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Abstract: Structure from motion (SfM) has been treated as a mature technique to carry out the
task of image orientation and 3D reconstruction. However, it is an ongoing challenge to obtain
correct reconstruction results from image sets consisting of problematic match pairs. This paper
investigated two types of problematic match pairs, stemming from repetitive structures and very
short baselines. We built a weighted view-graph based on all potential match pairs and propose
a progressive SfM method (PRMP-PSfM) that iteratively prioritizes and refines its match pairs (or
edges). The method has two main steps: initialization and expansion. Initialization is developed for
reliable seed reconstruction. Specifically, we prioritize a subset of match pairs by the union of multiple
independent minimum spanning trees and refine them by the idea of cycle consistency inference
(CCI), which aims to infer incorrect edges by analyzing the geometric consistency over cycles of the
view-graph. The seed reconstruction is progressively expanded by iteratively adding new minimum
spanning trees and refining the corresponding match pairs, and the expansion terminates when a
certain completeness of the block is achieved. Results from evaluations on several public datasets
demonstrate that PRMP-PSfM can successfully accomplish the image orientation task for datasets
with repetitive structures and very short baselines and can obtain better or similar accuracy of
reconstruction results compared to several state-of-the-art incremental and hierarchical SfM methods.

Keywords: structure from motion; match pair; cycle consistency inference; repetitive structure; very
short baseline

1. Introduction

Structure from motion (SfM) can automatically reconstruct sparse 3D points and es-
timate camera poses (also known as image orientation) from a set of 2D images, and has
been extensively employed in photogrammetry [1,2]. Most feature-based SfM methods con-
tain modules such as for feature extraction and matching [3], geometric verification [4–6],
view-graph construction of match pairs [7–9], initial camera pose estimation [10–12], tri-
angulation [13], and bundle adjustment [2,13,14]. Vertices in a view-graph denote images,
and edges denote match pairs, which indicate a set of mutually overlapped image pairs.
Taking the view-graph as an input, subsequent modules are used for image orientation
tasks. According to the strategy of utilizing the view-graph, SfM can be categorized as
incremental, hierarchical, or global.

Incremental SfM [10,12,15] typically starts with an initial reconstruction of a match
pair or triplet and sequentially adds new images to the block. As the block grows, bundle
adjustment is repeatedly conducted to refine the reconstruction results, which makes it
time-consuming. While the efficacy of incremental methods has been widely demonstrated,
they may have limitations in the presence of outliers in match pairs. First, the two-view
reconstruction of the initial match pair is crucial, because the robustness and accuracy of
the final reconstruction result relies heavily on it. Second, block growing is sensitive to
the order of added new images. If a block grows in a wrong way, e.g., visually drifts of
the newly oriented images arise, the whole reconstruction may be incorrectly estimated.

Remote Sens. 2021, 13, 2340. https://doi.org/10.3390/rs13122340 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0102-8526
https://doi.org/10.3390/rs13122340
https://doi.org/10.3390/rs13122340
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13122340
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13122340?type=check_update&version=2


Remote Sens. 2021, 13, 2340 2 of 23

This can occur, for example, due to the incorrect match pair of a repetitive structure,
which typically causes ambiguities when finding the correct order. Third, triangulation to
estimate 3D points suffers from limited robustness on match pairs stemming from very
short baselines. Based on incremental methods, hierarchical SfM [16–19] creates atomic
reconstructions in a divide-and-conquer manner and combines them hierarchically. While
efficient due to the parallelization of dealing with atomic reconstructions, it is sensitive to
the method by which these reconstructions grow. Global SfM [11,20,21] simultaneously
considers all images to obtain consistent image orientation results. It is of high efficiency
but is sensitive to outliers in match pairs. Recent developments of SfM focus on large-scale
image sets, such as internet photo collections [21–23] and UAV image sets [18,24]. They
typically consider moderate match pairs and pay less attention to those due to repetitive
structures [8,25,26] and very short baselines [27–29]. These problematic match pairs can
degrade SfM reconstruction results, or even lead to failure. We propose an SfM method to
obtain correct reconstruction results for image sets with problematic match pairs stemming
from repetitive structures and very short baselines.

Before detailing our contributions, we shortly review the state of the art of those related
methods. Many strategies have been tried to cope with problematic match pairs [8,26–31].
It has been suggested to find a reliable subset of match pairs before executing image orien-
tation [8,9,28]. This strategy is known as refining match pairs (or view-graph filtering [9]),
which is equivalent to obtaining a robust subgraph from the original view-graph. RANSAC
was used to delete inconsistent edges, randomly sampling spanning trees, generating
cycles by walking two edges in the tree and one edge in the remaining set, deleting edges
that lead to large discrepancies on rotation over cycles, and keeping the solution with the
largest number of edges [20]. A Bayesian framework was designed to infer incorrect edges
based on the inconsistency over cycles, which we call cycle consistency inference (CCI) [32].
Consistency was checked by chaining relative transformations to find erroneous image
triplets and eliminating all match pairs among these at once [33]. These last three schemes
considered only inconsistency using rotation that might not be able to find unreliable
match pairs if image sets were captured by nearly pure translation motion. Verification was
performed on both rotation and translation for every triplet in the view-graph, eliminating
edges that could not pass [34]. 3D relative translations of all match pairs were projected in
multiple 1D directions, eliminating match pairs whose relative translations stood out in
the majority of directions [21]. However, the paper’s authors acknowledged that the this
method fails to deal with match pairs due to repetitive structures [21,26]. Criteria were
designed to indicate the probability of a match pair due to repetitive structure and a very
short baseline [26]. The criterion on the repetitive structure was based on the assumption
that match pairs overlap by a nearly constant amount, making it less general. The problem
of the repetitive structure was addressed by prioritizing edges in one so-called verified
maximum spanning tree and extending it to a sufficiently redundant view-graph [9].

