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Abstract: Ground-penetrating radar (GPR) signal recognition depends much on manual feature
extraction. However, the complexity of radar detection signals leads to conventional intelligent
algorithms lacking sufficient flexibility in concrete pavement detection. Focused on these problems,
we proposed an adaptive one-dimensional convolution neural network (1D-CNN) algorithm for
interpreting GPR data. Firstly, the training dataset and testing dataset were constructed from the
detection signals on pavement samples of different types of distress; secondly, the raw signals are
were directly inputted into the 1D-CNN model, and the raw signal features of the radar wave are
extracted using the adaptive deep learning network; finally, the output used the Soft-Max classifier to
provide the classification result of the concrete pavement distress. Through simulation experiments
and actual field testing, the results show that the proposed method has high accuracy and excellent
generalization performance compared to the conventional method. It also has practical applications.

Keywords: GPR; 1D-CNN; pavement distress; deep learning; radar detection signal

1. Introduction

Roads are the city’s most important transport facilities. As roads are used, distress
appears on the road pavement. Pavement often contains voids, disengaging, no compact-
ness, and other distress. The emergence and development of pavement distress are hidden,
which may cause significant damage (Figure 1). We detected and evaluated pavement dis-
tress to analyze the distress causes. It minimizes the damage done by the distress to protect
the security infrastructure and maintain the normal operations of the infrastructure [1–3].

Ground-penetrating radar (GPR) is a high-resolution non-destructive testing method
applied to the pavement. It can effectively detect distress in the pavement. G.Leimbach
and H.Lowy first proposed to make use of GPR to detect the distribution characteristics
of underground bodies. Then, they acquired a patent for GPR in 1910 [4]. Geophysical
Survey Systems Inc. (GSSI) invented the first commercial GPR-SIR radar in the 1970s, and
in 1995, it produced the first GPR system for highway quality detection. The effective
application of GPR depends not only on the implementation of a hardware system, but
also on signal processing and data interpretation technology. The GPR reflection signal
identification technology can improve GPR from extensive use in detecting distress in the
concrete pavement [5–8].

Methods for recognizing distress in concrete include processing the GPR signal, feature
selection, and signal recognition. The quality of the recognition model is directly related
to the recognition effect. So, establishing a high accuracy recognition model is the key to
solving the problem of pavement distress recognition [9–11]. The most common method in
the literature is the Hough Transform method [12]. Despite pavement distress recognition
achieved by some methods, on top of that, problems of false alarms have not been fully
resolved [13]. Many scholars have researched the scientific issues to focus on the problem.

Remote Sens. 2021, 13, 2375. https://doi.org/10.3390/rs13122375 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3159-920X
https://doi.org/10.3390/rs13122375
https://doi.org/10.3390/rs13122375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13122375
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13122375?type=check_update&version=2


Remote Sens. 2021, 13, 2375 2 of 16

Davis et al. proposed the use of a back-propagation neural network (B.P.) and radial
basis function network (RBF) using the feature extraction radar waves to identify internal
defects in the concrete. However, this method has an intense subjectivity, and the accuracy
of the evaluation is not high [14,15]. For solving the recognition accuracy problem of
the conventional neural network, Xie et al. used the support vector machine (SVM) to
classify the type of pavement distress based on GPR detection. The process entails the non-
linear function transformation of the map feature vectors of radar signal maps into high
dimensional feature space, and the optimal hyperplane is constructed in high dimensional
space for sample classification. However, the classification accuracy is greatly affected
by the feature vector selected, which limits the ability to make widespread use of this
method [16,17]. Pouria et al. used the AdaBoost machine learning algorithm based on the
GPR histogram of oriented gradients (HOG) feature to identify the steel in the bridge deck.
This method is an integration of several classifiers for the classification of the GPR image.
However, the method still needs to select radar image features [18,19]. In spite of the above
method having a specific effect, the manual extraction of certain features is generally useful
only for specific data. The mentioned methods cannot directly extract the feature from
the raw GPR signal. The conventional machine learning (ML) methods are challenging to
promote the development of detection technology.
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Figure 1. Diagram of GPR detection concrete distress principle.

Recently, deep learning theory has gradually become the main development direction
for machine learning [20,21]. Deep learning network architecture automatically extracts the
features of the sample layer by layer, which is independent of the artificial feature extraction
and expert knowledge. It has been widely applied in natural language processing, pattern
recognition, visual computer tasks, and machine fault diagnosis [22–24]. As an essential
branch of deep learning, the convolution neural network (CNN) has mainly been used
in the sequence feature extraction of two-dimensional (2D) and three-dimensional (3D)
images in recent years. Some scholars have introduced CNN into the GPR field [25,26].
Chae et al. focused on classifying B-scans of GPR cylinders according to their depth, size,
material, and the dielectric constant of the underlying medium using convolutional neural
networks [27,28]. Kien et al. presented an automated rebar localization and detection
algorithm based on the integration of conventional image processing techniques and deep
convolutional neural networks [29,30]. Namguy et al. used CNN for the underground
object detection of urban road pavement based on a large amount of GPR B-scan image
libraries [31,32]. These methods used the CNN algorithm for GPR 2D image recognition.
The self-learning ability of CNN has not been fully utilized. The radar signal is a 1D
typical time-series signal, and its data correlates with every time point. If the 1D raw radar
signal is transformed into a two-dimensional image form, and the original sequence space
correlation is destroyed, then the original information in the raw data is lost [33–36].

