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Abstract: We introduce a robust and light-weight multi-image super-resolution restoration (SRR)
method and processing system, called OpTiGAN, using a combination of a multi-image maximum a
posteriori approach and a deep learning approach. We show the advantages of using a combined two-
stage SRR processing scheme for significantly reducing inference artefacts and improving effective
resolution in comparison to other SRR techniques. We demonstrate the optimality of OpTiGAN
for SRR of ultra-high-resolution satellite images and video frames from 31 cm/pixel WorldView-3,
75 cm/pixel Deimos-2 and 70 cm/pixel SkySat. Detailed qualitative and quantitative assessments are
provided for the SRR results on a CEOS-WGCV-IVOS geo-calibration and validation site at Baotou,
China, which features artificial permanent optical targets. Our measurements have shown a 3.69 times
enhancement of effective resolution from 31 cm/pixel WorldView-3 imagery to 9 cm/pixel SRR.

Keywords: super-resolution restoration; OpTiGAN; generative adversarial network; ultra-high
resolution; satellite; remote sensing; earth observation; HD video; Maxar® WorldView-3; EarthDaily
Analytics®; Deimos-2; Planet® SkySat

1. Introduction

Increasing the spatial resolution of spaceborne imagery and video using ground-
based processing, or, where feasible, onboard a smart satellite, allows greater amounts of
information to be extracted about the scene content. Such processing is generally referred
to as super-resolution restoration (SRR). SRR combines image information from repeat
observations or continuous video frames and/or exploits information derived (learned)
from different imaging sources, to generate images at much higher spatial resolution.

SRR techniques are applicable to images and videos without the usual increased costs
and mass, associated with increased bandwidth or larger/heavier optical components,
normally required for achieving higher resolution. In particular, enhancing the ultra-high
spatial resolution Earth observation (EO) images, or high definition (HD) videos, is an active
driver for many applications in the fields of agriculture, forestry, energy and utility mainte-
nance and urban geospatial intelligence. The ability to further improve 30 cm/80 cm EO
images and videos into 10 cm/30 cm resolution SRR images and videos will allow artificial
intelligence-based (AI-based) analytics to be performed in transformative ways.

This work builds on our previous development from the UKSA CEOI funded SuperRes-
EO project, where we developed the MAGiGAN SRR system [1], i.e., Multi-Angle Gotcha
image restoration [2,3] with generative adversarial network (GAN) [4]. MAGiGAN was
developed to improve the effective resolution of an input lower resolution (LR) image
using a stack of overlapping multi-angle (more than 15◦) observations. In this paper, we
propose a lightweight multi-image SRR system, called OpTiGAN, using optical-flow [5]
and total variation [6] image restoration, to replace the extremely computational expensive

Remote Sens. 2021, 13, 2269. https://doi.org/10.3390/rs13122269 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-9170-6655
https://orcid.org/0000-0002-5077-3736
https://doi.org/10.3390/rs13122269
https://doi.org/10.3390/rs13122269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13122269
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13122269?type=check_update&version=1


Remote Sens. 2021, 13, 2269 2 of 27

Gotcha- (Grün-Otto-Chau) [2] based multi-angle restoration [1,3], for continuous image
sequences that do not have much change in viewing angles (less than 3◦).

We demonstrate the proposed OpTiGAN SRR system with ultra-high resolution
Digital Globe® WorldView-3 panchromatic (PAN) band images (at 31 cm/pixel), obtained
through the third-party mission programme of the European Space Agency (ESA), Deimos
Imaging® Deimos-2 PAN band images (at 75 cm/pixel), through EarthDaily Analytics,
and Planet® SkySat HD video frames (at 70 cm/pixel). Image quality evaluation, effective
resolution measurements and inter-comparisons of the OpTiGAN SRR results with other
SRR techniques were achieved based on a geo-calibration and validation site at Baotou,
China [7] (hereafter referred to as Baotou Geocal site). Our quantitative assessments have
suggested effective resolution enhancement factors of 3.69 times for WorldView-3 (using
five LR inputs), 2.69 times for Deimos-2 (using three LR inputs) and 3.94 times for SkySat
(using five LR inputs). An example of the original 31 cm/pixel WorldView-3 image and
the 9 cm/pixel OpTiGAN SRR result is shown in Figure 1.
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Figure 1. Example of the original 31 cm WorldView-3 image and the 9 cm OpTiGAN SRR result
(WorldView-3 image, Maxar, 2020. Data provided by the European Space Agency).

1.1. Previous Work

SRR refers to the process of restoring a higher resolution (HR) image from a single
or a sequence of LR images. SRR is traditionally achieved via fusing non-redundant
information carried within multiple LR inputs and is mostly achieved nowadays using a
deep learning process.

Over the past 30 years, most of the successful multi-image SRR techniques have
focused on spatial domain approaches, trying to inverse the degraded imaging process by
optimising the image formation and degradation models. Iterative back projection methods
were amongst the earliest methods developed for SRR [8–12]. Such methods attempted to
define an imaging model to simulate LR images using real observations, then iteratively
refine an initial guess of the HR image by comparing its simulated versions of LR images
with the provided LR inputs. Later on, maximum likelihood [13–17] and maximum a
posteriori (MAP) [6,14,18–25] based approaches attempted to resolve the inverse process
stochastically by introducing a priori knowledge about the desired HR image.

