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Abstract: An adaptive particle filter method is presented for performing sequential geoacoustic
estimation of a shallow water acoustic environment using the explosive sound sources. This approach
treats environmental parameters and source–receiver distance as unknown random variables that
evolve as the source moves. As a sequential estimation method, this approach reduces the expense
of computation than genetic algorithm and yields results with the same accuracy. Comparing
with standard Particle filter, proposed method can adjust control parameters to adapt to a rapidly
changing environment. This approach is demonstrated on the shallow water sound propagation data
which was collected during the ASIAEX 2001 experiment. The results indicate that the geoacoustic
parameters are well estimated and source–receiver distance are also well determined.

Keywords: sediment parameter; particle filter; geoacoustic inversion; ocean acoustics; acoustic tracking

1. Introduction

The geoacoustic properties of the sea-bottom have important environmental influences
on underwater acoustic propagation, because acoustic waves often cover a large area and
carry large amounts of information about the environment, necessitating environmental
parameter estimation. A number of studies have been conducted to infer environmen-
tal parameters from ocean acoustic data [1–3]. Generally, geoacoustic parameters, such
as sediment sound speed, attenuation, and density can be estimated by matching the
measured acoustic characteristics with the replicas generated from the acoustic compu-
tational model. Following this thought, the matched-field inversion method [4] exploits
the spatial diversity of the channel’s response and the reflection inversion method [5]
used the reflection-coefficient data collected at different frequencies and angles. However,
these methods usually require an array to receive signals. In shallow ocean environments,
the modal dispersion phenomenon can be observed, and its shape is strongly influenced
by geoacoustic parameters. The fact that only one hydrophone is needed to observe this
phenomenon reduces the experimental cost and the complexity of recording systems [6,7].
Compared with inversion methods that require high signal-to-noise ration (SNR) and
complex signal processing techniques, modal dispersion curves can be extracted from the
environment with unknown parameters and strong noise by using warping transform [8],
making this method especially suitable for wide-band signals (air-gun or explosive charges)
received by one hydrophone [9].

Changes in geoacoustic parameters affect the acoustic field so that it “evolves” in space
or time, so estimation of the geoacoustic parameters of a varying field can be reformulated
as a sequential estimation problem. The sequential estimation method is based on the
state-space representation that varies with the time series, considering the relationship
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between the measured and state parameters as the estimated state parameters evolve with
the sequence [10]. As such, in geoacoustic parameter estimation problems, sequential filters
can be used to replace sequentially independent estimations while maintaining a relatively
small calculation amount and robust behavior. Kalman filter and Particle filter (PF) are
two main types of sequential estimation methods. The PF shows superiority in dealing
with the nonlinear problem in geoacoustic inversion because it estimates parameters by
setting a series of particles with weights and then updating them according to the weights
of the particles without the assumption about the form of posterior probability [11]. The PF
was applied to tracking a moving source location as well as geoacoustic parameters [12,13].
However, the performance of PF in these studies depended on the prior information, which
was captured empirically. Especially when environmental parameters change rapidly,
the selection of suitable prior parameters is difficult and computationally expensive. To
address these problems, advanced PF variants were developed [14]. Regularized PF uses
kernel functions to solve the impoverishment problem [15], Markov Chain Monte Carlo PF
inserts a Markov chain Monte Carlo sampler in the resampling stage [16]. The ensemble
Kalman PF uses an ensemble Kalman filter to generate the proposal distribution of the PF,
but the computational costs are increased [17]. However, each of these methods has its
own limitations, and the sequential geoacoustic parameter estimation of modal dispersion
curves in a spatially changing environment has not been investigated yet.

For these reasons, we adopted some adaptive techniques to improve the performance
of the PF in sequential geoacoustic estimation with modal dispersion curves. The particles
in the revised PF algorithm are proposed using an adaptive shift, and the covariance matrix
of state noise is updated online so it can adjust itself in a rapidly varying environment [18].
Additionally, the proposed method was applied to the sound propagation data from the
ASIAEX 2001 experiment and some varying parameters were well-estimated.