In summary, the pavement distress detection methods are divided into two types: the
combination of artificial design features and traditional ML classification algorithms or
CNN based on candidate regions for recognition. Artificial design features can not fully
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detect road distress, traditional ML classification algorithm has difficulty dealing with a
complex road environment, and CNN algorithm based on candidate areas can not realize
real-time detection. It is necessary to study an effective automatic recognition algorithm
for GPR data interpretation.

At present, 1D-CNN research on the classification of the GPR signal field is still in
the exploratory stage. The primary advantage of 1D-CNN is that a real-time and low-cost
hardware implementation is feasible due to the compact and straightforward configuration
of 1D CNNs that perform only 1D convolutions [37]. It brings a challenge to explore
1D-CNN in the GPR data interpretation field. In this paper, the raw radar signal is directly
set as an input, and the 1D-CNN method is established for GPR signal recognition. The
method is independent of feature extraction and maximizes the implementation of the self-
learning function of CNN to generate the intelligence recognition model of the GPR signal.
The proposed 1D-CNN-based GPR signal cognition approach was developed and verified
using experimental simulation data for a benchmark pavement GPR detection problem
and useful pavement detection data. The significance of this work can be summarized
as follows:

• Unlike the conventional machine learning method based on GPR signal cognition
available in the literature, the proposed method directly operates on the raw GPR
signal without the need for manual feature extraction. The high-level features of the
GPR signal are automatically extracted through the convolutional operation layer
of 1D-CNN.

• Conventional machine learning methods applied to GPR signals use manual features
that are limited by the specific data set. The proposed CNN-based method uses the
optimal features learned by the 1D-CNNs to maximize classification accuracy. It is the
critical property that significantly improves classification performance.

• Furthermore, we showed the cognition classification results have high accuracy in
one simulation experiment in benchmark pavement GPR detection and one practical
pavement detection experiment.

This paper is organized as follows: The authors discussed previous studies on object
detection with GPR data in Section 1. The novel approach to distress detection/localization
in concrete pavement GPR field data based on 1D-CNN is proposed and introduced in
Section 2. A detailed description of the implementation of the proposed method and
performance study is provided in Sections 3 and 4. The main conclusions are listed
in Section 5.

2. Theory and Methodology
2.1. GPR Detection Concrete Distress Theory

GPR transmit antennas send high-frequency electromagnetic waves into the concrete.
As the electromagnetic waves propagate in the medium, the reflection of the electro-
magnetic waves occurs when the electromagnetic waves are faced with electromagnetic
differences in the target. According to the transmission waveform signal, the reflected
waves collected by the receiving antenna detect subsurface anomalies, wave amplitude,
two-way travel time, and other parameters (Figure 1). The application of GPR has evolved
from geophysical field applications to civil engineering applications.

In the time domain, the composite wavelet can be expressed as the convolution of the
GPR incident wave Ri(t) with the reflectivity series r(t) and noise n(t):

Rr(t) = Ri(t) ∗ r(t) + n(t) (1)

Based on the assumption of the plane wave, the effective reflection coefficients of the
top and bottom interfaces are as follows:

r1 =

√
ε2 −

√
ε1√

ε2 +
√

ε1
(2)
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r2 =
(

1− r2
1

)√ε1 −
√

ε2√
ε2 +

√
ε1

(3)

where ε1 and ε2 are the relative dielectric constants of the concrete and void regions, respectively.
The transmission coefficient of the void layer is defined as:

T = e−j2ωb/v (4)

where ω is the composite wavelet frequency, b is the attenuation constant, and v is the
velocity in the medium.

Based on Figure 1, the composite wavelet consists of two reflections from the top and
bottom interfaces. The wavelet can be defined as:

Rr = Rr1 + Rr2 (5)

Based on Equations (1)–(5), the amplitude spectrum of Rr(t) in the frequency domain
can be expressed as the following:

Ar(ω) = Ai(ω)H(ω) = Ai(ω)
(

r1 + r2T2
)

(6)

where Ar(ω) and Ai(ω) are the amplitude spectrums of Rr(t) and Ri(t) respectively.
The data interpretation of GPR generally includes two aspects (data processing and

image interpretation):

• Data processing includes preprocessing (marking and station correction, etc.) and post-
processing. Its primary purpose is to suppress interference and highlight sound signals
under the condition of ensuring resolution to make the degree of reflection wave as
clear as possible. It can extract various valuable parameters (such as electromagnetic
wave velocity, waveform, etc.).

• The purpose of image interpretation is to analyze the processed time profile and
interpret the anomalies. In the process of interpretation, the reflection signals are
interpreted qualitatively and quantitatively according to the appearance features of
the image, such as reflection intensity and phase features, and combining with drilling
data and other supporting data.

2.2. One-Dimensional Convolution Neural Network

CNN is sensitive to local information, and the global information is obtained from
higher-level neurons and the fusion of different layers of local information. The CNN struc-
ture constitutes an alternation of the convolutional layer and the pooling layer (Figure 2a).

Figure 2. (a) An overview of a sample conventional CNN; (b) The one-dimensional convolutional neural network.

However, the convolution kernel and feature image are two-dimensional in a con-
ventional CNN. The GPR signal is a typical one-dimensional signal, and a conventional
CNN cannot directly implement the classification of the GPR signal. So, we proposed the
a 1D-CNN to classify the GPR signal. The input signal is one-dimensional in 1D-CNN.
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The vectors of the convolution kernel and feature image within the network are also
one-dimensional. The structure is shown in Figure 2b.