Two strategies can be employed to improve the time efficiency and robustness of
incremental SfM in the manipulation of the view-graph. First, view-graph partition and
merging are typically used in hierarchical SfM. The idea was to divide the view-graph
into a number of overlapping sub-graphs, each solved independently to create atomic
reconstructions, and hierarchically merging these to obtain a complete reconstruction.
To ensure accurate reconstruction, match pairs shared in different sub-graphs should be
sufficiently redundant for reliable merging [24]. Thus, the quality of these shared match
pairs has a significant influence on the merging process, and outliers might cause large
drifts. A graph-based method for building reliable overlapping relations of images [29] was
proposed to improve a previous hierarchical merging approach [16] in the presence of very
short baselines and wide baselines (Wide baselines typically occur when terrestrial and UAV
images are connected, and can lead to inaccurate SfM reconstruction results [29]). Second,
the progressive scheme on the view-graph allows SfM to be carried out by iteratively
prioritizing a subset of edges or match pairs, a strategy known as prioritizing match pairs.
One maximum spanning tree was extracted from the view-graph to select the match pairs
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with the highest weights, which were used for an initial reconstruction, and expanded
until no new images were added to the block among three consecutive iterations, implying
that the block is completely built [35], alleviating the negative influence of some outliers
in match pairs by carefully selecting the edges of the view-graph. However, a single tree
is insufficiently robust if outliers are contained [9]; thus, it is dangerous to directly feed
them into SfM pipelines, especially with a repetitive structure and very short baselines.
A skeletal subset—not the full view-graph—was utilized to improve efficiency by up to an
order of magnitude or more, with little or no loss in accuracy [36].

Based on an incremental method [10], termed COLMAP, we propose a progressive
SfM pipeline (PRMP-PSfM) to obtain robust and accurate SfM reconstruction results.
The remainder of this paper is organized as follows. Section 2 introduces COLMAP and
discusses its limitations in the presence of a repetitive structure and very short baselines.
Section 3 presents the proposed method, including initialization, which focuses on accurate
seed reconstruction, and expansion, which yields a complete reconstruction result by
progressively adding match pairs and corresponding images. Section 4 demonstrates the
performance of our method on various image datasets. Some important components and
settings of our method are discussed in Section 5. Section 6 concludes our work.

2. Incremental SfM Pipeline
2.1. COLMAP

Figure 1 depicts the workflow of the incremental SfM method (COLMAP), which is
the basis of PRMP-PSfM. Given a set of images, feature extraction and matching (e.g., SIFT
and nearest neighbor ratio matching [3]) are carried out to obtain all possible relations
of images and corresponding conjugate points. These image pairs are verified by a two-
view epipolar geometric constraint, i.e., geometric verification, which usually employs
a five- [5] or eight-point method [4] with RANSAC [6] to yield all potential match pairs.
They can be represented by a view-graph, where red vertices indicate images and gray
edges indicate corresponding match pairs. Two-view reconstruction is initially built in
the following estimation pipeline, and the next-best view selection and image registration
orientate candidate images. Tracks are updated by concatenating the correspondences of
match pairs, and track triangulation generates new 3D points to expand the reconstruction,
which is refined by bundle adjustment. Outlier filtering eliminates inaccurate 3D points
with large reprojection errors and images whose camera poses cause refinement to fail.
The procedures of block growing, including next-best view selection, image registration,
track triangulation, bundle adjustment, and outlier filtering, are repeated to obtain the
final reconstruction result; red triangles in Figure 1 denote the estimated camera poses (i.e.,
image orientation parameters).

Figure 1. Workflow of COLMAP [10].

2.2. The Negative Influence of Problematic Match Pairs

Although many outliers in match pairs can be eliminated by RANSAC, some prob-
lematic match pairs still exist in the case of a repetitive structure or very short baselines.
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We take COLMAP (Figure 1) as an example of a conventional incremental SfM method and
study its limitations in these instances.

2.2.1. Repetitive Structure

A repetitive structure in a human-made environment often yields ambiguities in
pairwise image matching, e.g., wrong match pairs that observe similar but different objects,
such as rows of windows and similar building facades. Many suspicious correspondences
can be generated due to very similar descriptors, and some can pass epipolar geometric
verification. Consequently, a repetitive structure typically results in wrong match pairs [26].
Figure 2 shows an example of a dataset with a repetitive structure. Images were captured
along a closed loop of one cup whose front and back sides are symmetric. Figure 2a
shows a correct match pair whose images view the same area, and Figure 2b shows a
wrong match pair due to a repetitive structure. We represent all potential match pairs by a
view-graph (Figure 2c), and insert it in COLMAP to obtain the SfM reconstruction result
(Figure 2d). To make a comparison, we manually select the correct match pairs, yielding
the filtered view-graph in Figure 2e, and generate a more reasonable reconstruction in
Figure 2f. Investigating these two reconstruction results, the one from the original view-
graph is a folded scene with large drifts of camera poses. This implies that wrong match
pairs due to a repetitive structure can indeed have a negative impact on the reconstruction
result. COLMAP adds candidate images with more visible 3D points and a more uniform
distribution of correspondences, reflecting the inherent assumption that the match pairs are
correctly overlapped. However, this assumption is sometimes invalid due to ambiguities
caused by a repetitive structure. Once the block grows in a wrong way, it yields an incorrect
reconstruction result, such as the folded scene in Figure 2d.

Figure 2. Example of a repetitive structure: (a) a correct match pair, and (b) a wrong match pair due to repetitive structure,
where colored lines show correspondences; (c) original view-graph estimated by COLMAP; (d) reconstruction result from
inputting (c) in [10], where red triangles describe camera poses; (e) filtered view-graph, and (f) corresponding reconstruction
result, where edges in (e) are correct match pairs manually selected from (c).

