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Abstract: Recently, deep learning methods based on the combination of spatial and spectral features
have been successfully applied in hyperspectral image (HSI) classification. To improve the utilization
of the spatial and spectral information from the HSI, this paper proposes a unified network frame-
work using a three-dimensional convolutional neural network (3-D CNN) and a band grouping-based
bidirectional long short-term memory (Bi-LSTM) network for HSI classification. In the framework,
extracting spectral features is regarded as a procedure of processing sequence data, and the Bi-LSTM
network acts as the spectral feature extractor of the unified network to fully exploit the close rela-
tionships between spectral bands. The 3-D CNN has a unique advantage in processing the 3-D data;
therefore, it is used as the spatial-spectral feature extractor in this unified network. Finally, in order to
optimize the parameters of both feature extractors simultaneously, the Bi-LSTM and 3-D CNN share
a loss function to form a unified network. To evaluate the performance of the proposed framework,
three datasets were tested for HSI classification. The results demonstrate that the performance of the
proposed method is better than the current state-of-the-art HSI classification methods.

Keywords: 3-D convolutional neural network (3-D CNN); deep learning; bidirectional long short-
term memory (Bi-LSTM); hyperspectral images (HSIs) classification; spatial-spectral

1. Introduction

With the rising potential of remote-sensing applications in real life, research in remote-
sensing analysis is increasingly necessary [1,2]. Hyperspectral imaging is commonly
used in remote sensing. A hyperspectral image (HSI) is obtained by collecting tens or
hundreds of spectrum bands in an identical region of the Earth’s surface by an imaging
spectrometer [3,4]. In an HSI, each pixel in the scene includes a sequential spectrum, which
can be analyzed by its reflectance or emissivity to identify the type of material in each
pixel [5,6]. Owing to the subtle differences among HSI spectra, HSIs have been applied
in many fields. For instance, hydrological science [7], ecological science [8,9], geological
science [10,11], precision agriculture [12,13], and military applications [14].

In recent decades, the classification of HSIs has become a popular field of research
for the hyperspectral community. While the abundant spectral information is useful for
improving classification accuracy compared to natural images, the high dimensionality
presents new difficulties [15,16]. The HSI classification task has the following challenges:
(1) HSI has high intra-class variability and inter-class diversity. These are influenced by
many factors, such as changes in lighting, environment, atmosphere, and temporal condi-
tions. (2) The available training samples are limited in relation to the high dimensionality
of HSIs. As the dimension of HSIs increases, the required training samples also keep
increasing, while the available samples of HSIs are limited. Therefore, these factors can
result in an unsuitable methodology, reducing the classifier’s ability for generalization.

In early HSI classification studies, most approaches focused on the influence of HSI
spectral features on classification results. Therefore, several existing methods are based
on pixel-level HSI classification, for instance, multinomial logistic regression [17], support
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vector machines (SVM) [18–20], K-nearest neighbor (KNN) [21], neural networks [22],
linear discriminative analysis [23–25], and maximum likelihood methods [26]. SVM is
mainly dedicated to the transformation of linearly inseparable problems into linearly
separable problems by finding the optimal hyperplane (such as the radial basis kernel
and composite kernel [19]), which finally completes the classification task. Since these
methods utilize the spatial context information insufficiently, the classification results
obtained by these pixel classifiers using only spectral features are unsatisfactory. Recently,
researchers have found that spatial feature-based classification methods have significantly
improved the representation of hyperspectral data and classification accuracy [27,28].
Thus, more researchers are combining spectral-spatial features into pixel classifiers to
exploit the information of HSIs completely and improve the classification results. For
example, multiple kernel learning uses various kernel functions to extract different features
separately, which are fed into the classifier to generate a map of classification results.
In addition, researchers in [29,30] segmented HSIs into multiple superpixels to obtain
similar spatial pixels based on intensity or texture similarity. Although these methods have
achieved sufficient performance, hand-crafted filters extract limited features, and most can
only extract shallow features. The hand-crafted features depend on the expert’s experience
in setting parameters, which limits the development and applicability of these methods.
Therefore, for HSI classification, the extraction of deeper and more easily discernible
features is the key.

In recent decades, deep learning [31–33] has been extensively adopted in computer vi-
sion, for instance, in image classification [34–36], object detection [37–40], natural language
processing [41], and has obtained remarkable performance in HSI classification. In contrast
to traditional algorithms, deep learning extracts deep information from input data through
a range of hierarchical structures. In detail, some simple line and shape features can be
extracted at shallow layers, while deeper layers can extract abstract and complex features.
The deep learning process is fully automatic without human intervention and can extract
different feature types depending on the network; therefore, deep learning methods are
suitable for handling various situations.

At present, there are various deep-learning-based approaches for HSI classification,
including deep belief networks (DBNs) [42], stacked auto-encoders (SAEs) [43], recurrent
neural networks (RNNs) [44,45], convolutional neural networks (CNNs) [46,47], residual
networks [48], and generative adversarial networks (GANs) [49]. The SAEs consist of
multiple auto-encoder (AE) units that use the output of one layer as input to subsequent
layers. Li et al. [50] used active learning techniques to enhance the parameter training of
SAEs. Guo et al. [51] reduce the dimensionality by fusing principal component analysis
(PCA) and kernel PCA to optimize the standard training process of DBNs. Although
these methods have adequate classification performance, the number of model parameters
is large. In addition, the HSI cube data are vectorized, and the spatial structure can be
corrupted, which leads to inaccurate classification.