In a 1D-CNN, the assumption of l the layer is the convolutional layer. The expression
of the 1D convolutional layer is as follows:

xl
j = f

(
M

∑
i=1

xl−1
i ∗ kl

ij + bl
j

)
(7)

where xl
j is the jst feature mapping in l the layer, f is the activate function, M is the number

of input feature maps, ∗ is the convolution operation, kl
ij is the trainable convolutional

kernel, and bl
j is the bias.

The activation function f meant to improve the convergence rate and reduce over-
fitting benefits. The Rectified Linear Unit (ReLU) is one of the essential activation functions.
The ReLU activation function is as follows:

ReLU(x) = max(0, x) (8)

The assumption that l + 1 the layer is the pooling layer, and then l + 1 the layer is
shown as:

sl
j = f

(
down

(
xl

i

)
+ bl

j

)
where down(·) is the down-sampling function that is the sum of all elements of the vector
n× 1, as down-sampling only affects the overlap region. Thus, the result is the size of the
original 1/n.

The pooling layer of the assumption is l + 1 layer as a feature vector, and the input
vector sl+1

i is a single layer perceptron. Therefore, the output vector can be expressed as:

y
l+1

i = f
(

W
l+1

s
l+1

i + b
l+1
)

(9)

where W l+1 are the weights and bl+1 is the bias.
CNN training is based on the back-propagation (B.P.) principle, which minimizes

the mean square error during the convolution kernel training and bias training. The L-
BFGS algorithm avoids directly solving the Hessian matrix. In place of approximating the
Hessian matrix, the partial gradient operator and model correction is saved to solve the
pseudo-Hessian matrix [38]. It avoids occupying much memory space and computation
time for the Hessian matrix requirement.

The GPR detection signal has a close correlation with the partial sample, and the
long-distance between the samples has a weak correlation. So, the 1D-CNN can easily
extract and learn the features of the raw radar signal. During the construction of the 1D-
CNN, the raw GPR signal corresponding to the sample label data is first used for training
the 1D-CNN. In the 1D-CNN, the feature extraction model is constituted alternately of
convolution layers and pool layers. Then, the classification vector is used for training
the Soft-Max classification model. Finally, the trained network model feature extraction
combines with the Soft-Max classifier model to build one integral 1D-CNN. The network
model training process is shown in Figure 3.

The training process is divided into two phases in the GPR 1D-CNN. Firstly, during
the training of the 1D-CNN, the neural network parameters are initialized, and the neural
network parameters are trained using the BP algorithm. The network error or iteration
times reach the set requirements, and the classification vector can be obtained. Secondly,
the classification vectors of the neural network are used as inputs to train the Soft-Max
classifier model, and the iteration computation does not stop until the iteration times reach
the set maximum. Finally, network training accuracy needs to be tested. If the solution
meets the accuracy requirements, the network model is saved. Otherwise, the convolution
kernel size of the pool of nuclear factors needs to be reset.
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3. GPR Numerical Simulation Model Experiment
3.1. Pavement GPR Detection Benchmark Simulation

A simulation model was created to evaluate the contribution of 1D-CNN based on
the Matlab 2016 platform (The MathWorks, Natick, MA, USA). The established pavement
model is shown in Figure 4a. The dimensions were 2.8 × 1.2 m2. The model consisted
of three layers: 0.1 meter thick air (ε = 1.0, σ = 0 ms/m), 0.3 meter thick surface layer
(ε = 6, σ = 1 ms/m), and 0.8 meter thick base (ε = 16, σ = 5 ms/m). Three distresses
(void, disengaging, and no compactness) were embedded in the model. The sizes were
0.3 × 0.1 m2. The corresponding depths were 0.1 m, 0.3 m, and 0.1 m.
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During the simulation of the GPR with the finite difference time domain (FDTD),
the hardware platform utilized was Intel Core i5-6200 central processing unit dual-core
2.3 GHz, random access memory 8.0 GB. The computational grid size was 0.005 m, and the
length of the time window was 40 ns. The sample number was 512. The central frequency of
the transceiver antenna was set to 900 MHz, the transceiver antenna distance is 0.01 m, and
the work mode was self-excitation and self-receiving. The scanner result of the simulation
was shown in Figure 4b.

There are 281 traces of GPR signals in the experimental test results; 90 traces were in
the anomaly; 30 traces were located at each hidden distress. In total, 200 trace signals were
randomly selected as a training dataset, with the remaining portion set as a testing dataset.
Based on the establishment of the data sets, the 1D-CNN was used to study the recognition
of pavement distress (A. Normal; B. Void; C. Disengaging; D. No compactness).

3.2. Design and Hyperparameter Optimization of 1D-CNN

In the experiment, the 1D-CNN is composed of two convolutional neural layers, two
pool layers, and the perception of one full connection layer. There are four categories
(Normal, Hole, Disengaging, and No compactness) regarding the health status of the
pavement. During the 1D-CNN training process, the inputs are the raw 1D GPR signal
data while the corresponding outputs are (1, 0, 0, 0), (0, 1, 0, 0),(0, 0, 1, 0) and (0, 0, 0, 1)
respectively. The construction of the 1D-CNN model and the selection of appropriate
model parameters are the premises for ensuring high accuracy. Furthermore, the solution
efficiency was also considered. It is necessary to optimize the structure of 1D-CNN and
the training parameters involved as much as possible. We focused on the design of the
1D-CNN. The effect experiments of the parameters were involved in determining the size
of the convolutional kernel and the training parameters.