2.2.2. Very Short Baselines

Very short baselines arise when the distance between images is insufficient or ex-
tremely close to pure rotation motion. Figure 3 shows two images (blue and red points)
and one 3D point (a black point), which is the intersection point of two view rays (blue
and red arrows). When we keep one image (blue) and the 3D point (back) fixed, and move
the another image (red) along a circle (dotted line) with the center of the blue point with a



Remote Sens. 2021, 13, 2340 5 of 23

constant radius, different cases of two-view intersection can be observed. If the radius is
very small, i.e., with a very short baseline between these two images, it leads to a small in-
tersection angle. Such poor intersection geometry typically results in an ill-posed problem
of estimating coordinated 3D points [13,26,27].

Figure 3. Different cases of two-view intersection with a constant baseline. Blue, red and black points
indicate two images and one 3D point, respectively. Blue and red arrows indicate two view rays.
The radius of circle (dotted line) indicates a constant baseline between two images

To illustrate the influence on SfM results, we tested a dataset with very short baselines
in COLMAP; corresponding reconstruction results are shown in Figure 4. The reference
reconstruction result (Figure 4a) was obtained by only using correct match pairs. When both
correct match pairs and ones with very short baselines were input, the reconstruction result
becomes worse, as can be seen in Figure 4b–f. In comparison to the reference, it can be seen
that COLMAP can obtain a good two-view reconstruction (Figure 4b), but shows increasing
drifts of camera poses as the block grows. As Figure 4c shows, some inaccurate 3D points
(blue ellipses) are generated in the expanded reconstruction, mainly due to corresponding
match pairs with very short baselines. The final reconstruction result (Figure 4f) suffers
from obvious visual drifts due to error accumulation.

Figure 4. Example of very short baselines: (a) the reference reconstruction result; (b) initial two-view
reconstruction; (c–f) reconstruction results as the block grows, where blue ellipses indicate areas
where 3D points are incorrectly estimated.



Remote Sens. 2021, 13, 2340 6 of 23

3. Method
3.1. Overview

We present PRMP-PSfM, whose workflow is shown in Figure 5. The input is a set
of images, following the procedures of COLMAP (Figure 1) to obtain all potential match
pairs, from which we construct a weighted view-graph in Section 3.2. Weights of edges
indicate the costs of match pairs; the smaller the weight, the more the possibility that a
match pair is correct. The image orientation pipeline includes initialization and expan-
sion. In initialization, we generate a seed view-graph comprising multiple independent
minimum spanning trees (MSTs), containing subsets of match pairs with smaller costs,
and apply outlier elimination using CCI for a filtered seed view-graph. We insert this
robust view-graph in COLMAP to obtain an accurate reconstruction result, a procedure
called seed reconstruction. Images are sometimes excluded from seed reconstruction due
to the filtering procedure; expansion is designed to achieve a more complete reconstruction.
Completeness is checked to decide whether the expansion is necessary. If this condition is
met by the seed reconstruction, then we set it as the final reconstruction result. Otherwise,
seed reconstruction is incomplete and expansion is carried out. New MSTs are progres-
sively added to the filtered seed view-graph to realize a denser graph, i.e., an expanded
view-graph, which is filtered by outlier elimination using CCI before applying incremental
SfM. The procedure is repeated until completeness is achieved.

Figure 5. Workflow of PRMP-PSfM.

3.2. Construction of Weighted View-Graph

The undirected view-graph G = (V, E) is often used to represent relations between
images. Vertices V indicate images, and edges E indicate match pairs; eij ∈ E means
two images of vertices {vi, vj} ∈ V are successfully matched after geometric verification.
To prioritize the edges by MST, we need to construct a weighted view-graph G = (V, E, W),
where W is a set of scalar values indicating the costs of edges. The smaller the cost, the more
likely it is that the edge is correct. It has been suggested to calculate the cost for each edge
by Equation (1) [37], where M is the number of feature correspondences, and Θ is the mean
intersection angle of all correspondences; they are normalized to [0, 1] and balanced by a
factor µ, which is set by default to 0.1. After the costs of edges were calculated, one MST
was extracted to select the most reliable match pairs. Only tracks generated from these
selected match pairs were used in the proposed method, which yielded a robust method to
avoid abundant or outlier tracks [37]. More feature correspondences of one match pair can
generally produce a more robust estimate [8,9,37], which is also reasonable in the presence
of repetitive structures because after geometric verification, the feature correspondences
of a correctly overlapping match pair outnumber those of a match pair with a repetitive
structure [9,35]. For very short baselines, which typically result in very small intersection
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angles, Θ is a suitable criterion to indicate their lengths. Hence, we generate the weight
view-graph as [37]

W =
1
M

+ µ× 1
Θ

(1)

3.3. Outlier Elimination Using CCI

We introduce a general outlier detection method, CCI [32], by analyzing the geometric
consistencies over cycles. Given a view-graph (Figure 6a) and the estimated relative
transformations {Te} of all potential match pairs, the exhaustive cycles of the length of
all image triplets C are extracted (Figure 6b), and the deviation or inconsistency of each
cycle is computed using a non-negative function d(Tc), c ∈ C, where Tc is the chained
transformation along the cycle. If one cycle is ideally consistent, then d(Tc) should equal
zero, while noise or outliers in match pairs can lead to a nonzero value. If d(Tc) exceeds a
threshold, then at least one problematic match pair exists in the cycle. Based on this idea,
a Bayesian inference framework was proposed [32]. Define the following:

P(d(Tc) | xc = 1): probability of deviation d(Tc) for a cycle, assuming all its edges
are correct;

P(d(Tc) | xc = 0): probability of deviation d(Tc) for a cycle, assuming at least one
edge in the cycle is incorrect;

P(xe): prior probability for indicating the quality of an edge.