This paper is organized as follows: Section 2 briefly introduce the adaptive PF (APF).
Section 3 describes the application of the proposed method using the data from the ASIAEX
2001 experiment. Section 4 provides a discussion, and our summary and conclusions are
outlined in Section 5.

2. Sequential Estimation Method

Sequential geoacoustic estimation can be formulated as two equations

xk = f (xk−1) + wk,

yk = h(xk) + vk,
(1)

where f (·) is the state transition function, and h(·) is the measurement function. In this
paper, h(·) is treated as the numerical acoustic propagation model. The state vector xk
contains the geoacoustic parameters at frame k. In this paper, f (·) is simplified as the
unit matrix I due to the lack of enough prior information about the change in geoacoustic
parameters. The measurement vector yk contains the modal dispersion curves which are
extracted from the time–frequency diagram of the received signal with warping transform
and described as a set of travel time at different propagation modes and different frequen-
cies [7]. The state noise vector wk and measurement noise vector vk can be modeled as
covariance matrices Qk and Rk, respectively. Here, Rk is included in measurement vector yk
as an inherent error. When considering Qk, the situation is different. Because Qk controls
the value ranges of the inverted parameters in the filtering process p(xk|xk−1), its value
should be carefully selected [12]. A common assumption of Qk is a diagonal matrix with
unchanged diagonal elements as a simple Gaussian distribution.

The PF estimates the posterior probability density (PPD) based on the state sampling
in the filter process as

p(xk|y1:k) ≈
Np

∑
i=1

w(i)
k δ(xk − x(i)k ), (2)
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and the state estimation at frame k can be written as

x̄k =
Np

∑
i=1

w(i)
k x(i)k , (3)

where w(i)
k is the weight of the ith particle and Np denotes the number of particles.

The weights of particles are normalized, and the proposal distribution that determines
the new particles is often chosen as p(xk|xk−1). So, the weights can be computed by:

w(i)
k ∝ p(yk|x

(i)
k )w(i)

k−1. (4)

Because the resampling process is often performed after the update step, w(i)
k−1 are

reset to be equal after resampling.
The performance of PF depends on a set of control parameters, such as initial covari-

ance matrix C0 and state noise matrix Qk. When considering a slow-varying environment,
constant control parameters are sufficient. An important issue is the rapidly changing
environment, where the current parameters may be far from the previous estimates. This
means that most particles are wasted if a simple transition probability p(xk|xk−1), which is
determined when a constant Qk without the latest observation yk is used as the proposal
distribution [11].

In this paper, we adopt an alternative kind of PF algorithm that incorporates two adap-
tive techniques. First, the likelihood function conditioned on previous particles, p(yk|xk−1),
and the transition vector are computed to concentrate the particles near to the current
measurement

x̂k|k−1 = 1/G
Np

∑
i=1

p(x(i)k−1)p(yk|x
(i)
k−1)x

(i)
k−1, (5)

where G is the normalization constant of the particle weights. Then, the shift of state vector
is calculated as ∆xk = x̂k|k−1 − x̄k−1, where x̄k−1 is the posterior mean estimation at k− 1.

Next, the state noise covariance matrix Qk is updated by Ĉk|k−1 with a scaling factor β2

as β2Ĉk|k−1. The aim of Ĉk|k−1 is to add the information from yk to the proposal distribution.
Ĉk|k−1 is the forecast covariance matrix of state parameters from k− 1 to k,

Ĉk|k−1 = 1/G
Np

∑
i=1

p(x(i)k−1)p(yk|x
(i)
k−1)(x

(i)
k−1 − x̂k|k−1)(x

(i)
k−1 − x̂k|k−1)

T . (6)

The scaling factor β is expressed as

β = max(1,
√

2 ln(lmax
k−1 /bmax

k|k−1)/3),

lmax
k−1 = max(p(yk−1|x

(i)
k−1)

Np
i=1),

bmax
k−1 = max(p(yk|x

(i)
k−1)

Np
i=1),

(7)

where lmax
k−1 is the maximum likelihood probability of the last measurement. If β = 1,√

2 ln(lmax
k−1 /bmax

k|k−1)/3 < 1 and xk is already within the range with high proposal density.