3.2.1. Effect Analysis of the Size of Convolution Layer Neurons

Most of the time, we increased the number of convolutional neural layers or the
number of convolution neurons to improve solution accuracy. As the GPR signal is a
typical 1D radar wave model, the sample dimension was low, and the number of training
samples was limited. The number of convolution layers was fixed at two convolution layers
to avoid over-fitting of the CNN. We considered the influence of different configurations
and training parameters of the 1D-CNN for the training and test samples classification
accuracy, while the training time was considered a reference evaluation index. Due to the
error between the actual output and the expected output, the network structure needs
training to solve the final classification results. The 1D-CNN can directly input the raw
GPR data to train the network model without preprocessing the signals, such as dimension
reduction, filtering, etc.

When setting the number of neurons in the hidden layer, the number of neurons in
one fore layer was not more than one-half the neurons in one back layer. In the study, eight
different types of neuron configurations were tested. The experimental results are shown
in Table 1.

Table 1. The effect of different neuron configurations on the recognition rate.

Neuron Configuration
Recognition Accuracy (%)

Training Time (s)
Train Test

16, 8 93.00 90.12 11.75
32, 8 94.50 91.19 18.06
32, 16 96.00 93.83 20.78
64, 16 96.50 92.59 31.92
64, 32 96.50 92.59 35.57

128, 32 97.00 96.30 59.64
128, 64 97.00 96.30 66.38
256, 64 97.00 95.06 113.30
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According to Table 1, the model training samples can enhance the ability to identify
categories by increasing the number of convolution kernels. However, it increases the
training time-cost. When using the neuron configuration (128, 32), the recognition rate
of the training sample is highest, and the time consumed is lower than that of the last
two configuration styles; in the case where the arrangement of neurons uses the (128, 32)
configuration, the testing recognition rate is optimal, and the time spent is about half of
the neurons using the (256, 64) configuration. Considering both the recognition rate of the
testing set and the training time indicators, we selected the neurons of the convolutional
model (128, 32) configuration.

3.2.2. Effect Analysis of the Learning Rate and Training Iterations

The learning rate of CNN is an essential parameter in the training process, which
directly affects the stability and convergence rate of CNN. If the learning rate is too
large, the numerical results appear to diverge, and the neural network cannot be trained
appropriately; if the learning rate is too low, the neural network training speed slows down,
and the training time increases exponentially. The training iteration times were tested in
the research, and the influence of the learning rate was studied. The recognition accuracy
of concrete pavement distress is shown in Figure 5, changing with the training iteration times.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 17 
 

 

When setting the number of neurons in the hidden layer, the number of neurons in 

one fore layer was not more than one-half the neurons in one back layer. In the study, 

eight different types of neuron configurations were tested. The experimental results are 

shown in Table 1. 

Table 1. The effect of different neuron configurations on the recognition rate. 

Neuron Configuration 
Recognition Accuracy (%) 

Training Time (s) 
Train Test 

16, 8 93.00 90.12 11.75 

32,8 94.50 91.19 18.06 

32,16 96.00 93.83 20.78 

64,16 96.50 92.59 31.92 

64,32 96.50 92.59 35.57 

128,32 97.00 96.30 59.64 

128,64 97.00 96.30 66.38 

256,64 97.00 95.06 113.30 

According to Table 1, the model training samples can enhance the ability to identify 

categories by increasing the number of convolution kernels. However, it increases the 

training time-cost. When using the neuron configuration (128, 32), the recognition rate of 

the training sample is highest, and the time consumed is lower than that of the last two 

configuration styles; in the case where the arrangement of neurons uses the (128, 32) 

configuration, the testing recognition rate is optimal, and the time spent is about half of 

the neurons using the (256, 64) configuration. Considering both the recognition rate of the 

testing set and the training time indicators, we selected the neurons of the convolutional 

model (128, 32) configuration.  

3.2.2. Effect Analysis of the Learning Rate and Training Iterations 

The learning rate of CNN is an essential parameter in the training process, which 

directly affects the stability and convergence rate of CNN. If the learning rate is too large, 

the numerical results appear to diverge, and the neural network cannot be trained 

appropriately; if the learning rate is too low, the neural network training speed slows 

down, and the training time increases exponentially. The training iteration times were 

tested in the research, and the influence of the learning rate was studied. The recognition 

accuracy of concrete pavement distress is shown in Figure 5, changing with the training 

iteration times. 

 

Figure 5. Net training accuracy and learning rate parameters. Figure 5. Net training accuracy and learning rate parameters.

According to Figure 5, the learning rate of the training parameters is within the range
between 0.0005 and 0.004. There is a maximum value in the range between 0.0028 and
0.0036. It shows the excellent classification performance of the network, and the learning
rate affects the CNN recognition accuracy to a certain extent. As the trained neural network
has high accuracy, the learning rate does not significantly affect the recognition accuracy in
the range.

Under the appropriate learning rate, the increasing number of iterations can reduce
network errors and obtain higher accuracy. In Figure 6, the learning rate is 0.003. With the
increasing number of iterations, the network computation error gradually decreases, as
shown in Figure 6.

In Figure 6, with the increase in the iterative number, the recognition accuracy grad-
ually increases. When the iteration number reaches 50, the change in the accuracy of the
network stabilizes. Then, the efficiency is not significantly improved as the iterations
increase. The iterative number was set to 50 times in the 1D-CNN.
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3.3. Performance Analysis and Comparison of the 1D-CNN
3.3.1. D-CNN Performance Analysis

Based on the structure and training parameters of the 1D-CNN, the GPR 1D-CNN was
applied to recognize each category in the testing set. After 50 iterations, the classification
accuracy of the testing set reached 97.5%. It shows that the algorithm has a high ability to
recognize pavement distress in GPR detection. To more clearly demonstrate each category’s
recognition in the test, the confusion matrix was introduced in the performance analysis of
the 1D-CNN. The confusion matrix is shown in Figure 7.
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Figure 7. The confusion matrix of pavement distress recognition (A. Normal; B. Void; C. Disengaging;
D. No compactness).