Figure 6. Illustrative process of outlier elimination using CCI to filter incorrect match pairs: (a) input
original view-graph, where red vertices indicate images and gray edges are match pairs; (b) procedure
of cycle extraction on view-graph, where only some sample cycles are highlighted by blue lines; (c)
CCI infers incorrect edges, which are highlighted by black lines; and (d) filtered view-graph after
eliminating incorrect edges.

Latent binary variables, xe, xc, are introduced for each edge and cycle, respectively,
where xe = 0 indicates an incorrect edge, xe = 1 indicates a correct edge, and after chaining
all the edges over a cycle, xc = min

e∈c
xe. Hence, xc = 1 indicates all edges of the cycle are

correct, and xc = 0 if at least one incorrect edge exists. xe ∈ {0, 1} should be assigned to all
edges to maximize the joint probability function:

∏
c∈C

P(xe∈c | d(Tc)) ∝ ∏
e

P(xe) ∏
c∈C

P(d(Tc) | xc) (2)

The inference problem can be represented by factor graphs and solved by loopy belief
propagation [38]. Once the inference is finished, we determined a set of incorrect edges
(dark lines in Figure 6c), i.e., {xe = 0}, and eliminate them to form a filtered view-graph,
as seen in Figure 6d.

We elaborate on the calculation of the probability mode of cycles P(d(Tc) | xc = 1).
For image sets with known intrinsic parameters, we obtained the estimated relative ori-
entations of match pairs by decomposing the essential matrix. These relative orientations
have five degrees of freedom, including relative rotations and translations. For a cycle
formed by three images i, j, k, when the estimated relative rotation matrices of image pairs
Rij, Rik, Rjk are known, we denote the chained rotation over the cycle as cR = RijRjkR>ik ,
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and the difference on rotation as d∠(cR) = arccos( trace(cR)−1
2 ). Given the estimated relative

translation vectors tij, tik, tjk, the chained translation angle is cT = θi + θj + θk, where

angles θi, θj, θk for the images are, respectively, calculated, i.e., θi = arccos(
t>ij tik

‖tij‖‖tik‖
). We

calculated the difference on translation d∠(cT) = |cT − 180°|, where 180° is the sum of the
interior intersection angles of this triangle (cycle of length three). We set the deviation as
the larger of the two differences in Equation (3). We fit the inlier portions {d(Tc) ≤

√
|c|ε}

as an exponential distribution and empirically set ε to 2 degrees. F(d(Tc); λ) is the cumu-
lative distribution function, where λ is the parameter of the exponential function, which
is adaptively estimated from the inlier data. As inconsistent cycles may have small d(Tc),
e.g., when the error of one incorrect edge is offset by another, we limit the maximum value
of P(d(Tc) | xc = 1) in Equation (4) to 0.9 instead of to 1:

d(Tc) = max [d∠(cR), d∠(cT)] (3)

P(d(Tc) | xc = 1) =


0.9[1− F(d(Tc); λ)], d(Tc) ≤

√
|c|ε,

0, d(Tc) >
√
|c|ε.

(4)

3.4. Initialization

For good seed reconstruction, the input view-graph should be as accurate as pos-
sible. Most incremental methods [10,33] employ the original view-graph. As discussed
in Section 2.2, problematic match pairs must be eliminated because they have a negative
influence on the reconstruction results of the incremental SfM method. One MST can be
used as the input view-graph [35]. However, it is difficult to guarantee that its edges are
correct, especially for image sets with problematic match pairs. Images in one MST are
only two-fold overlapping, and the redundancy of edges is insufficient for accurate seed
reconstruction if a selected edge in the MST is not correct [9].

As Figure 5 shows, we generate the filtered seed view-graph considering both accuracy
and redundancy of match pairs, as shown in Figure 7. Given the original view-graph
(Figure 7a), a number of MSTs comprise the seed view-graph (Figure 7b), and a filtered
one, the filtered seed view-graph (Figure 7c), is obtained by outlier elimination using CCI.
Specifically, given the weighted view-graph G = (V, E, W), the first MST is extracted [39],
which contains all vertices of V and |V| − 1 edges with the smallest costs, and these edges
are removed from G, yielding a new graph G′. Here, | · | counts the number of vertices.
The second MST is extracted from G′, and this ensures there are no repeated edges between
two MSTs, i.e., so-called orthogonal MSTs [25,35]. The above processes are repeated several
times, and these extracted orthogonal MSTs compose a seed view-graph Gseed with Nseed
iterations. With a smaller Nseed, the graph contains more accurate and less redundant edges,
whereas a larger Nseed makes for a denser graph that may contain some unreliable edges.
We first compute the averaging degree for all vertices, ∆(G), which indicates the density of
the original view-graph, and multiply by a factor α to determine Nseed for adaptability:

Nseed = α× ∆(G)

∆(G) =
∑
|V|
i=1 deg(vi)

|V|
(5)

where deg(vi) is the degree of vertex vi ∈ V, i.e., the number of edges that are incident
to it. Hence, our method is less sensitive to the density of view-graphs. CCI is then used
to detect and eliminate outliers on Gseed to yield a filtered seed view-graph G f

seed. We
employ the largest connected component (in graph theory, a connected component of an
undirected graph is a subgraph in which any two vertices are connected to each other
by paths, and which is connected to no additional vertices in the rest of the graph) of
G f

seed for seed reconstruction. Note that some edges are possibly filtered out, which might
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cause G f
seed to be disconnected and lead to several individual reconstructions. Therefore,

the biggest connected component is selected for seed reconstruction.