On the other hand, machine learning or deep learning-based SRR techniques contain a
training step in which the relationship between HR examples and their LR counterparts are
learnt. Over the past decade, different deep SRR networks have been proposed, aiming to
achieve a higher peak signal to noise ratio (PSNR) [26–30], or aiming to achieve a better per-
ceptual quality [4,31–34]. These deep SRR networks can be classified as residual-based ar-
chitectures [35–39], recursive architectures [40,41], attention-based architectures [30,39,42]
and GAN-based architectures [4,31–34]. In particular, GAN-based SRR networks operate
by training a generative model and a discriminator model simultaneously (in an alter-
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nant manner). In the past few years, GAN and its variations have become fairly popular,
especially for perceptual quality driven SRR tasks.

Of particular relevance to this work, we previously proposed two SRR systems, namely,
GPT-SRR (Gotcha partial differential equation (PDE) based total variation (TV)) and MAGi-
GAN SRR, in [1,3], for Mars imagery and EO satellite imagery, respectively, adopting
the multi-angle imaging properties and, for the latter one, combining the multi-angle
approach with GAN-based inference. GPT-SRR is able to reconstruct the non-redundant
information from multi-angle views, based on the MAP framework. MAGiGAN improves
upon GPT-SRR and applies a two-stage reconstruction scheme, which combines the ad-
vantages from GPT-SRR and GAN SRR and effectively eliminates potential artefacts from
using GAN alone. However, the key limitation for [1,3] is that they are both based on the
computationally expensive Gotcha process [2], which is not suitable for GPU computing so-
lutions.

In this work, we introduce a new OpTiGAN SRR system that contains modifications
and improvements on top of the MAGiGAN SRR system [1], is about 20 times faster
in processing speed, uses non-multi-angle observations, e.g., continuous satellite image
sequences or video frames, and in particular, is ideal for SRR of ultra-high-resolution (less
than 80 cm/pixel) imaging data.

1.2. Datasets

In this work, our test datasets are WorldView-3 (provided by ESA third-party missions
from Maxar®, in 2020), Deimos-2 PAN band images (provided by Deimos Imaging, S.L., in
2021) and SkySat HD video frames (provided by Planet®, in 2019). The training dataset,
used for the GANs, is the Deimos-2 4 m/pixel multispectral (MS) green band and 1 m/pixel
(downsampled from 75 cm/pixel) PAN band images (provided by UrtheCast Corp. (now
EarthDaily Analytics), in 2018).

The Maxar® WorldView-3 is the first multi-payload, multi-spectral, high-resolution
commercial satellite. WorldView-3 captures images at 31 cm/pixel spatial resolution for
the PAN band, 1.24 m/pixel for the MS band, 3.7 m/pixel for the short-wave infrared
(SWIR) band and 30 m/pixel for the Clouds, Aerosols, Vapors, Ice and Snow (CAVIS) band,
from an operating orbital altitude of 617 km (see https://www.maxar.com/constellation
(accessed on 9 June 2021) and https://earth.esa.int/web/eoportal/satellite-missions/v-w-
x-y-z/WorldView-3 (accessed on 9 June 2021)) with a swath width of 13.1 km (at nadir).
WorldView-3 has an average revisit time of less than one day and is capable of collecting
up to 680,000 km2 area per day. The WorldView-3 data (for research purposes) are available
via application through the ESA site (see https://earth.esa.int/web/guest/pi-community
(accessed on 9 June 2021)).

Deimos-2 is a follow-on imaging mission of Deimos-1 for high resolution EO ap-
plications owned and operated by the UrtheCast Corp. and Deimos Imaging, S.L. (see
https://elecnor-deimos.com/project/deimos-2/ (accessed on 9 June 2021)). Deimos-2
collects 0.75 m/pixel PAN band and 4 m/pixel MS band images with a swath width of
12 km (at nadir) from an orbit at ~600 km. Deimos-2 has a collection capacity of more
than 150,000 km2 area per day, with a two-day average revisit time worldwide (see
https://earth.esa.int/eogateway/missions/deimos-2 (accessed on 9 June 2021)). The MS
capability includes four channels in the visible: red, green and blue bands and near-infrared
(NIR) band. The Deimos-2 satellite is capable of achieving up to ±45◦ off-nadir pointing
and has a nominal acquisition angle up to ±30◦ to address particular multi-angle applications.

SkySat is a constellation of 21 high-resolution Earth imaging satellites owned and
operated by the commercial company Planet®(see https://www.planet.com/products/hi-
res-monitoring/ (accessed on 9 June 2021)). SkySat satellites operates on different orbit
altitudes of 600 km, 500 km and 400 km and with different swath width of 8 km (at nadir),
5.9 km (at nadir) and 5.5 km (at nadir), for SkySat-1 and SkySat-2, SkySat-3–SkySat-15,
SkySat-16–SkySat-21, respectively. SkySat has an image collection capacity of 400 km2

per day and the SkySat constellation has a sub-daily revisit time (6–7 times at worldwide
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average and 12 times maximum; see https://earth.esa.int/eogateway/missions/skysat
(accessed on 9 June 2021)). SkySat captures ~70 cm/pixel resolution still images or HD
videos. Full videos are collected between 30 and 120 s (30 frames per second) by the PAN
camera from any of the SkySat constellation while the spacecraft pointing follows a target.