The CNN can extract local two-dimensional (2-D) spatial features of images, and
the weight-sharing mechanism of a CNN can effectively decrease the number of network
parameters. Therefore, CNNs are widely used in HSI classification. Hu et al. [52] proposed
a deep CNN with five one-dimensional (1-D) layers, which receives pixel vectors as input
data and classifies HSI data in the spectral domain only. However, this method loses spatial
information, and the network depth is shallow, limiting the extraction of complex features.
Zhao et al. [53] proposed a CNN2D architecture, in which multi-scale, convolutional AEs
based on Laplace pyramids obtain a series of deep spatial features, while the PCA extracts
three principal components. Then, logistic regression is used as a classifier that connects
the extracted spatial features and spectral information. However, the method does not
consider spectral features and the classification effect on improvement. To extract the
spatial–spectral information, Chen et al. [54] proposed three convolutional models for
creating input blocks of their CNN3D model using full-pixel vectors from the original HSI.
This method extracts spectral, spatial, and spatial–spectral features, which generate data
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redundancy. In addition, Liu et al. [55] proposed a bidirectional-convolutional long short-
term memory (Bi-CLSTM) network with which the convolutional operators across spatial
domains are combined into a bidirectional long short-term memory (Bi-LSTM) network to
obtain spatial features while fully incorporating spectral contextual information.

In summary, sufficiently exploiting features of HSI data and minimizing computational
burden are the keys to HSI classification. This paper proposes a joint unified network
operating in the spatial–spectral domain for the HSI classification. The network uses
three layers of 3-D convolution for extracting the spatial–spectral feature of HSI, and
subsequently adds a layer of 2-D convolution to further extract spatial features. For
spectral feature extraction, this network treats all spectral bands as a sequence of images
and enhances the interactions between spectral bands using Bi-LSTM. Finally, two fully
connected (FC) layers are combined and use the softmax function for classification, which
forms a unified neural network. We list the major contributions of our proposed method.

1. A Bi-LSTM framework based on band grouping is proposed for extracting spectral
features. Bi-LSTM can obtain better performance in learning contextual features
between adjacent spectral bands. In contrast to the general recurrent neural network,
this framework can better adapt to a deeper network for HSI classification.

2. The proposed method adopts 3-D CNN for extracting the spatial–spectral features.
To reduce the computational complexity of the whole framework, PCA is used before
the convolutional layer of the 3-D CNN to reduce the data dimensionality.

3. A unified framework named the Bi-LSTM-CNN is proposed which integrates two
subnetworks into a unified network by sharing the loss function. In addition, the
framework adds the auxiliary loss function, which balances the effects of spectral
and spatial-spectral features for the classification results to increase the classification
accuracy.

The structure of the remaining part is as follows. Section 2 describes long short-term
memory (LSTM), a 3-D CNN, and the framework of the Bi-LSTM-CNN. Section 3 introduces
the HSI datasets, experimental configuration, and experimental results. Section 4 provides
a detailed analysis and interpretation of the experimental results. Finally, conclusions are
summarized in Section 5.

2. Materials and Methods
2.1. Related Work
2.1.1. LSTM

Some tasks need to consider the information of previous and subsequent inputs in
processing the current input. RNNs can solve these problems and handle the spectral
contextual information of an HSI. Figure 1 shows the architecture of an RNN. Given a
series of values x(1), x(2), . . . , x(t) as input data, the formula for each cell structure in the
RNN network is shown as Equations (1) and (2):

h(t) = tan h
(

Wh(t−1) + Ux(t) + ba

)
, (1)

O(t) = Vh(t) + bo, (2)

where W, U, V denote the weight matrices that represent the relation of two nodes. In
detail, W connects the previously hidden node and the currently hidden node, U connects
the input node and the hidden node, and V connects the hidden node and the output node.
Vectors ba and bo are bias vectors. At time t, x(t) represents the input value, h(t) represents
the hidden value, and O(t) represents the output value. The tanh is a nonlinear activation
function. The initialization value of h(0) in Equation (1) is set to zero. Equation (1) indicates
that the output is jointly determined by the input x(t) at time t and the h(t−1) at time t− 1.
As |W| < 1 or |W| > 1, h(t) will be closer to infinity or zero as time increases. This will
cause the gradient to disappear or explode in the backpropagation phase. In other words,



Remote Sens. 2021, 13, 2353 4 of 20

when the relevant information is very far from the current location, RNN will not utilize
this information effectively. RNN cannot solve the problem of long-term dependence.
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Figure 1. RNN architecture.

The LSTM network is proposed to solve this problem. Through the gating mecha-
nism, the LSTM not only remembers past information but also filters some unimportant
information. The LSTM is effective in solving the long dependency problem in the RNNs.