By using β2Ĉk|k−1 and ∆xk, the proposed particles can be drawn from an adaptive transition
probability that is based on previous-state and current-model parameters{

x(i)k

}Np

i=1
∼ N (∆xk + x(i)k−1, β2Ĉk|k−1). (8)

This “pre-shift” step with the scaling factor added before the particle proposal ensures
the proposed particles efficiently cover the high-likelihood area and the inter-parameter
correlations are also considered. The initial vector, x0, can be set as the maximum a posteriori
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(MAP) estimation x̂0 by the optimization algorithm at k = 0. Furthermore, the initial state
noise covariance matrix is obtained by C0 = diag

{
[(x+ − x−)/2]2

}
, where x+ and x− are

the bounds of the parameters search scope. For illustration purposes, Figure 1 depicts
a flow chart comparison of the standard PF and proposed method in a single iteration.
Compared with the standard PF, the APF just adds two processes to obtain adjustment
factors to increase particle coverage in the high-likelihood region without computing
the extra measurement function h(·). This property makes APF especially suitable for
sequential geoacoustic estimations whose time consumption is mostly used to calculate the
numerical model.

Predict New particles from 
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Figure 1. The comparison of standard PF and adaptive PF in a single iteration.

3. Experiment Results
3.1. Experiment Description

To validate this method, modal dispersion curves that were extracted from sound
propagation data collected from a vertical line array (VLA) during the ASIAEX 2001
experiment in the East China Sea were used as the measurement data for the proposed
filtering algorithm. As shown in Figure 2a, VLA was deployed near position M, where
the water depth was 105 m. The research vessel (R/V) continuously deployed broadband,
explosive sound sources (also called wide-band source, WBS) at a depth of 50 m on an
approximate clockwise circular trajectory with a radius of 30 km with M as the center; their
locations were recorded onboard using a GPS receiver. Notably, the real location of VLA
was 2–3 km away from point M (the detailed description can be found in Figure 2 of [3]),
which resulted in the distance between the WBS and the VLA not always being 30 km.
Additionally, because the VLA was draped over the side of another vessel rather than
anchored to the sea-bottom, its position shifted with the ocean current. For these reasons,
though the R/V dropped the WBSs on a circular route centered on the M, the distance of
each WBS from VLA was not exactly the same, ranging from 26 to 33 km.
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(a) (b)(a) (b)

Figure 2. Location of the ASIAEX 2001 experiment site and the SSP used in this paper. The bathymetry
is obtained from the ETOPO1. (a) M (red square) is the designed center of a circle and VLA (black
triangle) is the actual location of deployed. The blue circle is the first WBS signal and the red clockwise
curve is the real trajectory of sound sources recorded by GPS. (b) The SSP were measured by CTD
throughout the experiment period (about 9 days) and the average SSP (thick line).

Because the sound speed varied significantly during the experiment, an empirical
orthogonal function (EOF) analysis of the sound speed measurements was implemented to
parameterize them. For a sequential of N sound speed profiles (SSP) at M discrete depth
points, the covariance matrix can be computed as

R =
1
N

N

∑
n=1

[cn − c][cn − c]T, (9)

where (·)T is the transpose and c is the mean sound speed profile. Then, the eigende-
composition of R provides the required EOFs using eigenvectors{ fm, m = 1, 2, . . . , M},
with corresponding eigenvalues λm. Therefore, any SSP can be approximated in terms of
its first K orders of EOF coefficients (K ≤ M)

c(z) ≈ c̄(z) +
K

∑
k=1

αk fk(z), (10)

where αk is the projection coefficient for the profile given by

αk = [c(z)− c̄(z)]T fk(z), k = 1, 2, . . . , K. (11)