Figure 7. Illustrative process of generating the filtered seed view-graph: (a) original view-graph;
(b) seed view-graphs obtained by uniting a number of MSTs; and (c) filtered seed view-graph after
outlier elimination using CCI.

3.5. Expansion

Expansion aims to obtain a more complete reconstruction result. In general, when the
block completely grows, complete reconstruction is reached; thus, regarding the condition
of completeness, we suggest that all images in the input view-graph should be successfully
orientated. Initialization uses the filtered seed view-graph with rather good match pairs to
ensure accurate seed reconstruction. However, its completeness is not strictly guaranteed.
Incomplete seed reconstruction might arise for two reasons: (1) the largest connected
component of the filtered seed view-graph does not cover all images, yielding only part of
the complete reconstruction result; (2) some unstable images are excluded by the procedure
of outlier filtering (see Figure 1).

As Figure 5 shows, the condition of completeness is checked at the beginning of
expansion. If the condition is reached, then the seed reconstruction is output as the
final result. It is otherwise necessary to expand the seed reconstruction for completeness,
and the filtered expanded view-graph and expanded reconstruction are similarly generated.
A workflow is given in Figure 8. We progressively add new MSTs to the filtered seed view-
graph to generate a denser graph. By conducting outlier elimination using CCI, we can
obtain the filtered expanded view-graph. Analogously, we employ the largest connected
component to add new edges and corresponding new images. Once these new images are
orientated, the tracks are updated by concatenating the correspondences of match pairs
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of the current view-graph. Subsequent processes, as shown in Figure 1, are progressively
conducted until the condition of completeness is reached.

Figure 8. Workflow of expansion of seed reconstruction.

4. Results

We quantitatively and qualitatively evaluated the efficacy of PRMP-PSfM at gener-
ating accurate SfM reconstruction results. Experiments were conducted on datasets with
different types of problematic match pairs, including repetitive structures and very short
baselines. PRMP-PSfM was then compared to several state-of-the-art SfM pipelines, in-
cluding three incremental methods (COLMAP [10], (COLMAP software was downloaded
from https://github.com/colmap/colmap/releases, version 3.6-dev.2 [released 24 March
2019]. All experiments were conducted with the settings suggested by [10]) VisualSFM [15],
(VisualSFM software was downloaded from http://ccwu.me/vsfm/, version V0.5.26 [ac-
cessed September 2020]. All experiments were conducted with the default settings) and
OpenMVG [33] (Code was downloaded from https://github.com/openMVG/openMVG,
version v1.5 [released 16 July 2019]. We used its incremental SfM pipeline. Details can
be found at https://openmvg.readthedocs.io/en/latest/)) and two hierarchical methods
(GraphSfM [19] (Code was downloaded from https://github.com/AIBluefisher/EGSfM.
The version provided by the original author was implemented based on OpenMVG) and
APE [29] (Note that we were unable to obtain the APE source code. We referred to the
results of the original paper for comparison)). APE integrates a series of processes of
dealing with problematic match pairs due to wide baselines and very short baselines. Some
processes of these methods used in the experiments are listed in Table 1. Considering
that they are all complex systems, the processes related to the view-graph are mainly
summarized. We set α = 0.25 for all experiments.

Table 1. Some properties of the methods used in our experiments: FE—feature extraction; FM—feature matching; MP—
match pairs; BA—bundle adjustment; PRMP—prioritizing and refining match pairs; LM—Levenberg–Marquardt; PCG—
preconditioned conjugate gradient; RBA—robust bundle adjustment. “Original” indicates that the original view-graph is
taken as input and there is no specified process on its match pairs. “-” indicates that the corresponding items are unavailable.

Framework FE FM MP BA

PRMP-PSfM SiftGPU [15] Nearest neighbor ratio PRMP LM [14]
COLMAP SiftGPU [15] Nearest neighbor ratio Original LM [14]
VisualSFM SiftGPU [15] Preemptive feature matching [15] Original PCG [15]
OpenMVG SIFT Cascade hashing [40] Original LM [14]
GraphSfM SIFT Cascade hashing [40] Original LM [14]

APE SiftGPU [15] Wide baseline method [29] Classification [29] RBA [29]

https://github.com/colmap/colmap/releases
http://ccwu.me/vsfm/
https://github.com/openMVG/openMVG
https://openmvg.readthedocs.io/en/latest/
https://github.com/AIBluefisher/EGSfM


Remote Sens. 2021, 13, 2340 11 of 23

4.1. Datasets

Table 2 lists the image datasets used in our experiments, consisting of five small public
datasets (Books, Cereal, Cup, Desk and Street [8]), three middle-scale datasets Indoor, Temple-
of-Heaven (ToH) [8], and Redmond [41]), three benchmark datasets (B1, B2, B3 [26]), and one
large image set (Church [29]). The “Type” column indicates two types of problematic match
pairs: repetitive structure and very short baselines. To investigate the ability to cope with
different problematic match pairs and demonstrate the performance of our method, eight
image datasets with only repetitive structures were tested (Sections 4.2 and 4.3), followed
by three benchmark datasets with both repetitive structures and very short baselines
(Section 4.4), and one large-scale dataset with repetitive structures and very short baselines
(Section 4.5).

Table 2. The description of image datasets used in our experiments.

Name Images Resolution Type Reference

Books 21

1067 × 800 Repetitive structure Yes
Cereal 25
Cup 64
Desk 31
Street 19

Indoor 152 1200 × 800
Repetitive structure NoRedmond 148 3968 × 2232

ToH 341 4368 × 2912

B1 182
3936 × 2624 Repetitive structure

Very short baselines YesB2 215
B3 342

Church 1455
3264 × 2448
3648 × 2736
7360 × 4912

Repetitive structure
Very short baselines No

4.2. Performance on Five Small Datasets

We tested five small datasets with different degrees of repetitive structures; some
sample images are shown in Figure 9. Since these datasets were rather small, we could
manually establish the ground-truth view-graph by selecting a subset with the correct
overlapping relations of match pairs from the original view-graph. We used the adjacency
matrix to represent the view-graph (see Figure 10), the horizontal and vertical directions
of which indicate image IDs, and dark pixels indicate that the corresponding match pairs
are considered correct. Figure 10a corresponds to the original view-graphs generated after
the default matching process [10], and Figure 10b to the ground-truth view-graphs. We
can see that the original view-graphs had many wrong match pairs stemming from the
repetitive structure.