The architecture of LSTM is shown in Figure 2. The memory cell is a critical component
of the LSTM, replacing the hidden unit of the RNNs. The cell state runs throughout the cell,
but it has few branches to ensure information flows unchanged throughout the RNNs. The
LSTM network has a structure called a gate, which can delete or add information about
the cell state. The gate is combined by the Hadamard product operation and the sigmoid
function and can filter which information is allowed to pass. The LSTM has three gates: the
input gate, which determines how the previous memory is combined with the new input
information; the output gate, which controls if the state of the cell at the next time step will
affect other neurons; and the forget gate, which regulates the cell state, causing the cell to
forget or remember a previous state. The candidate cell value stores updated information
from the output of the input gate operation. At time t, the forward propagation of the
LSTM is defined as Equations (3)–(8).
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Input gate:
i(t) = σ

(
Wix(t) + Uih(t−1) + bi

)
, (3)

Forget gate
f (t) = σ

(
W f x(t) + U f h(t−1) + b f

)
, (4)

Output gate
o(t) = σ

(
Wox(t) + U0h(t−1) + bo

)
, (5)

Candidate cell value

c̃(t) = tan h
(

Wcx(t) + Uch(t−1) + bc

)
, (6)

Cell state
c(t) = i(t) ∗ c̃(t−1) + f (t) ∗ c(t−1), (7)

LSTM output
h(t) = o(t) ∗ tan h

(
c(t)
)

, (8)

where σ denotes the logistic sigmoid function and ∗ represents the Hadamard product
operation. The matrices Wi, W f , Wo, Wc, Ui, U f , Uo, and Uc are weight matrices. The
vectors bi, b f , bo, and bc are bias vectors.

2.1.2. CNN

CNNs are being applied with great success in many research areas. A CNN can extract
various kinds of features from an image, such as color, texture, shape, and topology, so it
has the advantage of processing 2-D images, such as identifying displacement, scaling, and
other forms of distortion invariance. Similar to biological neural networks, the structure of
the weight-sharing network of CNNs decreases the number of parameters, thus decreasing
the complexity of the network model.

CNNs include 1-D CNN, 2-D CNN, and 3-D CNN. The 1-D CNN is mainly adopted
for sequence data processing; the 2-D CNN is usually adopted for image recognition; the
3-D CNN is mainly used for medical image and video data recognition. A CNN consists of
three structures: convolution layer, activation function, and pooling layer. There are no
pooling layers in some CNNs. In detail, the purpose of the convolutional layer is for the
extraction of the input data features; with more convolutional layers, the extracted features
are more complex. The activation function increases the nonlinearity of the neural network
model. The pooling layer preserves the main features while decreasing the number of
parameters and calculations, preventing overfitting and improving model generalization.
The schematic diagrams of the 2-D convolution and 3-D convolution are shown in Figure 3.
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2.2. Framework of Proposed Method

The proposed Bi-LSTM-CNN network is based on the combination of Bi-LSTM and
3-D CNN for HSI classification. The method consists of two main parts—one for extracting
spectral features through Bi-LSTM on the raw data and the other for extracting spatial-
spectral features using 3-D CNN after the PCA dimension reduction on the data. To
optimize the parameters of two subnetworks simultaneously, we concatenate the last of
the FC layers of the Bi-LSTM and 3-D CNN to form a new FC layer, after which a softmax
function is added. In this framework, the dimensionality of the raw data is decreased by the
PCA to minimize the computational effort of 3-D convolution, and Bi-LSTM manages the
original data to compensate for the spectral loss after dimensionality reduction. In addition,
Bi-LSTM can better handle the contextual information of the spectra and fully exploit the
spectral features of the HSI. After the last FC layer of each subnetwork, auxiliary functions
are added to balance the contribution of the two subnetworks to the whole framework.
The framework diagram of the Bi-LSTM-CNN is shown in Figure 4.
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2.2.1. Bi-LSTM

In Section 2.1.1, we discussed the use of LSTM to process continuous HSI data and
extract spectral information. The LSTM can retain only previous input information through
cell states because it cannot access future input information. To handle this problem, we
propose to extract spectral information using Bi-LSTM instead of LSTM. Unlike LSTM,
Bi-LSTM preserves both latter and previous information. Additionally, Bi-LSTM shows
accurate results with a better understanding of the context.

The Bi-LSTM network focuses on spectral contextual information. In general, the
Bi-LSTM network inputs one band at a time step. However, HSI has hundreds of bands,
making the Bi-LSTM network too deep to obtain a robust network under the condition of
limited HSI samples. Therefore, the strategy used to group the spectral bands is crucial to
improve HSI classification results. In Bi-LSTM, t denotes the number of groups; n denotes
the number of bands; and m = f loor(n/t) represents the sequence length of each group,
where f loor(x) denotes rounding down x. Z = [Z1, Z2, . . . Zi, . . . Zn] is the spectral vectors
per pixel in the HSI, where Zi is the reflectance value of the ith band. The grouping strategy
is shown as Equation (9):
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x(1) =
[

Z1, Z1+t, . . . Z1+t(m−1)

]
x(2) =

[
Z2, Z2+t, . . . Z2+t(m−1)

]
. . .

x(i) =
[

Zi, Zi+t, . . . Zi+t(m−1)

]
. . .

x(t) = [Zt, Z2t, . . . Ztm],

(9)

where x(i) is the ith group. In this strategy, there will be a relative shortening of the spectral
distance between different groups, and most of the spectral range will be covered.

The framework diagram of the Bi-LSTM is shown in Figure 5. The Bi-LSTM contains
information about the forward and backward of the input sequence. At time t of the input
sequence, the forward LSTM layer contains information before time t, while the backward
LSTM layer contains information after time t. The vectors output from the two LSTM
layers are processed using concatenation. In Bi-LSTM, the colored squares represent each
grouping. Each blue LSTM square represents an LSTM unit, and the red and green arrows
indicate the forward LSTM and the backward LSTM, respectively, and the two LSTMs
pass the information along the arrow direction. Meanwhile, the forward LSTM and the
backward LSTM have the same input data.
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2.2.1.1. 3-D CNN

The 3-D CNN has unique advantages in processing spatial-spectral features. Since
there are many bands in an HSI, the 3-D convolution has a large computational complexity
when extracting spatial-spectral features, which influences the efficiency of HSI classi-
fication. Therefore, in the Bi-LSTM-CNN, the 3-D CNN is used for the HSI after PCA
dimensionality reduction to reduce the computational complexity.