As such, the estimation of SSP is transformed into estimating EOF coefficients αk. The
average SSP is indicated in Figure 2b as a thick line. The ensemble SSP indicates that the
sound speed fluctuation is large above 60 m. Figure 3 summarizes the EOF analysis for the
measured SSP. Figure 3a provides the first four EOFs and Figure 3b shows the first three
EOF coefficients contained approximately 95% of the energy disturbance, so the estimation
of SSP in our study was performed by estimating the first three EOF coefficients.

Modal dispersion curves were extracted from channel No. 12 of the VLA at a depth
of 78.6 m, and 31 WBS signals deployed on the circular transect were used in this work.
The modal dispersion curves were extracted using warping transform [2,6,8], which can
improve the modal separability by compensating for the nonlinear characteristic of each
mode in the time–frequency domain. The interval between every two signals was about
20 min, and the total process time was about 610 min. An example of extracting modal
dispersion curves is shown in Figure 4 and the location of the displayed signal is marked as
a blue circle in Figure 2a. Figure 4c depicts the time–frequency spectrogram after warping
transform and the origin time–frequency spectrogram is shown in Figure 4d. The first five
modes can be recognized in Figure 4c, and these extracted curves were used as the observed
data yk. The extracted dispersion characteristics are not perfect curves in Figure 4d, maybe
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due to the bubble impulsion of an underwater explosion. This phenomenon was also
reported in [6].

(a) (b)(a) (b)

Figure 3. EOFs of measured SSPs. (a) the first four EOFs. (b) Percent of total fit energy with limited
sets of EOFs.

Figure 4. The illustration of extracting modal dispersion curves with the first WBS signal. The time
domain signals received by VLA are shown in (a). The left side is the channel number and the
right side is the corresponding depth. The signal received at 78.6 m is shown in (b) and its short-
time Fourier spectrogram is given in (d). The warped spectrogram is shown in (c), where warped
modes are approximately horizontal. Extracted (black) and modeled (white) dispersion curves are
superimposed on the time-frequency spectrogram in (d).

Previously, researchers used the geoacoustic model with two or three sediment lay-
ers [1,4]; we compared different types of parameterization using the Bayesian information
criterion (BIC) [19] for several typical sites. The BIC has been used for model selection in
many applications and the most appropriate model has the minimum BIC value. Figure 5a
provides the results of the model selection study in k = 0 and shows that misfit sub-
stantially decreases from one to three seabed layers, and decreases less from three to five
layers. Including the penalty for the number of parameters of each case, the BIC achieved a
minimum for three layers (two sediment layers with basement), indicating the preferred
parameterization. The environmental model depicted in Figure 5b was used for each
sequential estimation time step, and the parameters with the search bounds are listed in
Table 1. Source depth and receiver depth are known in the inversion. The sound speed and
thickness of the sediment layers, as well as the sound speed of the basement, are used as
the geoacoustic parameters to be inverted. Notably, the sound speed in the first layer has a
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positive gradient so it is described by an absolute value csed1−upper and the incremental
value of the lower part ∆csed1−lower with respect to csed1−upper. The time-varying SSP is
inverted by the first three EOF coefficients. The average water depth between the source
and receiver dwater and source–receiver distance r are also treated unknown. A constant
scalar dt is introduced into the estimation to consider the fact that source emission time is
unknown and might not be well-estimated. The modeled dispersion curves were calculated
using the normal mode approach [20].

The first WBS signal (marked as a blue point in Figure 2a) is used to find the MAP
model as the initial model of the adaptive PF, also shown in Table 1. Because density is not
the sensitive parameter in modal dispersion curves inversion [9,21], the densities of the
sediment layers (ρsed1 and ρsed2) and bottom (ρbot) vary with the sound speed according to
the Hamilton empirical function [22] c = 2330.4− 1257.0ρ + 487.7ρ2. The corresponding
estimated dispersion curves of the first WBS signal are shown in Figure 4d.