We inserted the ground-truth view-graphs (Figure 10b) in the incremental SfM pipeline
(COLMAP, see Figure 1) to obtain reference reconstruction results, as shown in Figure 11.
To compare different SfM methods, we input the original view-graphs (Figure 10a) to the
PRMP-PSfM, COLMAP and OpenMVG SfM pipelines to determine whether they were
capable of dealing with images of a repetitive structure. The reconstruction results from
these five small datasets are shown in Figure 11. Compared to the reference, PRMP-PSfM
generated the best reconstruction results for all five datasets; COLMAP and OpenMVG
only successfully reconstructed the Desk dataset and obtained various folded structures
for the other four datasets. For repetitive structures, wrong overlapping relations of image
pairs in the original view-graph can possibly make the next-best view selection (Figure 1)
invalid. We propose an improved method to overcome this by manipulating the view-
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graph, and PRMP-PSfM could generate the best SfM reconstruction results on all five
datasets (with repetitive structures).

Books

Cup

Desk

Cereal Street

Figure 9. Sample images of five small datasets with repetitive structures.
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Reference PRMP-PSfM COLMAP OpenMVG
Books

Cereal

Cup

Desk

Street

Figure 11. Reconstruction results from five small datasets.

4.3. Performance on Three Middle-Scale Datasets with Repetitive Structures

We reported on experiments on three middle-scale datasets with repetitive structures:
Indoor, Redmond and ToH, whose sample images and reconstruction results are given in
Figure 12a–c, respectively, [28]. The Indoor dataset was captured in an indoor scene, and its
camera trajectory (red triangles) contained three single strips on three floors. For Redmond,
the camera trajectory was nearly along a straight line when capturing a set of images in
a row of some similar building facades. The scene of ToH contained nearly 360-degree
symmetry, and images were captured with a closed loop.

Because there are no ground-truths of these three datasets, based on visualization
results [28] (see Figure 12), we carried out qualitative evaluations of PRMP-PSfM, COLMAP,
VisualSFM, OpenMVG, and GraphSfM, whose reconstruction results are shown in Figure 13.
For Indoor and Redmond, the results of PRMP-PSfM and VisualSFM were visually similar
to the visualization results, but COLMAP, OpenMVG, and GraphSfM failed with regard
to correct and complete the camera poses. For ToH, only PRMP-PSfM and GraphSfM
were able to close the loop, while COLMAP, VisualSFM, and OpenMVG could only solve
parts of the whole scene. We generated the best results on these three datasets, further
demonstrating the capability of PRMP-PSfM to deal with images with repetitive structures.
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(a) Indoor

(b) Redmond

(c) ToH

Figure 12. Sample images and reconstruction results [28]of three middle-scale datasets with
repetitive structures.

Figure 12. Sample images and reconstruction results [28] of three middle-scale datasets with repeti-
tive structures.
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PRMP-PSfM COLMAP VisualSFM OpenMVG GraphSfM

Indoor

Redmond

ToH

Figure 13. Reconstruction results on three middle-scale datasets with repetitive structures.

4.4. Performance on Three Benchmark Datasets

The ground-truth for benchmark datasets B1, B2 and B3 for match pairs [26] means
that the corresponding correct match pairs and problematic ones due to repetitive structures
and very short baselines were manually found and labeled. We inserted these correct match
pairs in COLMAP to obtain reference reconstruction results, which, along with sample
images, are shown in Figure 14.

Figure 15 shows the final reconstruction results on these three benchmarks by the
five SfM pipelines. Compared to the reference, only PRMP-PSfM and OpenMVG obtained
similar results for all three datasets, while the other pipelines generated various visual
drifts. For dataset B1, all pipelines except VisualSFM were able to obtain similar recon-
struction results, which were generally identical to the reference. PRMP-PSfM, COLMAP,
and OpenMVG were able to reconstruct dataset B2, but the result of VisualSFM showed
large drift, and GraphSfM only recovered part of the scene. Dataset B3 contained a closed
loop around one building, and only PRMP-PSfM and OpenMVG could recover a complete
reconstruction. To further demonstrate the performance of PRMP-PSfM, we quantita-
tively evaluated the reconstruction results that were qualitatively similar to the reference,
i.e., those of B1 and B2 by PRMP-PSfM, COLMAP and OpenMVG, and those of B3 by
PRMP-PSfM and OpenMVG. We calculated the rotation and translation errors, which are
listed in Table 3. It can be seen that our method obtained the highest accuracy on all three
datasets. Although PRMP-PSfM and OpenMVG were able to obtain visually similar results,
the numerical evaluation in Table 3 shows that reconstruction results of OpenMVG were
less accurate than those of PRMP-PSfM. In particular, the results of max rotation error and
max translation error indicate that some of the camera poses of OpenMVG were gross
errors. In contrast, PRMP-PSfM was able to estimate the accurate rotation and transla-
tion parameters for all images, which shows its superiority at coping with problematic
match pairs.
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Figure 14. Sample images and correct reconstruction results of three benchmark datasets with both repetitive structures and
very short baselines. From top to bottom: B1, B2 and B3.

PRMP-PSfM COLMAP VisualSFM OpenMVG GraphSfM

B1

B2

B3

Figure 15. Reconstruction results of three benchmark datasets from different SfM pipelines.