HSI is denoted by X ∈ RW×H×B, where X represents the original data, W and H
represent the width and the height, respectively, and B denotes the number of spectral
bands. Each HSI pixel in X contains a one-hot label vector Y =

(
y1, y2, y3, . . . , yC) ∈

R1×1×C and a value in each of the B spectral bands, where C denotes the land-cover
categories. During the convolution operation, to remove the spectral correlation and
decrease the computational costs, the number of spectral bands is decreased from B to P by
the PCA, while keeping the W and H of the spatial dimension constant. The spectral bands
are reduced, but the essential spatial information for HSI classification is preserved. We
create the 3-D patches centered on each pixel and extract adjacent regions of size w×w× P,
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where w× w denotes the size of the window and P denotes the number of first principal
components that have been reserved by the PCA. The label of the central pixel decides
the truth labels of the patches. The dataset is represented by XP ∈ RM×w×w×P, where M
represents the number of samples.

To achieve the spatial-spectral feature maps in the 3-D CNN, 3-D convolution is
executed three times. Considering the crucial role of 2-D convolution in spatial information
extraction, we apply 2-D convolution to increase the spatial feature maps before the flatten
layer. To prevent overfitting and to improve the generalization of this model, the dropout
is applied once after each FC layer. The structure of the 3-D CNN is shown in Figure 6.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 6. 3-D CNN framework diagram. Each convolutional layer is used with a ReLU function. 
The stride of each layer is 1. 

2.2.3. Loss Function 
In this framework, we adopt the softmax function after the final FC layer to deter-

mine the probability distributions over the pixel classes. In addition, to increase the non-
linearity and accelerate the convergence of the Bi-LSTM-CNN, we adopt the rectified lin-
ear units (ReLU) function after each layer. 

To better train the parameters of the whole framework, after the final FC layer in the 
Bi-LSTM and the 3-D CNN, we adopt the auxiliary loss function. The complete loss func-
tion is defined as Equations (10)–(13): 

𝐿 = − 1𝑚 𝑦 log 𝑦 + (1 − 𝑦 ) log 1 − 𝑦 , (10) 

𝐿 - = − 1𝑚 𝑦 log 𝑦 - + (1 − 𝑦 ) log 1 − 𝑦 - , (11) 

𝐿 = − 1𝑚 𝑦 log(𝑦 ) + (1 − 𝑦 ) log(1 − 𝑦 ) , (12) 

𝐿 = 𝐿 + 𝐿 - + 𝐿 , (13) 

where 𝐿 represents the loss function, and 𝑦  and 𝑦  refer to the predicted label and true 
label for the 𝑖th training sample, respectively. The superscript 𝑗𝑜𝑖𝑛𝑡, 𝐵𝑖-𝐿𝑆𝑇𝑀, and 𝐶𝑁𝑁 
denote the whole framework, the Bi-LSTM network, and the 3-D CNN, respectively. The 
variable 𝑚 denotes the number of the training sample. The parameters of the Bi-LSTM-
CNN were optimized by the mini-batch stochastic gradient descent (SGD) algorithm. 

The implementation procedure of the proposed Bi-LSTM-CNN method is shown in 
Algorithm 1. 

  

3D Conv
Fully ConnectedFlatten

2D Conv

Figure 6. 3-D CNN framework diagram. Each convolutional layer is used with a ReLU function. The stride of each layer is 1.

2.2.2. Loss Function

In this framework, we adopt the softmax function after the final FC layer to determine
the probability distributions over the pixel classes. In addition, to increase the nonlinearity
and accelerate the convergence of the Bi-LSTM-CNN, we adopt the rectified linear units
(ReLU) function after each layer.

To better train the parameters of the whole framework, after the final FC layer in
the Bi-LSTM and the 3-D CNN, we adopt the auxiliary loss function. The complete loss
function is defined as Equations (10)–(13):

Ljoint = − 1
m

m

∑
i=1

[
yi log

(
ŷjoint

i

)
+ (1− yi) log

(
1− ŷjoint

i

)]
, (10)

LBi-LSTM = − 1
m

m

∑
i=1

[
yi log

(
ŷBi-LSTM

i

)
+ (1− yi) log

(
1− ŷBi-LSTM

i

)]
, (11)

LCNN = − 1
m

m

∑
i=1

[
yi log

(
ŷCNN

i

)
+ (1− yi) log

(
1− ŷCNN

i

)]
, (12)

L = Ljoint + LBi-LSTM + LCNN , (13)

where L represents the loss function, and ŷi and yi refer to the predicted label and true label
for the ith training sample, respectively. The superscript joint, Bi-LSTM, and CNN denote
the whole framework, the Bi-LSTM network, and the 3-D CNN, respectively. The variable
m denotes the number of the training sample. The parameters of the Bi-LSTM-CNN were
optimized by the mini-batch stochastic gradient descent (SGD) algorithm.

The implementation procedure of the proposed Bi-LSTM-CNN method is shown in
Algorithm 1.
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Algorithm 1. Bi-LSTM-CNN procedure

Input
(1) HSI with labels.
(2) The size of the patch w, the number of retained principal components P.

Step 1 For each pixel in the HSI, use Equation (9) to divide the hyperspectral cube into t
sequences as the input of the Bi-LSTM network.