According to Figure 7, there is only one case of no compactness distress that is
misrecognized, and the recognition accuracies of the two categories even reached 100%.
This shows that the proposed method is accurate in recognizing concrete pavement distress
based on GPR detection.

To further study the convolutional layer and the pooling layer on the effect of the deep
learning feature, the data was reduced to two-dimensional data, and visualization of the
non-linear dimensionality reduction algorithm was obtained. Herein, the extracted two-
dimensional elements in different levels of the output vector feature were visualized using
t-Distributed Stochastic Neighbor Embedding (t-SNE). The results are shown in Figure 8.
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Figure 8a shows the analysis results of the raw input. Due to the redundancy of
the raw radar signal, it was difficult to distinguish between each category individually.
After the first convolution learning layer, the sample distribution of input significantly
improved from Figure 8b, and most categories were gathered in their respective regions.
However, part of the sample still did not have clustering. In Figure 8c, through the second
convolutional learning layer, each category sample shows more aggregate than the first
convolutional layer, with only a small amount of the samples having been misclassified. In
Figure 8d, each category sample gathers in their respective regions, and all of the samples
were classified correctly.

Then, the trained 1D-CNN was used to recognize pavement distress in the entire
cross-section. The recognition result of the distresses displays in lines. In Figure 9, the
three-line region represents the recognition result of the distress (Yellow line: Void; Green
line: Disengaging; Blue line: No compactness).
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According to the defection region in Figure 9, there are three lines on the synthetic
B-Scan. Compared with the location of distresses in Figure 4a, three categories of concrete
defects are correctly recognized with 1D-CNN in Figure 9. The proposed algorithm can
accurately recognize the distribution of three different defects in the pavement.
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3.3.2. Performance Comparison of Different Methods

In GPR signal recognition, the 1D-CNNModel is not only simple but has high recog-
nition accuracy. To further test the network performance, the 1D-CNN performance was
compared with the conventional method. First, the eight kinds of statistical features ex-
tracted from the data set were set as the input vector. There are five machine learning
methods— to be tested, including BP neural network, support vector machine (SVM),
extreme learning machine (ELM), and Adaboost classifier. The five methods identified the
established GPR simulated data sets. The corresponding recognition results are shown
in Table 2.

Table 2. Performance comparison of the different methods.

ML Algorithm
Recognition Accuracy (%)

Training Time (s)
Train Test

BP 67.00 61.72 3.8
SVM 86.50 82.50 19.61
ELM 69.50 64.20 0.0012

Adaboost 96.00 90.12 1.34
1D-CNN 97.00 96.30 66.38

In Table 2, there are significant differences among the classification results of the five
machine learning classification algorithms. 1D-CNN presents the highest recognition accu-
racy and can accurately identify the different kinds of concrete pavement distress. 1D-CNN
does not require feature extraction radar signals in advance and only has a longer training
time than other algorithms, but this does not affect the practical application of the method.
Compared to the conventional machine learning algorithm, it has significant advantages.

4. Engineering Application
4.1. Distress Recognization in Pavement Engineering

We implemented the application of the established 1D-CNN and investigated the high-
ways in the Nanjing City of China with GPR. The detection device used was a Mala GPR
X3M controller and had a shielded antenna with a 500 MHz central frequency (Figure 10a).
Figure 10b shows GPR real-life validation test site. One length of the detection section
studied was 10.0 m. The acquisition space interval was 0.02 m, and the cross-section
contained 500 trace records, with each trace having 512 sampling points.
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Figure 10. (a) Mala GPR X3M controller and 500 MHZ shielded antenna; (b) GPR real-life validation
experiment spot.

Figure 11a shows the survey records of the GPR. According to the established 1D-CNN
based on Section 3, the convolution layer is used for feature extraction of GPR signals,
and the Soft-Max classifier is used to obtain categories. The inputs are the raw 1D GPR
signal data while the corresponding outputs are (1, 0, 0, 0) or (0, 1, 0, 0) respectively. In
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total, 200 trace data were randomly selected from the 500 trace data as the training set for
1D-CNN. In the process of training, the size of each batch is 50, and the learning rate is set to
0.006. The hardware platform utilized was Intel Core i5-6200 central processing unit dual-
core 2.3 GHz, random access memory 8.0 GB. 1D-CNN was trained for 100 epochs. Then,
the trained 1D-CNN was used to recognize pavement distress in the entire cross-section.
In Figure 10b, the yellow line region represents the recognition result of the distresses.
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Figure 11. (a) Time-domain GPR record data of the pavement; (b) Marked distresses distribution region on GPR record profile.

According to the distress region in Figure 11b, the GPR diagram displays discontinuity
in the surface layer and is significantly different from the other sections. The concrete
distress region of the recognition matches the actual no compactness concrete region very
well. One spot in the distress region was exposed for validation (Figure 12). The evidence
shows distress existed in the region. Thus, 1D-CNN has an excellent ability to recognize
distress in pavement engineering using GPR detection.
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Figure 12. A photo of the pavement distress.