VLA

Ocean

Basement

WBS

Cbot

dwater

r

VLA

Ocean

Basement

WBS

Cbot

dwater

r

(a) (b)

VLA

Ocean

Basement

WBS

Cbot

dwater

r

(a) (b)

Figure 5. The model selection study of seabed. (a) Results of the model selection study. From top
to bottom are misfit, number of parameters and BIC values as functions of number of seabed layers.
For display purposes, BIC values are shifted so the minimum is at unity and plotted on a log scale.
(b) The model of three layers (two sediment layers with basement) is selected in sequential estimations.

Table 1. The search bounds, reference information for the APF, and the initial setting from the MAP
modal of the first signal.

Bounds Initial Value Bounds Initial Value

csed1−upper (m/s) [1530 1690] 1580.7 dwater (m) [90 125] 106.1
∆csed1−lower (m/s) [20 80] 40.1 dsed1 (m) [1 10] 4.1

csed2 (m/s) [1600 1690] 1647.2 dsed2 (m) [1 40] 29.7
cbot (m/s) [1640 1790] 1687.0 1-EOF [−50 50] −9.2

r (km) [25 36] 27.10 2-EOF [−20 20] −2.2
dt (s) [−1 1] 0.013 3-EOF [−15 15] −2.0

3.2. Interpretation of the Results

The results of the sequential geoacoustic parameters and the evolution of one-dimensional
marginal PPDs of geoacoustic parameters and the source–receiver distance are provided in
Figure 6, where solid lines denote the estimated values of each parameter. The 10,000 APF
starts with initial covariance C0, which is set to diag

{
[(x+ − x−)/2]2

}
to ensure that initial

particles cover the entire parameter intervals. The PPDs are provided in terms of the
normalized histograms from all particles. For comparison, the results of the independent
genetic algorithm (GA) inversions of every WBS signal are also marked as isolated points
in Figure 6. A detailed discussion of this comparison is given in the next section.
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Figure 6. The evolution of marginal PPDs, estimation results (solid lines) and GA results (*) for
sediment parameters, basement sound speed, source range, water depth, dt, and the first three EOF
coefficients. The dashed lines denote the water depth from ETOPT1 and the real source-receiver
distance from GPS, respectively.

The geoacoustic parameters in the top layer show significant changes because both
low- and high-frequency signals can interact with this layer. Furthermore, the top layer is
distinctive because this layer has two sound speed parameters, in the top and bottom. In
previous works [1,3,4,23] (both inversion results and core data), this layer was found to be
thinner than other layers and had a relatively high gradient of sound speed, which is also
found in our results. The gravity core data that penetrate down to a maximum depth of
1 m were taken along the propagation path, showing the surface sediment speed were in
the range of 1570–1675 m/s [1]. The sequential inversion results of the nearest sites (frames
5–6) describe a similar sound speed range of 1580–1630 m/s for the surface sediment layer.

The evolution of parameters in the second layer shows their spatially-distributed
properties: the equivalent thickness increases to 38 m and then decreases to about 20 m
while sound speed shows the opposite trend. As a reference, Yang et al. [4] obtained the
inversion results of this site using the multi-step matched-field method. The matched-
field inversion results of an environmental model with one sediment layer indicated that
the sound speed of the northwestern (NW) sediment is significantly smaller than on the
southeastern (SE) and southwestern (SW) sides. The evolution of csed1 and csed2 in Figure 6
show a similar change from SW to NW (frames 1 to 12). Potty et al. [1] used the sediment
tomography technique with a hybrid method to invert the sound speed profiles (Figure 13
in [1] and the location is near frame 5 in our work). Their results showed that the sound
speed in the top layer increased from 1590 to 1665 m/s and that of the sediment above
the basement was 1640 m/s. The basement sound speed was approximately 1685 m/s.
These values compare well with our results in Figure 6. Similar results of sediment speed
estimation were also reported by Reference [23] and the signal was collected near the center
of the circle (position M in Figure 6a). Due to the limitation of the frequency band, it is
difficult for signals to interact with the deeper layer, so the credibility of the inversion
results in the basement is relatively lower than that of the layers above. Table 2 summarizes
the comparison with the relevant geoacoustic parameters discussed above.