2. Methods
2.1. An Overview of the Original MAGiGAN SRR System

The original MAGiGAN SRR system is based on multi-angle feature restoration, esti-
mation of the imaging degradation model and using GAN as a further refinement process.
A simplified flow diagram is shown in Figure 2. The overall process of the MAGiGAN SRR
system has 5 steps, including: (a) image segmentation and shadow labelling; (b) initial fea-
ture matching and subpixel refinement; (c) subpixel feature densification with multi-angle
off-nadir view interpolation onto an upscaled nadir reference grid; (d) estimation of the
image degradation model and iterative SRR reconstruction; (e) GAN-(pre-trained) based
SRR refinement.
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inputs and outputs.

MAGiGAN operates with a two-stage SRR reconstruction scheme. The first stage, i.e.,
steps (a)–(d), provides an initial SRR with an upscaling factor of 2 times of the original LR
resolution, followed by the second stage, i.e., step (e), for a further SRR with an upscaling
factor of 2 times of the resolution of the intermediate SRR result from the first stage output.
A detailed description of the above steps can be found in [1]. It should be noted that,
in order to produce sufficient effective resolution enhancement (≥3 times), the input LR
images for MAGiGAN must meet one key criteria, which is to contain a wide range
(a minimum of 15◦ and preferably 30◦) of multi-angle (off-nadir) views.

2.2. The Proposed OpTiGAN SRR System

In this paper, we propose the OpTiGAN SRR system that is based on the original
MAGiGAN framework, but with three key modifications for LR inputs of continuous
image sequences or video that do not contain viewing angle changes, to produce similar
quality of SRR result (~3 times effective resolution enhancement), compared to MAGiGAN,
but with significantly reduced computation time/cost. The flow diagram of the proposed
OpTiGAN SRR system is shown in Figure 3, highlighting (in yellow) the modifications, in
comparison to the MAGiGAN SRR system. The three modifications are listed as follows.

https://earth.esa.int/eogateway/missions/skysat
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(a) Firstly, the shadow labelling module of MAGiGAN is removed in OpTiGAN. Given
the LR inputs of continuous image sequence or video frames, the time differences
between each LR images are usually minor (i.e., from seconds to minutes), thus
shadow/shading differences can be ignored between each LR input. Therefore, there
is no need to keep the shadow labelling module in OpTiGAN, whereas when dealing
with multi-angle LR inputs using MAGiGAN, the input LR images are normally
acquired with much longer time differences (i.e., from days to months).

(b) Secondly, we compute the dense optical flow between each LR input using the Gunnar
Farneback algorithm [5], to produce translation-only transformations of each and
every pixel and to replace the computationally expensive Gotcha algorithm, which
calculates the affine transformations of each and every pixel. Theoretically, there
should be a reduction of the SRR enhancement/quality due to the absence of multi-
angle information. We cover this reduction by implementing the third modification,
i.e., (c), which is introduced next. In return, by replacing Gotcha, we obtain a ~20 times
of speedup.

(c) Thirdly, we replace the original GAN prediction (refinement) module with the MARS-
GAN model described in [43], where we demonstrated state-of-the-art single image
SRR performance for 4 m/pixel Mars imaging datasets. The network architecture
of MARSGAN can be found in [43]. In this work, we re-train the MARSGAN net-
work with the same training dataset used in [44]. The updated GAN module offers
improvement to the overall process of OpTiGAN, which complements the fallback
introduced in (b).

With the afore-mentioned modifications, OpTiGAN is able to achieve similar SRR
enhancement (in comparison to MAGiGAN [1]) in a much shorter (~20 times shorter)
processing time, for continuous image sequences and video frames with “zero” (or little)
viewing angle changes. The rest of the processing components are the same as MAGi-
GAN [1]. The overall process of the OpTiGAN SRR system has 5 steps, including: (a)
initial image feature matching and subpixel refinement; (b) calculation of dense sub-pixel
translational correspondences (motion prior) with optical flow; (c) estimation of the image
degradation model using the computed motion prior from (b) and initialisation of an inter-
mediate SRR reconstruction using PDE-TV; (d) MARSGAN (pre-trained) SRR refinement
on top of the intermediate SRR output from step (c).

OpTiGAN also operates on a two-stage SRR reconstruction process. In the first stage
processing of OpTiGAN, i.e., steps (a)–(c), 2 times upscaling is achieved with the optical-
flow PDE-TV, followed by a second stage, i.e., step (d), for a further 2 times upscaling,
using the pre-trained MARSGAN model, resulting in a total of 4 times upscaling for the
final SRR result.

In particular to the implementation of the optical flow-based motion prior estimation,
we use the OpenCV implementation (see https://docs.opencv.org/3.4/de/d9e/classcv_
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1_1FarnebackOpticalFlow.html (accessed on 9 June 2021)) of the Gunnar Farneback al-
gorithm [5]. This method uses a polynomial expansion transform to approximate pixel
neighbourhoods of each input LR image and the reference image (could be any image in
the inputs—usually the first one) and then estimates displacement fields from the polyno-
mial expansion coefficients. With dense optical flow, the affine correspondences of local
pixel points are simplified with translation-only correspondences. The omnidirectional
displacement values from dense optical flow are then passed through to the MAP process
(PDE-TV) [1,3], as the motion prior.