4.2. Interpretation of 3D-GPR Detection

The 3D-GPR uses three-dimensional array antennas to collect three-dimensional data,
which has higher spatial resolution and measurement accuracy for road distress. 3D-GPR
detected the road in the area took the cavity in the pavement as the distress body in this case.
The cavity was a 60 mm × 40 mm × 10 mm rectangular block. The horizontal projection
is located at the position of the simulation area (55 mm, 70 mm), and the depth of its
center point was 60mm from the surface. The position and shape are shown in Figure 13a.
A 20-channel 3-D GPR was simulated, and a 1.5 GHz Ricker wavelet was used in the case.

The hardware platform utilized was Intel Core i7-10710U central processing unit six-
core 1.61 GHz, random access memory 16.0 GB. In the same way, the 3D data of 3D-GPR
detection was obtained through the forward simulation of the FDTD method. The 3D data
body contained 600 trace records, with each trace having 780 sampling points. The data
blocks or planes can be extracted arbitrarily from this data volume for imaging. The slice
images can be selected along the survey line direction, vertical survey line direction, and
horizontal direction for display, as shown in Figure 13b.



Remote Sens. 2021, 13, 2375 13 of 16
Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 17 
 

 

      

Figure 13. (a) The simulation 3D geometry model of GPR; (b) Slices of 3D GPR detection pavement. 

Then, the trained 1D-CNN was used to recognize pavement distress in the entire 

area. The distress location was marked in the entire area (Figure 14). In Figure 14, the 

yellow points represent the recognition distresses in correspondence location. 

 

Figure 14. Time-domain 3D GPR record data of the pavement. 

According to the distress results in Figure 14, the concrete distress region of the 

recognition matches the actual distress region very well. The recognition accuracy is 

higher than 95%. The 1D-CNN can also be used to recognize distress with 3D GPR 

detection as well as conventional GPR detection. 

5. Conclusions 

Pavement distress identification in GPR detection involves many technologies, 

including GPR echo wave signal processing, feature extraction, and signal recognition. 

The problem of establishing a high-precision recognition model is the critical technology 

needed for the identification of pavement distress in the GPR detection process. 1D-CNN 

is not only simple but also possesses high accuracy in the recognition and identification 

of pavement distress. Based on the GPR detection principle analysis in concrete pavement 

distress and the 1D-CNN model theory, 1D-CNN was introduced into the GPR signals for 

recognition of pavement distress. According to the CNN architecture design principle, 

a 

 

 

b 

 

 

Figure 13. (a) The simulation 3D geometry model of GPR; (b) Slices of 3D GPR detection pavement.

The established 1D-CNN was also used in 3D GPR detection. The inputs are the raw
1D GPR signal data while the corresponding outputs are (1, 0, 0, 0) or (0, 1, 0, 0) respectively.
In total, 300 trace data were randomly selected from the 600 trace data as the training set
for 1D-CNN as same as Section 4.1.

Then, the trained 1D-CNN was used to recognize pavement distress in the entire area.
The distress location was marked in the entire area (Figure 14). In Figure 14, the yellow
points represent the recognition distresses in correspondence location.
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Figure 14. Time-domain 3D GPR record data of the pavement.

According to the distress results in Figure 14, the concrete distress region of the
recognition matches the actual distress region very well. The recognition accuracy is higher
than 95%. The 1D-CNN can also be used to recognize distress with 3D GPR detection as
well as conventional GPR detection.

5. Conclusions

Pavement distress identification in GPR detection involves many technologies, in-
cluding GPR echo wave signal processing, feature extraction, and signal recognition. The
problem of establishing a high-precision recognition model is the critical technology needed
for the identification of pavement distress in the GPR detection process. 1D-CNN is not
only simple but also possesses high accuracy in the recognition and identification of pave-
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ment distress. Based on the GPR detection principle analysis in concrete pavement distress
and the 1D-CNN model theory, 1D-CNN was introduced into the GPR signals for recog-
nition of pavement distress. According to the CNN architecture design principle, one
1D-CNNModel, which is suitable for recognizing pavement distress in GPR detection, was
established. The experimental data set came from GPR simulation testing and real field
GPR testing on the road. Based on the data set, the 1D-CNN performance was analyzed
and compared with that of conventional machine learning algorithms. Several conclusions
can be drawn as follows:

(1) The 1D-CNNModel is alternately constituted of 1D convolution layers and pool
layers to extract the radar echo signal features. This method solves the problem that
conventional CNN has of only fitting to 2D image recognition of GPR. The 1D-CNN
directly recognizes the distress in the pavement from the GPR 1D echo signal.

(2) The 1D-CNNModel not only can effectively recognize the pavement distress using the
GPR signal, but also it can correctly identify different types of distress. Its classification
accuracy is higher than 96%. It gives a dominant performance in recognition of
concrete pavement distress.

(3) Based on the performance comparison of 1D-CNN and several conventional machine
learning models, the accuracy of the 1D-CNNModel is the highest and has the best
classification effect in the identification of concrete distress.

In this paper, the type of distress is the most common type of concrete pavement
distress. Therefore, we need to study other types of pavement distress further and obtain
more real-life evidence with the outcomes of the proposed algorithm. More simulation
data and field test data on GPR detection need to be established in the future. It realistically
solves the engineering problems related to concrete pavement distress. In addition, 1D-
CNN will be used to further applications in the procedure. It will be possible to use the
method to detect metallic reinforcement and even be applied to non-metallic reinforcement
when employed for diagnostic testing of building structures.

Author Contributions: Conceptualization, J.X.; methodology, J.X. software, J.Z.; validation, J.X., J.Z.,
and W.S.; funding acquisition, J.X. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Open Research Fund of Key Laboratory of Failure
Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources
(YK319012) and the Open Research Fund of Key Laboratory of Non-destructive Testing Technology
Ministry of Education (Nanchang Aeronautical University, Grant No. EW201980091).