Step 2 Retain the first P principal components with PCA. Extract a patch of size w× w× P in the
neighborhood of each pixel after the reduced-dimensional HSI as the input of the 3-D
CNN.

Step 3 Initialize the weights in the Bi-LSTM-CNN by assigning random values that follow a
Gaussian distribution, where the mean, standard deviation, and bias terms are initialized
to 0, 0.1, and 0, respectively.

Step 4 Import training samples into the Bi-LSTM-CNN. Bi-LSTM and 3-D CNN extract the
spectral features and spatial-spectral features for HSI, respectively. Then, softmax is
applied to classify the extracted features. Finally, the mini-batch SGD algorithm is
exploited to optimize the parameters of the Bi-LSTM-CNN, and the parameters are
adjusted by backpropagation to obtain the optimal parameters.

Step 5 For each pixel in the HSI, input the corresponding data from Step 1 and Step 2 to the
Bi-LSTM-CNN to obtain the predicted value for the HSI.

Output
Prediction results for each pixel of HSI.

3. Results

In this section, three open HSI datasets (the three datasets are available at http://
www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes accessed on
14 November 2020) are evaluated in the performance of the Bi-LSTM-CNN by applying
three evaluation metrics, comprising overall accuracy (OA), average accuracy (AA), and
kappa coefficient (Kappa).

3.1. Dataset Description and Training Details

The Indian Pines (IP) is an image acquired by the AVIRIS sensor in 1992 from the
Agricultural and Forestry Hyperspectral Experiment site in northwestern Indiana. The
dataset is an agricultural region with geometrically regular crop areas but irregular forest
areas. The dataset is the size of 145 × 145 and has 224 spectral reflectance bands. The
spatial resolution of each pixel is 20 m. Of these, 24 spectral bands were excluded because
they covered the water absorption region; the wavelength range of the retained 200 bands
is 0.4–2.5 µm. The available samples were divided into 16 categories, representing ap-
proximately half of the total data. The false-color composite image and the ground-truth
map correspond to in Figure 7a,b respectively. In the experiment, the dataset was selected
randomly in the labeled parts from each category, and the ratio of the training and testing
set was 1:9. Table 1 exhibits the details of the sample, as well as the corresponding colors of
the ground-truth map.

The University of Pavia (PU) campus in northern Italy was gathered by the ROSIS-
03 sensor in 2001. This scene has a size of 610 × 340 × 115 and a wavelength range of
0.43–0.86 µm. The spatial resolution of each pixel is 1.3 m. This scene contained nine
categories and 103 spectral bands after 12 noisy bands were discarded. The false-color
composite image and the ground-truth map correspond to in Figure 8a,b respectively.
Table 2 exhibits the details of the sample, as well as the corresponding colors of the ground-
truth map. In the labeled pixels from the PU, only 5% were used as the training set and the
rest as the testing set.

The Salinas Valley (SV) scene is an image of the Salinas Valley, California, collected
by the AVIRIS sensor. This scene forms a cube of dimension 512 × 217 × 224, and the
spatial resolution of each pixel is 3.7 m. Similar to the IP dataset, after discarding 20 water
absorption and noise bands, only 204 bands remained. This scene included 16 different
agriculture crop categories. The false-color composite image and the ground-truth map
correspond to in Figure 9a,b respectively. Table 3 exhibits the details of the sample, as well
as the corresponding colors of the ground-truth map. Among the labeled pixels of this

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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scene, only 5% were used as the training set and the rest as the testing set. In the above
three datasets, the data of all training sets are randomly selected.
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Figure 7. Classification maps for the IP dataset with 10% of training data. (a) False-color image, (b) Ground-truth map,
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Table 1. Details of the IP dataset.

Class
NO. Class Name Color

Number of
Training
Samples

Number of
Testing

Samples

Total
Number of

Samples
C1 Alfalfa 5 41 46
C2 Corn—no till 143 1285 1428
C3 Corn—min till 83 747 830
C4 Corn 24 213 237
C5 Grass/pasture 48 435 483
C6 Grass/tree 73 657 730
C7 Grass/pasture—mowed 3 25 28
C8 Hay—windrowed 48 430 478
C9 Oats 2 18 20

C10 Soybeans—no till 97 875 972
C11 Soybeans—min till 245 2210 2455
C12 Soybeans—clean till 59 534 593
C13 Wheat 20 185 205
C14 Woods 126 1139 1265
C15 Bldg-grass-tree-drives 39 347 386
C16 Stone-steel towers 9 84 93

Total 1024 9225 10,249
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Table 2. Details of the PU dataset.

Class
NO. Class Name Color

Number of
Training
Samples

Number of
Testing

Samples

Total
Number of

Samples
C1 Asphalt 332 6299 6631
C2 Meadows 933 17,716 18,649
C3 Gravel 105 1994 2099
C4 Trees 153 2911 3064
C5 Painted metal sheets 67 1278 1345
C6 Bare soil 251 4778 5029
C7 Bitumen 67 1263 1330
C8 Self-blocking bricks 184 3498 3682
C9 Shadows 47 900 947

Total 2139 40,637 42,776
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Table 3. Details of the SV dataset.