Using the two-stage SRR reconstruction scheme (both in MAGiGAN and the proposed
OpTiGAN), we found, in [1], that the MAP-based approaches (i.e., the first stage of MAGi-
GAN/OpTiGAN) are highly complementary with the deep learning-based approaches
(e.g., the second stage of MAGiGAN/OpTiGAN), in terms of restoring and enhancing
different types of features. In particular, the first stage of the OpTiGAN processing retrieves
sub-pixel information from multiple LR images and tends to produce robust restorations
(“artefact free”) of small objects and shape outlines, whereas the second stage of the OpTi-
GAN processing contributes more to the reconstruction of the high-frequency textures.
Besides, experiments in [1] and in this paper (see Section 3 for demonstration) have shown
that using GAN inference alone, i.e., without the first stage of the OpTiGAN processing,
can result in artificial textures or even synthetic objects, whereas using GAN inference on
top of an intermediate SRR result produced from a classic MAP-based approach produces
the highest effective resolution, in terms of resolvable small objects and edge/outline
sharpness and texture details, with the least artefacts.

On the other hand, in the second stage of OpTiGAN processing, we replace the original
GAN implementation, which was an optimised version of SRGAN [4], with our recently
developed MARSGAN model [43]. This is the same as a general GAN framework, wherein
MARSGAN trains a generator network to generate potential SRR solutions and a relativistic
adversarial network [32,43,45] to pick-up the most realistic SRR solution. MARSGAN
uses 23 Adaptive Weighted Residual-in-Residual Dense Blocks (AWRRDBs), followed
by an Adaptive Weighted Multi-Scale Reconstruction (AWMSR) block in the generator
network, providing much higher network capacity and better performance, compared
to the original SRGAN-based model used in MAGiGAN (see Section 3 for comparisons).
Besides, MARSGAN uses a balanced PSNR-driven and perceptual quality-driven [43] loss
function to produce high quality restoration while limiting synthetic artefacts. A simplified
network architecture of the MARSGAN model is shown in Figure 4. A detailed description
of the MARSGAN network can be found in [43].
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With the above changes, OpTiGAN operates the best on slowly “drifting” scenes
with less than 3◦ of changes in camera orientations, while MAGiGAN operates the best
on “point-and-stare” and/or multi-angle repeat-pass observations with more than 15◦ of
changes in camera orientations.

2.3. Training Details of the MARSGAN Model

In this work, we retrained the MARSGAN model with the Deimos-2 images used
in [44], using a similar hyperparameter set-up, as used previously in [43], i.e., batch size of
64, adversarial loss weight of 0.005, same low-level and high-level perceptual loss weight
as 0.5, pixel-based loss weight of 0.5 and an initial learning rate of 0.0001, which is then
halved at 50 k, 100 k, 200 k and 400 k iterations.

We have re-used the same training datasets as described in [44]. The training datasets
were formed from 102 non-repeat and cloud-free Deimos-2 images, including the 4 m/pixel
MS green band images (bicubic upsampled to 2 m/pixel for OpTiGAN training) and
the 1 m/pixel (downsampled) PAN band images. The 102 resampled (2 m/pixel and
1 m/pixel) Deimos-2 MS green band and PAN band images were then cropped and
randomly selected (50% of total samples are reserved) to form 300,512 (32 by 32 pixels) LR
training samples and 300,512 (64 by 64 pixels) HR training samples. It should be noted
that additional training (for validation and comparison purposes) of the SRGAN, ESRGAN
and MARSGAN networks used the original 4 m/pixel MS green band images (without
upsampling) and a larger HR sample size (128 by 128 pixels), in order to achieve the unified
upscaling factor (4 times) for intercomparisons.

All training and subsequent SRR processing were performed on the latest Nvidia®

RTX 3090 GPU and an AMD® Ryzen-7 3800X CPU.
It should be noted that the final trained MARSGAN model has a high scalability over

different datasets that have different resolutions (from 30 cm to 10 m). Other than the
demonstrated ultra-high-resolution datasets, it also works for the 4 m Deimos-2 MS band
images and 10 m Sentinel-2 images.

2.4. Assessment and Evaluation Methods

In this work, our target testing datasets are amongst the highest resolution satellite
optical data for EO, therefore there is no “reference HR” image available for direct compar-
ison and evaluation. Standard image quality metrics, e.g., PSNR and structural similarity
index metric, that require a reference HR image, cannot be used for this work. However,
we visually examined and compared the restorations of different artificial targets (i.e., the
bar-pattern targets and fan-shaped targets, available at the Baotou Geocal site) in the SRR
results against fully measured reference truth (see Figure 5). The smallest bars that were
resolvable in the SRR results are summarised in Section 3.

Our initial qualitative assessment was based on two image quality metrics, i.e., the
blind/referenceless image spatial quality evaluator (BRISQUE) [46] and the perception-
based image quality evaluator (PIQE) [47] scores (for implementation see https://uk.
mathworks.com/help/images/image-quality.html (accessed on 9 June 2021)).

https://uk.mathworks.com/help/images/image-quality.html
https://uk.mathworks.com/help/images/image-quality.html
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In addition, we performed edge sharpness measurements using the Imatest® software
(https://www.imatest.com/ (accessed on 9 June 2021)) to measure the effective resolutions
of the SRR results. The Imatest® edge sharpness measurement calculated the averaged
total amount of pixels from 20% to 80% rises of slanted-edge profiles within a given high-
contrast area. If the total number of pixels of such profile rises in the SRR image was
compared against the total number of pixels involved in its LR counterpart, for the same
slanted-edge profile, then their ratio could be used to estimate an effective resolution
enhancement factor between the two images (biased to the measured edge in particular).
We performed this test using the knife-edge target visible at the Baotou Geocal site (see
Figure 5) with multiple slanted-edges and then averaged the resolution enhancement
factors, estimated with different slanted-edges, to obtain an averaged effective resolution
enhancement factor for the SRR results.