The first three EOF coefficients were used to consider the time-varying sound speed
profile and their tracking results are also provided. An interesting finding is that the most
fluctuating parameter was 2-EOF. The possible reason for this finding is that the variation in
the sound speed profile in the selected time period (10 h) was relatively minimal, resulting
in fewer fluctuations in the 1-EOF coefficient, which plays a major role compared with the
remaining EOF coefficients.
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Table 2. Comparison of parameters estimated here with those of other studies. The gravity core data were measured from the surface
of the seabed and are presented as a confidence interval. The results in the last column were obtained from the site closest to the
measurement point in our study.

Study Geoacoustic Parameters Result Result in This Study

Gravity core data(Ref. [23]) Surface sound speed 1570–1675 m/s 1580–1630 m/s
Potter et al. (Ref. [1]) [csed1−upper, csed1−lower] [1590, 1665] m/s [1580, 1630] m/s
Potter et al. (Ref. [1]) csed2 1640 m/s 1618 m/s
Potter et al. (Ref. [1]) cbot 1685 m/s 1670 m/s
Yang et al. (Ref. [4]) csed1−upper 1594.4 m/s 1609 m/s

To verify the reliability of the inversion method and results, it is feasible to apply
the estimated model parameters to another source [2]. In this work, we chose a set of
geoacoustic parameters estimated on a circular track and bring them to a location where
another WBS signal was dropped to compare the dispersion curves. The observed disper-
sion curves were extracted by the warping transform introduced in Section 3.1. Figure 7a,b
shows the comparison of dispersion curves. The environment parameters (excluding r,
as r was measured by GPS) in the chosen location (thick green dashed line in Figure 7a)
were used to compute the predicted dispersion curves in the location marked with a blue
pentagram and the comparison result is provided as a time–frequency spectrogram in
Figure 7b. As can be seen in this figure, the observed dispersion curves and predicted
curves are in good agreement at most frequency points, indicating that the inversion results
are reliable in this area. To validate the sequential estimation method, the estimated geoa-
coustic parameters at each frame were used to compute the predicted transmission loss
(TL) at different frequencies then they are used to compare with experiment TL. Figure 7c
shows the TL at six frequencies with a receiver depth of 70.6 m. We can find that the
predicted and experimental TL are consistent for most frames and the root mean square
error at different frequencies are all essentially less than 3 dB.

(b)

(c)(a)

(b)

(c)(a)

Figure 7. The verification of inversion. Two locations used in comparison of dispersion curve
are marked in (a): the geoacoustic parameters of green dashed line is used to compute predicted
dispersion curves at the location of blue pentagram. The time–frequency spectrogram is shown in
(b) with observed (black) and predicted (white) dispersion curves. (c) Predicted TL (solid lines) in
circular track compared with experiment data (dashed lines). Frequency is shown in each subplot.
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4. Discussion

A comparison is provided for the proposed method and the independent inversion
method. For example, GA inversion is a widely-used independent geoacoustic inversion
method. Figure 6 also depicts the independent GA inversion results for the same data set
and its results are marked as discrete points. In this work, GA inversion needed at least
300 iterations with a population size of 200 to converge, so it requires 60,000 forward model
runs for a single measurement. GA is computed independently each time; the previous
result and probability distribution cannot be used for the next search, so it needs more
time to run the forward model, resulting in unnecessary calculation waste. GA tends to fall
into local optima. For this reason, we found that the GA inversion results show stronger
fluctuations. To avoid this problem, GA needs a larger population size, resulting in larger
computational consumption. As a comparison, the APF method shows advantages in
terms of a small calculation amount and robust behavior with small variation. Because the
time consumption in the inverse calculation is due to the calls to forward model, the lower
the total number of calls, the shorter the time consumption. In our work, the APF requires
only one-sixth of the computation time of GA.