Class
NO. Class Name Color

Number of
Training
Samples

Number of
Testing

Samples

Total
Number of

Samples
C1 Brocoli_green_weeds_1 100 1909 2009
C2 Brocoli_green_weeds_2 186 3540 3726
C3 Fallow 99 1877 1976
C4 Fallow_rough_plow 70 1324 1394
C5 Fallow_smooth 134 2544 2678
C6 Stubble 198 3761 3959
C7 Celery 179 3400 3579
C8 Grapes_untrained 564 10,707 11,271
C9 Soil_vinyard_develop 310 5893 6203

C10 Corn_senesced_green_weeds 164 3114 3278
C11 Lettuce_romaine_4wk 53 1015 1068
C12 Lettuce_romaine_5wk 96 1831 1927
C13 Lettuce_romaine_6wk 46 870 916
C14 Lettuce_romaine_7wk 54 1016 1070
C15 Vinyard_untrained 364 6904 7268
C16 Vinyard_vertical_trellis 90 1717 1807

Total 2707 51,422 54,129

3.2. Experimental Configuration

All the experiments were run with an NVIDIA GTX 1070 GPU and an Inter i7-6700
3.40-GHz CPU with 32 GB of RAM. We performed randomized training and test data
replication 10 times for each test. Based on several experiments, we chose 0.0001 as the best
learning rate. To optimize the Bi-LSTM-CNN, we adopted the mini-batch SGD algorithm,
with a batch size of 128. In the Bi-LSTM, the spectral bands are divided into three groups.

In Table 4, it is evident that the Bi-LSTM-CNN obtained the optimal results when
the input window of the 3-D patches was 25 × 25. Table 5 shows the effect of P on the
classification results in the IP dataset. When P is 30, the classification results are best. If P
keeps increasing, the number of network parameters will increase sharply. Therefore, the
input size of the 3-D patches was 25 × 25 × 30. In Figure 10, the curves of classification
accuracy with epochs during training over IP, PU, and SV datasets. When the epoch is 100,
the classification accuracy was close to 1, but there was still instability. The classification
accuracy was stable when the epoch reached 300, so the epoch of the Bi-LSTM-CNN was
adopted 300. The parameters for the proposed Bi-LSTM-CNN method on the IP dataset
are shown in Table 6.

Table 4. Impact of the input window size of the 3-D patches on the performance.

Window

IP PU SV

OA (%) AA (%) Kappa
× 100 OA (%) AA (%) Kappa

× 100 OA (%) AA (%) Kappa
× 100

10 × 10 95.41 93.07 94.86 96.35 95.18 95.17 95.01 97.57 94.45
15 × 15 97.93 96.11 97.65 98.15 97.39 97.55 97.78 98.91 97.53
20 × 20 98.29 97.60 98.04 99.06 98.42 98.76 99.14 99.56 99.04
25 × 25 98.63 98.50 98.45 99.56 99.22 99.42 99.81 99.83 99.84

Table 5. In the IP dataset, impact of the number of retained principal component on the performance.

P OA (%) AA (%) Kappa
× 100 P OA (%) AA (%) Kappa

× 100

15 98.13 97.77 97.86 25 98.55 98.46 98.35
20 98.18 97.87 97.92 30 98.64 98.50 98.45



Remote Sens. 2021, 13, 2353 14 of 20

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 21 
 

 

replication 10 times for each test. Based on several experiments, we chose 0.0001 as the 
best learning rate. To optimize the Bi-LSTM-CNN, we adopted the mini-batch SGD algo-
rithm, with a batch size of 128. In the Bi-LSTM, the spectral bands are divided into three 
groups. 

In Table 4, it is evident that the Bi-LSTM-CNN obtained the optimal results when the 
input window of the 3-D patches was 25 × 25. Table 5 shows the effect of 𝑃 on the classi-
fication results in the IP dataset. When 𝑃 is 30, the classification results are best. If 𝑃 
keeps increasing, the number of network parameters will increase sharply. Therefore, the 
input size of the 3-D patches was 25 × 25 × 30. In Figure 10, the curves of classification 
accuracy with epochs during training over IP, PU, and SV datasets. When the epoch is 
100, the classification accuracy was close to 1, but there was still instability. The classifica-
tion accuracy was stable when the epoch reached 300, so the epoch of the Bi-LSTM-CNN 
was adopted 300. The parameters for the proposed Bi-LSTM-CNN method on the IP da-
taset are shown in Table 6. 

Table 4. Impact of the input window size of the 3-D patches on the performance. 

Win-
dow 

IP PU SV 

OA (%) AA (%) Kappa × 
100 

OA (%) AA (%) Kappa × 
100 

OA (%) AA (%) Kappa × 
100 

10 × 10 95.41 93.07 94.86 96.35 95.18 95.17 95.01 97.57 94.45 
15 × 15 97.93 96.11 97.65 98.15 97.39 97.55 97.78 98.91 97.53 
20 × 20 98.29 97.60 98.04 99.06 98.42 98.76 99.14 99.56 99.04 
25 × 25 98.63 98.50 98.45 99.56 99.22 99.42 99.81 99.83 99.84 

Table 5. In the IP dataset, impact of the number of retained principal component on the perfor-
mance. 𝑷 OA (%) AA (%) Kappa × 100 𝑷 OA (%) AA (%) Kappa × 100 

15 98.13 97.77 97.86 25 98.55 98.46 98.35 
20 98.18 97.87 97.92 30 98.64 98.50 98.45 

 
Figure 10. In three datasets, classification accuracy for each epoch during training. 

  

Figure 10. In three datasets, classification accuracy for each epoch during training.

Table 6. Parameters for the proposed Bi-LSTM-CNN method on the IP dataset.

