules
combining with multi-modal data can improve the result of building extraction. Fused-
FCN4s and GRRNet achieve good performance, but there are still a number of FNs in large-
scale building regions and boundaries. Deeplabv3+ obtained better results for buildings of
a suburb than Fused-FCN4s and GRRNet, but in the dense urban area, it is sensitive to the
features of cars and roads with a similar texture and spectral reflectance with rooftops, so
which of these pixels are misclassified as a building. Similarly, PSPNet generally exhibits
better performance than Deeplabv3+ and Fused-FCN4s in the suburbs but still frequently
misclassified road and plantation pixels as building pixels in the urban area.

Accuracy evaluation in Table 5 is summarized for quantitative analysis and compari-
son of different convolutional neural networks. Our networks achieved the best outcome
with OA, mIoU, and F1-score among the two public datasets. Although Deeplabv3+ has a
relatively high OA of 97.55% in the WHU building dataset, the mIoU is 3% lower than that
of our model. GRRNet and Fused-FCN4s achieved relatively high IoU and F-1 scores in
Boston, but do not perform well in the WHU dataset. PSPnet has comparable results with
Deeplabv3+ in the Boston dataset, but the result only obtained an IoU of 73.87% and an
85.73% F-1 score in the WHU dataset. The results imply that the pyramid pooling strategy
cannot effectively recover the detailed feature information.
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Table 5. The statistical results are based on different networks. The bold values denote the best result,
and the underlined values denote the second-best result.

Method

Datasets

WHU Boston

IoU (%) OA (%) F1-Score (%) IoU (%) OA (%) F1-Score (%)

Deeplabv3+ 87.37 97.55 93.27 86.13 97.17 89.46
PSPNet 73.87 94.11 85.73 92.72 96.89 95.53
SegNet 85.31 97.04 91.15 84.15 97.37 86.17

Fused-FCN4s 86.32 96.38 90.65 94.68 97.58 95.33
GRRNet 86.16 96.59 90.42 93.21 96.94 94.47

Ours 93.19 97.56 95.83 94.72 97.84 96.67

6. Discussions

Using a multiscale context optimization module and spatial attention module, the
proposed model achieves excellent performance for building extraction. The experimental
results also confirm that the segmentation accuracy of the model for building can be
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improved by fusing the features of LiDAR data and the spectral information from high-
resolution aerial images.

In MCOM, semantic descriptors apply a pyramid pooling strategy to obtain multiscale
global semantic information. Different from other multiscale context models, the proposed
MCOM can simultaneously capture the spatial interdependence of multiple regions and
assemble global context information through various semantic encoders for each channel.
The proposed SAM selectively focuses on effective information and suppresses useless
features. To leverage the efficiency of hierarchical feature fusion, MCOM is applied to
deeper layers features due to rich semantic information, while a SAM is used in shallow
layers with high resolution in details.

The proposed model could be further improved with the following research aspects.
First, the appropriate number of global semantic descriptors is obtained by experiments in
the MCOM. For different datasets, this parameter probably needs to be reset to achieve
the optimized global context information. As a result, it is necessary to take adaptive
parameters for different datasets. Second, the model only uses high-resolution images
and LiDAR data. It is necessary to establish the combination with other resources such as
hyperspectral imagery. In addition, the error from nDSM interpolation and registration
between LiDAR and raw images will have a negative impact on the result. The 3D
spatial information of LIDAR point clouds can provide essential clues for building feature
detection. Hence, the network framework could be designed to integrate 3D and 2D
information. Although the model improves the accuracy of building extraction, the large
amount of parameters lead to a decrease in computation cost as shown in Appendix A. In
the future, we still need to improve the efficiency of the model. In the model structure, we
did not explore the impact of multi-branch networks and backbone networks on the results.
For multiple modal data, using shared or non-shared parameters may affect the results.

7. Conclusions

In this paper, a novel, fully convolution network framework is presented for building
extraction in complex remote sensing scenarios. The major contribution of the study is to
optimize and effectively fuse multiscale features from multi-modal data to improve the per-
formance of building segmentation. The modified end-to-end residual FCNs architecture
is applied for feature extraction using the high-resolution airborne imagery or the combina-
tion with LiDAR data. The proposed multiscale context optimization module (MCOM) can
learn semantic representations from multiscale subregions and generate more discrimina-
tive features by constructing global semantic correlations and adaptively aggregating local
context information. A semantic guided spatial attention mechanism is designed to relieve
the semantic feature gap between encoders and refine shallow features by constructing
across-level feature independence. Compared with other classic approaches, our experi-
mental evaluation results on two types of public datasets demonstrated that the proposed
model achieved competitive performance for multiple-scale building extraction.
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Appendix A

Table A1. Complexity comparison with other modules.

Model
WHU Datset Boston Datset

Parameter Size (MB) GFLOPs Parameter Size (MB) GFLOPs

SegNet 112.33 2.64 127.8 2.34
GRRNet 100.34 4.57 116.5 3.35

Senet 95.74 3.87 105.67 2.77
DANet 119.76 2.37 134.38 3.47
CBAM 127.63 3.64 133.79 2.37
NLNet 137.84 2.45 157.36 2.87
PSPnet 178.84 1.28 217.35 1.78

Deeplabv3+ 158.39 5.32 167.87 4.62
Fused-FCN4s 93.14 2.79 100.2 2.14

Ours 138.47 4.73 148.96 3.72
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