Table 3. Quantitative evaluation for benchmark datasets B1, B2 and B3. Rotation error is the angular
difference from the reference, in degrees; translation error is the position difference from the reference
in ground-truth units.

Dataset Pipeline
Rotation Error Translation Error (×10−2)

Min Mean Median Max Min Mean Median Max

B1
PRMP-PSfM 0.02 0.11 0.13 0.52 0.11 0.53 0.54 3.21

COLMAP 0.17 1.47 1.27 2.21 1.25 8.93 9.78 18.4
OpenMVG 0.18 1.7 1.63 3.74 1.55 10.02 10.40 18.66

B2
PRMP-PSfM 0.03 0.08 0.07 0.32 0.08 0.55 0.49 3.27

COLMAP 0.15 0.91 1.02 1.84 1.05 4.58 4.86 9.89
OpenMVG 0.15 0.66 0.46 4.54 0.22 7.29 4.84 48.61

B3 PRMP-PSfM 0.02 0.10 0.09 0.46 0.06 0.74 0.66 2.89
OpenMVG 0.06 0.39 0.40 0.89 0.58 3.02 2.55 88.61
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4.5. Performance on a Large-Scale Dataset

We evaluated PRMP-PSfM on the large-scale Church dataset [29], which consisted of
1455 unordered images with repetitive structures and very short baselines. Sample match
pairs and our reconstruction results are shown in Figure 16. We present the numerical
evaluation of five incremental and one hierarchical SfM pipeline in Table 4. The results
of COLMAP, OpenMVG, and GraphSfM were obtained with default settings, and those
of APE and VisualSFM are cited from Michelini et al. [29]. In terms of completeness,
all pipelines except VisualSFM were able to orientate more than 98.9% of images, while
COLMAP gave the most complete result (up to 99.9% of all images were solved). PRMP-
PSfM, OpenMVG, GraphSfM, and APE generated similar mean reprojection errors, while
COLMAP obtained the largest, implying that COLMAP did not obtain a convergent result.
There are various reasons for the big differences in the number of reconstructed 3D points
of these pipelines, such as different settings for feature extraction and rules for selecting
tracks. PRMP-PSfM and COLMAP deleted tracks only observed by two images, while
OpenMVG and GraphSfM retained them. Hence, it can be concluded that PRMP-PSfM,
OpenMVG, GraphSfM, and APE obtained comparable precision and completeness results.

Figure 16. Sample images and our reconstruction result of the Church dataset. The top shows the sample match pairs,
and on the left and right are match pairs due to repetitive structure and very short baselines, respectively. The bottom shows
our SfM reconstruction result.
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Table 4. Numerical comparison on Church dataset for different SfM pipelines. Nimg is the number
of orientated images in the final reconstruction results, and the % values refer to the number of
orientated images compared with that of the input images, δ0 is the mean projection error in pixels,
Np is the number of tie points, and “-” indicates that the corresponding items are unavailable.

Pipeline Nimg(%) δ0 Np

PRMP-PSfM 1448 (99.5) 0.37 491,992
COLMAP 1454 (99.9) 1.09 549,957
VisualSFM 288(19.8) 0.74 14,295
OpenMVG 1452 (99.8) 0.54 1,687,694
GraphSfM 1439 (98.9) 0.51 2,762,371

APE - 0.55 290,748

4.6. Performance of without Iteratively Refining Match Pairs

In PRMP-PSfM, the process of iteratively refining match pairs is implemented by
repeatedly executing “outlier elimination using CCI” (Figure 5). To investigate how it
influences SfM reconstruction results, we turned off that function. Figure 17 shows the
reconstruction results for all datasets by PRMP-PSfM without iteratively refining match
pairs, which we refer to as PSfM. Blue ellipses indicate visual drifts. The generated drifts
in Books and Redmond were due to ambiguous tracks generated from match pairs with
repetitive structures. The results of Cereal and B1 contained large-scale drifts (see blue
ellipses), which occurred at the beginning of the expansion. The reconstruction result of B2
was negatively influenced by a repetitive structure and very short baselines.

We show a numerical comparison for the four datasets whose reconstruction results
of PRMP-PSfM and PSfM were visually similar, i.e., Cup, Desk, Street and B3, in Table 5.
Regarding the reprojection error, PRMP-PSfM showed better performance on Desk and
Street and comparable results on Cup and B3. For errors on camera poses, we calculated the
discrepancies between their results and the reference ones. PRMP-PSfM obtained higher
accuracy than PSfM on both rotation and translation.

Books Cereal Cup Desk

Street Indoor Redmond ToH

B1 B2 B3 Church

Figure 17. Reconstruction results for various datasets by PSfM, i.e., PRMP-PSfM without iteratively refining match pairs.
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Table 5. Numerical comparison of reconstruction results between PRMP-PSfM and PSfM. δ0 is the
mean projection error, mr is the mean rotation error in degrees and mt is the mean translation error in
ground-truth units ×10−1.

Dataset
PRMP-PSfM PSfM

δ0 mr mt δ0 mr mt

Cup 0.26 0.67 0.23 0.26 0.73 0.23
Desk 0.32 1.32 0.90 0.47 6.46 1.78
Street 0.18 0.78 0.11 0.35 1.16 0.29

B3 0.39 0.06 0.16 0.36 0.35 0.42

4.7. Settings of Parameter α

To investigate to what degree the key parameter α can influence the performance
of PRMP-PSfM, we alternated the value of the free parameter α to qualitatively and
quantitatively evaluate it on benchmark datasets B1, B2 and B3, with results as shown
in Figure 18 and Table 6. Figure 18 shows the seed reconstruction results (Section 3.4)
obtained for different values of α. Table 6 shows the discrepancies between these and the
reference results. As emphasized in Section 3.4, the objective of initialization is to obtain
good seed reconstruction. As Table 6 shows, when setting α = 0.25, our initialization step
obtained the highest accuracy on B1 and B3, and accuracy on B2 comparable to that of
α = 0.1. We obtained the best result on B2 with α = 0.1, but less accurate results on B1 and
B3. Accuracy was lower for α = 0.40 and α = 0.55, because a denser view-graph leads to a
higher possibility of including incorrect match pairs.