Layer (Type) Output Shape Param #

CNNInput (InputLayer) (25, 25, 30, 1) 0
conv3d1 (Conv3D) (23, 23, 24, 8) 512
conv3d2 (Conv3D) (21, 21, 20, 16) 5776
conv3d3 (Conv3D) (19, 19, 18, 32) 13856
reshape1 (Reshape) (19, 19, 576) 0
conv2d1 (Conv2D) (17, 17, 64) 331840

flatten1 (Flatten) (18496) 0
dense1 (Dense) (256) 4735232

BiLSTMInput (InputLayer) (3, 66) 0
dropout1 (Dropout) (256) 0

bidirectional1 (Bidirectional) (256) 199680
dense2 (Dense) (128) 32896

BiLSTMDense (Dense) (128) 32896
dropout2 (Dropout) (128) 0

concatenate1 (Concatenate) (256) 0
JOINTDENSE (Dense) (128) 32896

JOINTSOFTMAX (Dense) (16) 2064
LSTMSOFTMAX (Dense) (16) 2064
CNNSOFTMAX (Dense) (16) 2064

Total params #: 5,391,776

3.3. Classification Results

In this paper, we compared the Bi-LSTM-CNN with some state-of-the-art methods,
which are CNN1D, CNN2D, and CNN3D [56], SSUN [57], and HybridSN [58]. CNN1D,
CNN2D, and CNN3D used 1-D convolution, 2-D convolution, and 3-D convolution, re-
spectively. SSUN used an LSTM and a multiscale CNN to extract spectral and spatial
features for implementing spatial and spectral joints. HybridSN adopted a mixture of 3-D
convolution and 2-D convolution to extract spatial-spectral features with mainly spatial
information. All the comparison methods were run in the same environment.

Tables 7–9 show the results acquired by six methods on the IP (10% of the total dataset),
PU (5%), and SV (5%), including OA, AA, Kappa, testing time, accuracy for each class.
These are the result of running on the testing set. CNN1D had the worst classification
results. In detail, all three evaluation metrics (OA, AA, and Kappa) of CNN1D were
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lower than the other methods. The accuracy of each class is the lowest among the six
methods. CNN2D had better classification results than CNN1D, but still had a large
drawback with other methods. Among the remaining methods, each method achieves the
best results in some classes. Specifically, the Bi-LSTM-CNN obtained higher performance
than other methods on OA, AA, Kappa. In addition, the Bi-LSTM-CNN obtains the highest
accuracy in most of classes. The testing time of CNN1D, CNN2D, SSUN are less than other
comparison methods.

Table 7. Classification results for the IP dataset using 10% of the available labeled data.

Class NO. CNN1D CNN2D CNN3D SSUN HybridSN Bi-LSTM-
CNN

C1 32.44 69.51 80.73 99.51 86.19 96.10
C2 69.84 91.18 97.68 96.93 94.63 94.93
C3 62.82 90.98 98.70 98.34 99.26 98.90
C4 43.05 87.18 94.08 97.51 96.32 97.93
C5 88.48 89.98 96.25 96.99 99.04 98.99
C6 96.59 97.41 99.53 98.87 98.93 99.30
C7 40.40 87.20 88.00 97.20 100.00 100.00
C8 98.28 98.84 99.98 99.88 99.30 100.00
C9 39.44 57.22 85.56 78.33 90.74 96.11

C10 67.34 93.34 97.12 95.94 98.61 99.15
C11 82.92 95.36 98.90 98.48 99.00 99.50
C12 73.15 88.31 94.40 97.08 95.82 98.78
C13 97.95 97.24 99.78 98.43 97.57 99.72
C14 94.04 98.64 99.72 98.90 99.77 99.82
C15 60.98 91.59 95.76 97.58 98.80 99.79
C16 83.45 90.12 96.55 93.81 91.67 97.61

OA (%) 78.89 93.73 97.99 97.89 98.05 98.63
AA (%) 71.58 89.01 95.17 96.53 96.60 98.50

Kappa × 100 74.88 92.85 97.70 97.60 97.78 98.45
Testing time (s) 0.36 0.61 3.49 1.19 4.54 5.34

Table 8. Classification results for the PU dataset using 5% of the available labeled data.

Class NO. CNN1D CNN2D CNN3D SSUN HybridSN Bi-LSTM-
CNN

C1 93.22 99.43 99.02 98.55 99.59 99.59
C2 98.01 99.83 99.99 99.84 99.97 100.00
C3 77.99 97.44 95.39 95.50 97.77 97.19
C4 92.33 97.49 99.04 99.16 98.63 99.29
C5 99.57 99.84 99.99 99.63 99.40 100.00
C6 87.53 88.78 100.00 99.51 99.97 100.00
C7 87.24 99.29 99.99 96.12 99.94 98.97
C8 84.07 97.49 98.19 98.62 97.96 98.28
C9 99.66 95.89 98.88 98.72 94.32 99.67

OA (%) 93.20 98.05 99.48 99.09 99.38 99.56
AA (%) 91.07 97.50 99.16 98.41 98.61 99.22

Kappa × 100 90.94 97.42 99.31 98.79 99.19 99.42
Testing time (s) 1.41 3.40 14.63 4.45 7.29 10.62
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Table 9. Classification results for the SV dataset using 5% of the available labeled data.