Data Availability Statement: Not applicable.

Acknowledgments: We are grateful to editor Evan Li, academic editor Fabio Tosti, and two anony-
mous reviewers for their constructive comments and support. We also thanks to Guofeng Zhang
from Beijing Deepradar Technology & Service Co., LTD. for his help.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lai, W.W.-L.; Derobert, X.; Annan, P. A review of Ground Penetrating Radar application in civil engineering: A 30-year journey

from Locating and Testing to Imaging and Diagnosis. NDT E Int. 2018, 96, 58–78.
2. Schnebele, E.; Tanyu, B.; Cervone, G.; Waters, N. Review of remote sensing methodologies for pavement management and

assessment. Eur. Transp. Res. Rev. 2015, 7, 7. [CrossRef]
3. Hoła, J.; Schabowicz, K. State-of-the-art non-destructive methods for diagnostic testing of building structures–anticipated

development trends. Arch. Civ. Mech. Eng. 2010, 10, 5–18. [CrossRef]
4. Annan, A. GPR—History, trends, and future developments. Subsurf. Sens. Technol. Appl. 2002, 3, 253–270. [CrossRef]
5. Maser, K.; Holland, T.; Roberts, R.; Popovics, J. NDE methods for quality assurance of new pavement thickness. Int. J.

Pavement Eng. 2006, 7, 1–10. [CrossRef]
6. Travassos, X.L.; Avila, S.L.; Ida, N. Artificial neural networks and machine learning techniques applied to Ground penetrating

radar: A review. Appl. Comput. Inform. 2018, 17, 296–308. [CrossRef]

http://doi.org/10.1007/s12544-015-0156-6
http://doi.org/10.1016/S1644-9665(12)60133-2
http://doi.org/10.1023/A:1020657129590
http://doi.org/10.1080/10298430500501985
http://doi.org/10.1016/j.aci.2018.10.001


Remote Sens. 2021, 13, 2375 15 of 16

7. Plati, C.; Georgouli, K.; Loizos, A. Review of NDT assessment of road pavements using GPR. In Nondestructive Testing of Materials
and Structures; Springer: Berlin/Heidelberg, Germany, 2013; pp. 855–860.

8. Xu, J.; Lei, B. Data interpretation technology of GPR survey based on variational mode decomposition. Appl. Sci. 2019, 9, 2017.
[CrossRef]

9. Park, B.; Kim, J.; Lee, J.; Kang, M.-S.; An, Y.-K. Underground object classification for urban roads using instantaneous phase
analysis of Ground-Penetrating Radar (GPR) Data. Remote Sens. 2018, 10, 1417. [CrossRef]

10. Dou, Q.; Wei, L.; Magee, D.R.; Cohn, A.G. Real-time hyperbola recognition and fitting in GPR data. IEEE Trans. Geosci. Remote Sens.
2016, 55, 51–62. [CrossRef]

11. Pasolli, E.; Melgani, F.; Donelli, M. Automatic analysis of GPR images: A pattern-recognition approach. IEEE Trans. Geosci. Remote Sens.
2009, 47, 2206–2217. [CrossRef]

12. Windsor, C.G.; Capineri, L.; Falorni, P. A data pair-labeled generalized Hough transform for radar location of buried objects.
IEEE Geosci. Remote Sens. Lett. 2013, 11, 124–127. [CrossRef]

13. Ozkaya, U.; Melgani, F.; Bejiga, M.B.; Seyfi, L.; Donelli, M. GPR B scan image analysis with deep learning methods. Measurement
2020, 165, 107770. [CrossRef]

14. Harkat, H.; Ruano, A.; Ruano, M.G.; Bennani, S.D. GPR target detection using a neural network classifier designed by a
multi-objective genetic algorithm. Appl. Soft Comput. 2019, 79, 310–325. [CrossRef]

15. Sbartaï, Z.; Laurens, S.; Viriyametanont, K.; Balayssac, J.P.; Arliguie, G. Non-destructive evaluation of concrete physical condition
using radar and artificial neural networks. Constr. Build Mater. 2009, 23, 837–845. [CrossRef]

16. Xie, X.; Qin, H.; Yu, C.; Liu, L. An automatic recognition algorithm for GPR images of RC structure voids. J. Appl. Geophys. 2013,
99, 125–134. [CrossRef]

17. Wang, J.; Hu, J. A robust combination approach for short-term wind speed forecasting and analysis–Combination of the ARIMA
(Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM
(Least Square SVM) forecasts using a GPR (Gaussian Process Regression) model. Energy 2015, 93, 41–56.

18. Asadi, P.; Gindy, M.; Alvarez, M. A machine learning based approach for automatic rebar detection and quantification of
deterioration in concrete bridge deck ground penetrating radar B-scan images. KSCE J. Civ. Eng. 2019, 23, 2618–2627. [CrossRef]

19. Li, W.; Cui, X.; Guo, L.; Chen, J.; Chen, X.; Cao, X. Tree root automatic recognition in ground penetrating radar profiles based on
randomized Hough transform. Remote Sens. 2016, 8, 430. [CrossRef]

20. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
21. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review. Neurocomputing 2016,

187, 27–48. [CrossRef]
22. Hirschberg, J.; Manning, C.D. Advances in natural language processing. Science 2015, 349, 261–266. [CrossRef]
23. Kooi, T.; Litjens, G.; Van Ginneken, B.; Gubern-Mérida, A.; Sánchez, C.I.; Mann, R.; den Heeten, A.; Karssemeijer, N. Large scale

deep learning for computer aided detection of mammographic lesions. Med. Image Anal. 2017, 35, 303–312. [CrossRef]
24. Jing, L.; Zhao, M.; Li, P.; Xu, X. A convolutional neural network based feature learning and fault diagnosis method for the

condition monitoring of gearbox. Measurement 2017, 111, 1–10. [CrossRef]
25. Kim, N.; Kim, S.; An, Y.-K.; Lee, J.-J. A novel 3D GPR image arrangement for deep learning-based underground object classification.