The case of α = 0.25 was good enough for complete reconstruction results on B1 and
B2, revealing that PRMP-PSfM achieved the final reconstruction results by only applying
the seed view-graph. Compared with other pipelines at handling the full view-graph,
PRMP-PSfM has good potential to improve efficiency.

���) α = 0.1 α = 0.25 α = 0.40 α = 0.55

B1 21.9

��tt� = 2 ��tt� = 5 ��tt� = 〮 ��tt� = 12

B2 45.3

��tt� = 5 ��tt� = 11 ��tt� = 1h ��tt� = 25

B3 28.8

��tt� = � ��tt� = ᩅ ��tt� = 12 ��tt� = 1�

Figure 18. Seed reconstruction results for different values of α.
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Table 6. Numerical comparisons of seed reconstruction results from different values of α. Nimg is
the number of orientated images in the final reconstruction results. mr is the mean rotation error in
degrees and mt is the mean translation error in ground-truth units ×10−2.

Dataset
α = 0.1 α = 0.25 α = 0.40 α = 0.55

Nimg mr mt Nimg mr mt Nimg mr mt Nimg mr mt

B1 109 0.93 7.82 182 0.11 0.53 182 0.18 1.24 182 1.47 8.89
B2 215 0.06 0.51 215 0.08 0.55 215 0.31 1.08 215 0.43 1.22
B3 182 0.26 1.26 275 0.22 1.07 342 0.35 1.44 342 0.47 1.93

5. Discussion

We investigate some characteristics of PRMP-PSfM and discuss the effect of iteratively
prioritizing match pairs (Section 5.2) and the effect of iteratively refining match pairs
(Section 5.1). A limitation on the condition of completeness is discussed in Section 5.3.

5.1. Effect of Iteratively Refining Match Pairs

In Section 4.6, without iteratively refining match pairs, our PRMP-PSfM becomes
PSfM. From the visualization results in Figure 17, it can be seen that PSfM produced
worse results than PRMP-PSfM, which could successfully reconstruct all these datasets
(Figures 11, 13, 15 and 16). According to the numerical comparison presented in Table 5,
PSfM obtained lower accuracy on SfM reconstruction. These results indicate that without
iteratively refining match pairs, the outliers in match pairs degraded the SfM reconstruction
results of PRMP-PSfM. In other words, iteratively refining match pairs can benefit PRMP-
PSfM in regard to robustness and accuracy.

5.2. Effect of Iteratively Prioritizing Match Pairs

Iteratively prioritizing match pairs using MST yields the progressive scheme on view-
graph, which aims to generate the filtered seed view-graph, and subsequently expands
until the complete reconstruction is achieved. COLMAP directly applies the original view-
graph, whereas PSfM employs the progressive scheme on the view-graph. Comparing the
results of COLMAP (Figures 11, 13, 15 and 16) and PSfM (Figure 17), we can see that for
datasets with a repetitive structure only, PSfM could successfully handle Cup, Desk, Street,
Indoor, and ToH. In contrast, COLMAP could only obtain good results for Desk. This shows
the advantages of the progressive scheme at handling images with repetitive structures.
However, PSfM failed on Books, Cereal, and Redmond because the prioritized match pairs
still exist some outliers that need to be eliminated. This demonstrates that only using the
progressive scheme cannot perfectly prevent the negative influence of outliers in match
pairs and implies that refining match pairs is necessary.

5.3. Limitation on Condition of Completeness

We discuss one limitation on the condition of completeness. For Church (Table 4),
the condition of completeness that all images are successfully orientated could not be
strictly met. For this dataset, the original view-graph obtained in PRMP-PSfM contained
1454 images, which was actually not 100% of all images. In the expansion period, some
images causing the refinement of bundle adjustment to not converge were filtered. Hence,
we set a relaxed condition of completeness, that 95% of images contained in the original
view-graph were solved. Thus, the setting on the condition of completeness might need to
be adjusted when dealing with various image sets, e.g., those containing both terrestrial
and UAV images.

6. Conclusions

The SfM pipeline PRMP-PSfM was proposed for robust and accurate reconstruction
from images with problematic match pairs due to repetitive structures and very short
baselines; it can also be considered an improved incremental method. The limitations of
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conventional incremental methods in dealing with these problematic match pairs were
discussed. All potential match pairs were first cast into a weighted view-graph, which
could be manipulated to form a progressive scheme with initialization and expansion.
In the initialization step, a subset of match pairs was prioritized using multiple MSTs.
This was refined using an outlier elimination technique of consistency inference or CCI to
generate the filtered seed view-graph for good seed reconstruction, which was expanded
for more complete reconstruction by progressively adding new MSTs. As the reconstruction
expanded, new match pairs were iteratively refined before carrying out the SfM process at
each iteration. The above steps compose PRMP-PSfM, whose performance was demon-
strated on datasets with repetitive structures and very short baselines. Experimental results
showed that PRMP-PSfM could achieve better robustness and accuracy on reconstruction
results than several state-of-the-art incremental and hierarchical SfM methods. Some cases
may require the relaxation of the condition of completeness used in PRMP-PSfM. In the
future, we hope to improve the condition of completeness and combine PRMR-PSfM with
hierarchical SfM to efficiently deal with large-scale image sets.
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