Class NO. CNN1D CNN2D CNN3D SSUN HybridSN Bi-LSTM-
CNN

C1 99.20 99.42 100.00 99.83 100.00 100.00
C2 99.96 99.87 100.00 99.93 100.00 100.00
C3 98.97 99.68 100.00 99.89 100.00 100.00
C4 99.20 99.31 99.66 99.68 99.99 99.99
C5 97.87 98.56 99.87 99.39 98.15 99.76
C6 99.80 99.68 100.00 99.99 100.00 100.00
C7 98.66 99.09 99.96 99.97 99.99 100.00
C8 82.07 90.98 99.81 99.58 99.94 99.96
C9 99.66 99.80 99.97 99.99 100.00 100.00

C10 95.86 98.60 99.65 99.73 99.64 99.97
C11 97.68 98.88 99.07 99.11 98.72 99.31
C12 99.89 99.63 99.89 100.00 99.98 100.00
C13 98.60 99.01 99.88 99.43 100.00 99.89
C14 96.16 97.17 99.46 98.13 99.50 99.51
C15 76.71 91.34 98.30 99.09 98.20 99.30
C16 98.34 98.43 99.77 99.36 99.99 99.94

OA (%) 92.41 95.01 99.67 99.63 99.71 99.81
AA (%) 96.23 96.87 99.77 99.57 99.77 99.83

Kappa × 100 91.56 94.86 99.63 99.59 99.67 99.84
Testing time (s) 2.34 2.99 18.15 5.70 9.40 13.16

The classification maps of the six methods in the three datasets are shown in Figures 7–9.
These Figures show the prediction results of the six methods for all labeled samples. It is
obvious that the classification maps of CNN1D and CNN2D have a large amount of salt
and pepper noise. As the remaining four methods used spatial and spectral information,
the classification map approximates more closely to the ground-truth map. In particular,
the Bi-LSTM-CNN has very few pixel points that are different from the ground-truth map.

4. Discussion

In the experiment result, it is obvious that the Bi-LSTM-CNN significantly outperforms
the other methods. The OA of the CNN1D method did not exceed 94% in all the considered
datasets. Since the input data of CNN1D is a 1-D vector, spatial information of the input
data is lost, resulting in the worst classification results of CNN1D among all methods. The
CNN2D model considers the spatial information, which makes the classification results an
improvement compared to CNN1D. Thus, it shows that spatial information is critical for
HSI classification.

However, the CNN2D model has problems, which usually result in degraded shapes
of some objects and materials. The union of spatial and spectral information can address
this issue, and the other methods (CNN3D, SSUN, HybridSN, and Bi-LSTM-CNN) all
achieve more similar classification results to the corresponding ground-truth maps. The
SSUN model extracts spatial and spectral features separately, which are integrated and then
sent to the classifier for classification. As spatial features dominate the classification results,
SSUN is unable to effectively balance the two features, thus resulting in a little contribution
of spectral features to the classification results. The CNN3D model directly extracts the
spatial-spectral features of the HSI, but to decline the computational complexity of the
convolutional layers, the PCA dimensionality reduction is performed on the input data.
Hence, a small amount of spectral information is lost. Despite this, CNN3D still spends
a lot of time in the testing phase on the PU and SV dataset compared to HybridSN and
Bi-LSTM-CNN.

The HybridSN model replaces the final 3-D convolutional layer with 2-D convolution,
decreasing the number of parameters in the network while maintaining accuracy. However,
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in the PU dataset experiments, the OA of the HybridSN model is lower than the CNN3D
model, and the generalizability of the HybridSN method is slightly worse. In the Bi-
LSTM-CNN, the lack of 3-D CNN processing spectral information is compensated, and the
experimental results after adding Bi-LSTM are significantly better than the other methods.

In the classes with a small number of samples, the Bi-LSTM-CNN method also obtains
better classification results. In the IP dataset, due to the very small number of labeled
samples in some classes, the number of available training samples is extremely small. For
example, the number of samples for C1, C7, C9, C16 is not more than ten, which greatly
increases the learning difficulty for these classes. Except for C1, the best classification
accuracy is obtained for several other categories. Except for C1, the Bi-LSTM-CNN method
obtains a higher OA in the other classes than other methods. In the PU and SV datasets,
the number of training samples for each class is sufficient for the Bi-LSTM-CNN method,
although there is a large difference in the number of samples for different classes.

5. Conclusions

This paper proposed a unified network framework that contained a band-grouping-
based Bi-LSTM network and a 3-D CNN for HSI classification. In this network, Bi-LSTM
can extract high-quality spectral features considering complete spectral contextual infor-
mation, which compensates for the shortcomings of the 3-D CNN. The Bi-LSTM-CNN
network is able to harness the strengths of both subnetworks by using auxiliary loss func-
tions. Compared with the model using only 3-D CNN, the Bi-LSTM-CNN can obtain
better classification results by adding a few parameters. In the PU and SV datasets, we
validated the performance of the model using less training data (5%). The experimental
results showed that the Bi-LSTM-CNN method significantly improved the accuracy of HSI
classification. In future work, we will either replace the LSTM with the Gated Recurrent
Unit to improve the speed of the network or use the optimized 3-D CNN to further improve
the HSI classification results.
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Bi-LSTM Biderectional Long Short-Term Memory
CNN Convolutional Neural Network
SVM Support Vector Machine
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SAE Stacked Auto-Encoder
DBN Deep Belief Network
RNN Recurrent Neural Network
GAN Generative Adversarial Network
AE Auto-Encoder
PCA Principal Component Analysis
FC Fully Connected
LSTM Long Short-Term Memory
ReLU Rectified Linear Unit
OA Overall Accuracy
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PC Principal Component
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