3. Results
3.1. Experimental Overview

The Baotou Geocal site (50 km away from the Baotou city) located at 40◦51′06.00”N,
109◦37′44.14”E, Inner Mongolia, China, was used as the test site in this study, in order to
obtain assessments which can be compared against other published ones. The permanent
artificial optical targets (see Figure 5), at the Baotou Geocal site, provided broad dynamic
range, good uniformity, high stability and multi-function capabilities. Since 2013, the
artificial optical targets have been successfully used for payload radiometric calibration
and on-orbit performance assessment for a variety of international and domestic satellites.
The artificial optical targets were set-up on a flat area of approximately 300 km2, with an
average altitude of 1270 m. The Baotou Geocal site features a cold semi-arid climate that
has (an average of) ~300 clear-sky days every year, which has made it an ideal site for
geo-calibration and validation work. Some illustration photos (courtesy of [48]) of the
artificial optical targets, including a knife-edge target, a fan-shaped target and a bar-pattern
target, at the Baotou Geocal site, as well as the fully measured reference truth (provided by
L. Ma [48] and Y. Zhou [49] in private correspondence) for the bar-pattern target, can be
found in Figure 5.

We tested the proposed OpTiGAN SRR system with three ultra-high-resolution satel-
lite datasets, i.e., the 31 cm/pixel WorldView-3 PAN images, the 75 cm/pixel Deimos-2
PAN images and the 70 cm/pixel SkySat HD video frames. Table 1 shows the input im-
age IDs used in this work. Note that the first row was used as the reference image in

https://www.imatest.com/
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case of multi-image SRR processing and it was also the sole-input in case of single-image
SRR processing.

Table 1. Input image IDs for WorldView-3, Deimos-2 and SkySat image/video frames. The first row of the image IDs
shows the reference image for multi-image SRR and sole-input for single-image SRR. WorldView-3 Maxar® image 2020,
provided by the European Space Agency; Deimos-2®: Deimos Imaging, S.L. in 2021; Skysat L1A imagery provided by
Planet Labs, Inc.

WorldView-3 Deimos-2 SkySat

18AUG18040034-P2AS-
012860253020_01_P006

DE2_PAN_L1C_000000_20171028T032332_
20171028T032334_DE2_18196_7323 1256786198.72711825_sc00112_c2_PAN_i0000000246_16bit

18AUG05035334-P2AS-
012860253020_01_P007

DE2_PAN_L1C_000000_20161202T032012_
20161202T032015_DE2_13299_0195 1256786198.79377627_sc00112_c2_PAN_i0000000247_16bit

18JUL11035419-P2AS-
012860253020_01_P009

DE2_PAN_L1C_000000_20180427T032701_
20180427T032703_DE2_20882_109E 1256786198.86044383_sc00112_c2_PAN_i0000000248_16bit

18AUG31040658-P2AS-
012860253020_01_P005 1256786198.92711139_sc00112_c2_PAN_i0000000249_16bit

20FEB16035612-P2AS-
012860253020_01_P004 1256786198.99377990_sc00112_c2_PAN_i0000000250_16bit

Since MAGiGAN and OpTiGAN require different inputs, i.e., LR images with viewing
angle differences and without viewing angle differences, respectively, we are not able to
provide results of a comparison of performance between these two SRR systems. However,
in this work, we provide intercomparisons against four different SRR techniques. The
four SRR techniques include: (1) an optimised version of the SRGAN [4] single-image
SRR network that was used in MAGiGAN [1] (hereafter referred to as SRGAN, in all text,
figures and tables); (2) ESRGAN [32] single-image SRR network; (3) MARSGAN [43] single-
image SRR network, which was also used as the second stage processing of OpTiGAN;
(4) optical-flow PDE-TV (OFTV; hereafter referred to as OFTV, in all text, figures and
tables) multi-image SRR, which was also used as the first stage processing of OpTiGAN.
It should be noted that all deep network-based SRR techniques, i.e., SRGAN, ESRGAN,
MARSGAN and OpTiGAN, were trained with the same training datasets, as described in
Section 2.3.

3.2. Demonstration and Assessments of WorldView-3 Results

For the WorldView-3 experiments, we used a single input image for the SRGAN,
ESRGAN and MARSGAN SRR processing and used five overlapped input images for the
OFTV and OpTiGAN SRR processing. Four cropped areas (A–D) covering the different
artificial targets at the Baotou Geocal site are shown in Figure 6 for comparisons of the SRR
results and the original input WorldView-3 image.

Area A showed the 10 m× 2 m and 5 m× 1 m bar-pattern targets. We can observe that
all five SRR results showed good restoration of these larger sized bars. The SRGAN result
of Area A showed some rounded corners of the 5 m × 1 m bars, whereas the ESRGAN
result showed sharper corners, but with some high-frequency noise. The MARSGAN
result showed the best overall quality among the three single-image deep learning-based
SRR techniques. In comparison to the deep learning-based techniques, OFTV showed
smoother edges/outlines, but with no observable artefact. The OpTiGAN result, which was
based on OFTV and MARSGAN, showed the best overall quality, i.e., similar sharpness on
edges/outlines/corners, but with no artefact or high-frequency noise.
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Area B showed the central area of the knife-edge target. All three deep learning-based
techniques showed sharp edges of the target; however, the SRGAN result appeared to
demonstrate some artefacts at the centre corner and some artefacts at the edges, ESRGAN
showed some high-frequency noise, whilst MARSGAN had some artefacts at the edges.
OFTV showed a blurrier edge compared to SRGAN, ESRGAN and MARSGAN, but it
showed the least number of artefacts. OpTiGAN had shown sharp edges that were similar
to ESRGAN and MARSGAN, but with much less noise and artefact.