Int. J. Pavement Eng. 2019, 22, 1–12. [CrossRef]
26. Xu, J.; Shen, Z. Recognition of the Distress in Concrete Pavement Using Deep Learning Based on GPR Image. In Proceedings of

the Structural Health Monitoring 2019, Standford, CA, USA, 10–12 September 2019. [CrossRef]
27. Chae, J.; Ko, H.-y.; Lee, B.-g.; Kim, N. A Study on the Pipe Position Estimation in GPR Images Using Deep Learning Based

Convolutional Neural Network. J. Internet Comput. Serv. 2019, 20, 39–46.
28. Park, S.; Kim, J.; Kim, W.; Kim, H.; Park, S. A Study on the Prediction of Buried Rebar Thickness Using CNN Based on GPR

Heatmap Image Data. J. Korea Inst. Struct. Maint. Insp. 2019, 23, 66–71.
29. Dinh, K.; Gucunski, N.; Duong, T.H. An algorithm for automatic localization and detection of rebars from GPR data of concrete

bridge decks. Autom. Constr. 2018, 89, 292–298. [CrossRef]
30. Agred, K.; Klysz, G.; Balayssac, J.-P. Location of reinforcement and moisture assessment in reinforced concrete with a double

receiver GPR antenna. Constr. Build Mater. 2018, 188, 1119–1127. [CrossRef]
31. Kim, N.; Kim, K.; An, Y.-K.; Lee, H.-J.; Lee, J.-J. Deep learning-based underground object detection for urban road pavement.

Int. J. Pavement Eng. 2018, 21, 1638–1650. [CrossRef]
32. Song, L.; Wang, X. Faster region convolutional neural network for automated pavement distress detection. Road Mater. Pavement Des.

2019, 22, 23–41. [CrossRef]
33. Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans.

Biomed. Eng. 2015, 63, 664–675. [CrossRef] [PubMed]
34. Acharya, U.R.; Fujita, H.; Lih, O.S.; Adam, M.; Tan, J.H.; Chua, C.K. Automated detection of coronary artery disease using

different durations of ECG segments with convolutional neural network. Knowl. Based Syst. 2017, 132, 62–71. [CrossRef]
35. Cho, H.; Yoon, S.M. Divide and conquer-based 1D CNN human activity recognition using test data sharpening. Sensors 2018,

18, 1055.
36. Eren, L.; Ince, T.; Kiranyaz, S. A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier.

J. Signal Process. Syst. 2019, 91, 179–189. [CrossRef]

http://doi.org/10.3390/app9102017
http://doi.org/10.3390/rs10091417
http://doi.org/10.1109/TGRS.2016.2592679
http://doi.org/10.1109/TGRS.2009.2012701
http://doi.org/10.1109/LGRS.2013.2248119
http://doi.org/10.1016/j.measurement.2020.107770
http://doi.org/10.1016/j.asoc.2019.03.030
http://doi.org/10.1016/j.conbuildmat.2008.04.002
http://doi.org/10.1016/j.jappgeo.2013.02.016
http://doi.org/10.1007/s12205-019-2012-z
http://doi.org/10.3390/rs8050430
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.1016/j.neucom.2015.09.116
http://doi.org/10.1126/science.aaa8685
http://doi.org/10.1016/j.media.2016.07.007
http://doi.org/10.1016/j.measurement.2017.07.017
http://doi.org/10.1080/10298436.2019.1645846
http://doi.org/10.12783/shm2019/32401
http://doi.org/10.1016/j.autcon.2018.02.017
http://doi.org/10.1016/j.conbuildmat.2018.08.190
http://doi.org/10.1080/10298436.2018.1559317
http://doi.org/10.1080/14680629.2019.1614969
http://doi.org/10.1109/TBME.2015.2468589
http://www.ncbi.nlm.nih.gov/pubmed/26285054
http://doi.org/10.1016/j.knosys.2017.06.003
http://doi.org/10.1007/s11265-018-1378-3


Remote Sens. 2021, 13, 2375 16 of 16

37. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications:
A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [CrossRef]

38. Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503–528.
[CrossRef]

http://doi.org/10.1016/j.ymssp.2020.107398
http://doi.org/10.1007/BF01589116

	Introduction 
	Theory and Methodology 
	GPR Detection Concrete Distress Theory 
	One-Dimensional Convolution Neural Network 

	GPR Numerical Simulation Model Experiment 
	Pavement GPR Detection Benchmark Simulation 
	Design and Hyperparameter Optimization of 1D-CNN 
	Effect Analysis of the Size of Convolution Layer Neurons 
	Effect Analysis of the Learning Rate and Training Iterations 

	Performance Analysis and Comparison of the 1D-CNN 
	D-CNN Performance Analysis 
	Performance Comparison of Different Methods 


	Engineering Application 
	Distress Recognization in Pavement Engineering 
	Interpretation of 3D-GPR Detection 

	Conclusions 
	References