In addition, compared with other sequential inversion methods, APF has its own
advantages. Due to complexity and nonlinearities, sequential geoacoustic inversion ap-
plications require filters to handle such problems. A tough problem of PF geoacoustic
inversion method is the “blind ” prediction because it cannot use the information in the
latest observation [13]. As for APF used in this work, it achieves tracking inversion of
geoacoustic parameters in a changing environment with a small increase in computational
consumption using advance adaptive scaling and pre-shift. The comparison of performance
can be obtained by tracking the parameters with measured values.

In this work, the water depth dwater can be verified using database results, and source–
receiver distance r can be calculated from the GPS. As mentioned above, the tracking
results of water depth dwater and source–receiver distance r show obvious changes from
start to end. Figure 8 provides the detailed sequential estimation results of water depth
dwater and source–receiver distance r. For illustration purposes, the sequential estimation
is implemented by the PF with different control parameters, and the results are also given
in Figure 8. In the tracking of dwater, the diagonal term in state noise Q1/2

k is 3 m for
standard PF-1 and 9 m for standard PF-2. Because the R/V sailed in a clockwise direction,
the water depth changed from 105 to 90 m in the first 10 frames, then dropped to about
110 m, and finally returned to 105 m. The west part of the trajectory is a gentle slope, so the
estimations of water depth are relatively accurate for APF and Standard PF-1. The situation
is different in the east part because the slope steepens. The standard PF-1 loses track of
dwater from frame 15. However, standard PF-2 shows large oscillations in many frames,
leading considerable error.

Likewise, the diagonal term in state noise Q1/2
k is 500 m for standard PF-1 and 1000 m

for standard PF-2 in the tracking of r. The track shows that r rapidly increases from 26 to
33 km and then back to 26 km, which is consistent with the intuitive sense of the results
in Figure 2. Notably, because the track of the R/V is not a perfect circle on the northeast
side of the VLA, there is a distinct notch in the varying distance value from frames 20 to 25.
For r, the proposed method performs well throughout the tracking process, even in the
notched part. The average error in the tracking of r is less than 5%.

The results show small state noise causes tracking failure and large state noise leads
to oscillation or divergence. The standard PF depends on a fixed state noise matrix Qk,
whose value is difficult to balance in these two situations. However, APF can adjust
the covariance matrix Ĉk|k−1 with the latest observation. As for these parameters, Ĉk|k−1
remains unchanged when the variation range is relatively small and expands immediately
to sampling particles in a wider range when it varies quickly, so the estimations are always
near the high-likelihood area.
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Figure 8. The tracking of dwater and r. The dashed line denotes the measured range of source from
GPS and solid line gives the estimations of adaptive PF. The dotted line is the result of standard PF-1
and the dash-dotted line is standard PF-2.

5. Summary and Conclusions

In summary, in this study, we investigated the application of adaptive PF for se-
quentially estimating geoacoustic and source parameters with modal dispersion curves.
Compared with independent inversion, the proposed method produces a more stable and
smooth inversion result and significantly saves computation time. Additionally, the corre-
lations of different parameters are used in the sequential inversion. The proposed method
uses adaptive shift for particles and the covariance matrix of state noise is updated online
so it can adjust itself in a rapidly varying environment. This approach was demonstrated
on the experimental data collected from ASIAEX 2001 and the results of water depth as well
as source–receiver distance shows that the proposed method has the smallest average error
compared with standard PF. For this experiment, previous studies did not mention the devi-
ation in each WBS emission position in the circular trajectory, whereas the proposed method
achieves tracking of source–receiver distance, even in rapidly changing environments.
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