Area C showed a fan-shaped target. We can observe that all five SRR results showed
good restoration of the target at mid-range radius. The MARSGAN and OpTiGAN results
showed reasonable restoration at the centre radius, i.e., by the end of the target, with only
a few artefacts at the centre and in between each strip pattern. ESRGAN also showed
some reasonable restoration at small radius, but the result was much noisier compared to
MARSGAN and OpTiGAN. SRGAN showed obvious artefacts at small radius. OFTV did
not show as much detail as the other techniques, but, instead, it showed no observable
noise or artefact. In terms of sharpness, ESRGAN, MARSGAN and OpTiGAN had the best
performance. However, MARSGAN and OpTiGAN had less noise compared to ESRGAN,
with OpTiGAN showing the least artefacts among the three.

Area D showed a zoom-in view of the larger 10 m × 2 m bar-pattern targets along
with multiple smaller bar-pattern targets with size ranges from 2.5 m × 0.5 m, 2 m × 0.4 m,
2 m × 0.3 m, 2 m × 0.2 m, to 2 m × 0.1 m, from bottom-right to top-right (see Figure 5).
We can observe that all five SRR techniques were able to restore the 2.5 m × 0.5 m bars
reasonably well, despite the SRGAN results showing some tilting. The tilting artefact
became more severe for the 2 m × 0.4 m bars for SRGAN and the bars were not clearly
visible at the 2 m × 0.4 m scale and above. ESRGAN showed clear individual bars at 2 m
× 0.4 m, but all of them had the same tilting artefact. In the MARSGAN result, we could
observe smaller bars up to 2 m × 0.3 m, but still with artefacts, i.e., tilting and wrong
shapes. OFTV showed smoother edges of the bars, but with very little artefact. The shapes
and angles of the small bar strips, at the right side of the crop, were more correct (refer to
Figure 5) with OFTV and the smallest resolvable bars were in between 2 m × 0.4 m and
2 m × 0.3 m. Finally, the OpTiGAN result showed the best restoration of the 2 m × 0.4 m
bars compared to the other four SRR results. The smallest recognisable bars were between
2 m × 0.3 m and 2 m × 0.2 m, for OpTiGAN. However, OpTiGAN still had some artefacts
for bars at the 2 m × 0.3 m scale that were similar to the MARSGAN result.

In Table 2, we show the BRISQUE and PIQE image quality scores (0–100, lower scores
representing better image quality) that were measured from the full-image (see Supplemen-
tary Materials for the full-image) at the Baotou Geocal site. We can observe improvements
in terms of image quality from all five SRR techniques. MARSGAN achieved the best image
quality score from BRISQUE, whereas ESRGAN achieved the best image quality score from
PIQE. The image quality scores for OpTiGAN were close to ESRGAN and MARSGAN. The
lower image quality scores reflected better overall image sharpness and contrast. However,
since this measurement did not count for incorrect high-frequency texture, incorrect re-
construction of small sized targets and synthetic artefacts, the better scores do not reflect
absolute better quality of the SRR results. More quantitative assessments are given in
Tables 3 and 4.
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Table 2. BRISQUE and PIQE assessments of the WorldView-3 image and its SRR results at Baotou Geocal site.

WorldView-3 SRGAN ESRGAN MARSGAN OFTV OpTiGAN

BRISQUE 45.2338 37.9340 28.9244 25.7153 38.9264 31.8876

PIQE 73.9336 57.1820 16.1597 22.3267 32.2479 24.3363
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Figure 7. Imatest® slanted-edge profile measurements for the knife-edge target at the Baotou Geocal site, showing 3
automatically detected edges for each of the input WorldView-3 image (upscaled by a factor of 4 for comparison), SRGAN
SRR result, ESRGAN SRR result, MARSGAN SRR result, OFTV SRR result and OpTiGAN SRR result. For each slanted
edge measurement, there is a plot, showing a profile line crossing the detected edge. Imatest® measured the total pixel
count of a 20–80% profile rise. For texts inside the plots, please refer to the original full-resolution figure in Supplementary
Materials. WorldView-3 image courtesy of Maxar 2020. Data provided by the European Space Agency.
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Table 3. Summary of slanted-edge measurements as shown in Figure 7, for total pixel counts for 20–80% rise of the edge
profile and the suggested effective resolution enhancement factor comparing to the input WorldView-3 image (upscaled by
a factor of 4 for comparison).

WorldView-3 SRGAN ESRGAN MARSGAN OFTV OpTiGAN

Edge-1 pixel counts 5.31 pixels 3.38 pixels 3.85 pixels 2.96 pixels 3.57 pixels 1.80 pixels

Edge-1 enhancement factor - 1.57 times 1.38 times 1.79 times 1.49 times 2.95 times

Edge-2 pixel counts 4.25 pixels 2.31 pixels 2.38 pixels 1.16 pixels 2.50 pixels 1.14 pixels

Edge-2 enhancement factor - 1.84 times 1.79 times 3.66 times 1.7 times 3.73 times

Edge-3 pixel counts 4.08 pixels 2.40 pixels 2.56 pixels 1.04 pixels 2.89 pixels 0.93 pixels

Edge-3 enhancement factor - 1.7 times 1.59 times 3.92 times 1.41 times 4.39 times

Average enhancement factor - ~1.7 times ~1.59 times ~3.12 times ~1.53 times ~3.69 times

Table 4. Summary of the effective resolution derived from Figure 7 and Table 3, the smallest resolvable bar pattern targets
observed from the WorldView-3 image and each of the SRR results, in comparison to Figure 5, as well as the number of
input images used and computing time for the Baotou Geocal site.

WorldView-3 SRGAN ESRGAN MARSGAN OFTV OpTiGAN

Image size 420 × 420
pixels 1680 × 1680 pixels

Spatial
resolution 31 cm/pixel 7.75 cm/pixel

Effective
resolution

Assuming
31 cm/pixel 18 cm/pixel 19 cm/pixel 10 cm/pixel 20 cm/pixel 9 cm/pixel

Smallest
resolvable bar
(recognisable)

60 cm 40 cm 40 cm 30 cm 30 cm 20 cm

Smallest
resolvable bar

(with good
visual quality)

80 cm 50 cm 50 cm 50 cm 40 cm 30 cm

Number of LR
input used - 1 1 1 5 5

Computing
time - <1 s <1 s <1 s ~10 min ~10 min

It has been the case that in the field of photo-realistic SRR, many SRR techniques
present “fancy” images with four times or even eight times of upscaling factor, but their
effective resolution never reaches the upscaling factor. In this paper, we present a more
quantitative assessment using the Imatest® slanted-edge measurement for the knife-edge
target at the Baotou Geocal site. In Figure 7, we show three automatically detected edges
and their associated 20–80% profile rise analysis for each of the input WorldView-3 image,
SRGAN SRR result, ESRGAN SRR result, MARSGAN SRR result, OFTV SRR result and
OpTiGAN SRR result. The total pixel counts for the 20–80% profile rise of each slanted edge
are summarised in Table 3. We divided the total pixel counts of the input WorldView-3
image (upscaled by a factor of 4 for comparison) with the total pixel counts of the SRR
results to get the effective resolution enhancement factor for each of the measured edges.
Note that the edge sharpness measurements are generally similar but may be different
from area to area, even in the same image, thus we averaged three measurements to get the
final effective resolution enhancement factor. The average effective resolution enhancement
factors are shown in the last row of Table 3.
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Another quantitative assessment of image effective resolution was achieved via vi-
sually checking the smallest resolvable bar targets for each of the SRR results. This is
summarised in Table 4. We checked the smallest resolvable bar targets in terms of “recognis-
able” and “with good visual quality”, where “recognisable” means visible and identifiable
and does not count for noise or artefacts and “with good visual quality” means clearly
visible with little or no artefacts. We can see from Table 4 that, with a 31 cm/pixel resolu-
tion WorldView-3 image, we can resolve 60 cm/80 cm bar targets and, with a 9 cm/pixel
OpTiGAN SRR, we can resolve 20 cm/30 cm bar targets. Table 4 also shows the effective
resolution calculated from Table 3, along with input and processing information. Note, here,
the proposed OpTiGAN system has significantly shortened the required processing time
from a few hours to around 10 min for five of 420 × 420-pixel input images in comparison
to MAGiGAN [1], which we based the aforementioned modifications on.

3.3. Demonstration and Assessments of Deimos-2 Results

For the Deimos-2 experiments, we used one input for the SRGAN, ESRGAN and
MARSGAN SRR processing and three repeat-pass inputs for OFTV and OpTiGAN SRR
processing. Four cropped areas (A–D) covering the different artificial targets at the Baotou
Geocal site are shown in Figure 8 for comparison with the SRR results and the original
input Deimos-2 image.

Area A showed the overall area of the bar-pattern targets that ranged from 25 m ×
5 m to 2 m × 0.1 m. We can observe that all five SRR techniques were able to bring out the
correct outlines for the 10 m × 2 m bars; however, the ESRGAN results displayed some
artefacts (incorrect shape) and the OFTV results were slightly smoother than the others.
For the smaller 5 m × 1 m bars, only ESRGAN, MARSGAN and OpTiGAN results showed
some reasonable restoration, but with added noise. Some details could be seen for the
4.5 m × 0.9 m bars with MARSGAN and OpTiGAN, but with too much noise.

Area B showed the centre of the knife-edge target. We can observe that the SRGAN, ES-
RGAN and OFTV results were quite blurry at the centre and edges. In addition, ESRGAN
tended to produce some artificial textures that made the edges even more blurry. MARS-
GAN showed sharper edges in comparison to SRGAN, ESRGAN and OFTV. OpTiGAN
showed further improvement on top of MARSGAN.

Area C showed a zoom-in view of the smaller 10 m × 2 m and 5 m × 1 m bar-pattern
targets. We could clearly observe the noise in SRGAN and ESRGAN for the 10 m × 2 m
bars. The OFTV result was blurry, but without any artefact. MARSGAN and OpTiGAN
had the best (and similar) restoration for the 10 m × 2 m bars. For the 5 m × 1 m bars, only
OpTiGAN produced reasonable restoration.

Area D showed a fan-shaped target. We can observe that all five SRR results showed
good restoration of the target at mid-to-long radius. At the centre of the fan-shaped target,
the SRGAN and OFTV results were blurry and the ESRGAN, MARSGAN and OpTiGAN
results showed different levels of artefact.

In Table 5, we show the BRISQUE and PIQE image quality scores (0–100, lower score
represents better quality) that were measured with the full-image (see Supplementary
Materials for the full-image) at the Baotou Geocal site. We can observe improvements in
terms of image quality from all five SRR techniques. MARSGAN and OpTiGAN received
the best overall score for the Deimos-2 results.

Table 5. BRISQUE and PIQE assessment of the Deimos-2 image and its SRR results at Baotou Geocal site.

Deimos-2 SRGAN ESRGAN MARSGAN OFTV OpTiGAN

BRISQUE 44.775 47.1044 44.0127 39.5407 44.4973 39.3605

PIQE 75.446 65.798 22.4199 25.2007 24.1284 25.0122
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In Figure 9, we present a quantitative assessment achieved via the Imatest® slanted-
edge measurements for the knife-edge target at the Baotou Geocal site. There were three
automatically detected edges and their associated 20–80% profile rise analysis are shown,
for each of the input Deimos-2 image, SRGAN SRR result, ESRGAN SRR result, MARSGAN
SRR result, OFTV SRR result and OpTiGAN SRR result. The total pixel counts for the
20–80% profile rise of each slanted edge is summarised in Table 6. We divided the total
pixel counts of the input Deimos-2 image (upscaled by a factor of 4 for comparison) with
the total pixel counts of the SRR results to get the effective resolution enhancement factor
for each of the measured edge. The three measurements were then averaged to get the
final effective resolution enhancement factor, as shown in the last row of Table 6. For the
Deimos-2 experiments, we can observe that the effective resolution enhancements were
generally not good with SRGAN, ESRGAN and OFTV; however, with OpTiGAN, we still
obtained a factor of 2.96 times improvement.
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Figure 9. Imatest® slanted-edge profile measurements for the knife-edge target at the Baotou Geocal site, showing 3
automatically detected edges for each of the input Deimos-2 image (upscaled by a factor of 4 for comparison), SRGAN
SRR result, ESRGAN SRR result, MARSGAN SRR result, OFTV SRR result and OpTiGAN SRR result. For each slanted
edge measurement, there is a plot, showing a profile line crossing the detected edge. Imatest® measured the total pixel
count of a 20–80% profile rise. For text inside the plots, please refer to the original full-resolution figure in Supplementary
Materials. Deimos-2 image courtesy of Deimos Imaging, S.L. 2021.
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Table 6. Summary of slanted-edge measurement, as shown in Figure 9, for total pixel counts for the 20–80% rise of the edge
profile and indicated effective resolution enhancement factor comparing to the input Deimos-2 image (upscaled by a factor
of 4 for comparison).

Deimos-2 SRGAN ESRGAN MARSGAN OFTV OpTiGAN

Edge-1 pixel counts 8.7 pixels 8.98 pixels 8.61 pixels 6.43 pixels 8.7 pixels 2.87 pixels

Edge-1 enhancement factor - <1 times >1 times 1.35 times 1 times 3.03 times

Edge-2 pixel counts 8.06 pixels 8.21 pixels 7.83 pixels 7.54 pixels 8.49 pixels 3.19 pixels

Edge-2 enhancement factor - <1 times >1 times 1.07 times <1 times 2.53 times

Edge-3 pixel counts 7.9 pixels 6.85 pixels 7.13 pixels 4.98 pixels 7.62 pixels 3.15 pixels

Edge-3 enhancement factor - 1.15 times >1 times 1.59 times >1 times 2.51 times

Average enhancement factor - ~1 times ~1 times ~1.34 times ~1 times ~2.69 times

The other quantitative assessment of image effective resolution was achieved via
visual checking of the smallest resolvable bar targets for each of the SRR results. The results
are summarised in Table 7. We can observe, from Table 7, that even the effective resolutions
for edges were generally not good for SRGAN, ESRGAN and OFTV, as shown in Table 6.
The results still showed reasonable restorations for the bar targets. We can see, from Table 7,
that, with a 75 cm/pixel resolution Deimos-2 image, we can resolve 2 m/3 m bar targets
and, with a 28 cm/pixel OpTiGAN SRR, we can resolve 1 m/2 m bar targets.

Table 7. Summary of the effective resolution derived from Figure 9 and Table 6, the smallest resolvable bar pattern targets
observed from the Deimos-2 image and each of the SRR results, in comparison with Figure 5, as well as the number of input
images used and computing time for the Baotou Geocal site.

Deimos-2 SRGAN ESRGAN MARSGAN OFTV OpTiGAN

Image size 284 × 284
pixels 1136 × 1136 pixels

Spatial resolution 75 cm/pixel 18.75 cm/pixel

Effective resolution Assuming
75 cm/pixel 75 cm/pixel 75 cm/pixel 56 cm/pixel 75 cm/pixel 28 cm/pixel

Smallest resolvable
bar (recognisable) 2 m 2 m 1 m 1 m 2 m 1 m

Smallest resolvable
bar (with good visual

quality)
3 m 2 m 3 m 2 m 2 m 2 m

Number of LR input
used - 1 1 1 3 3

Computing time - <1 s <1 s <1 s ~6 min ~6 min

3.4. Demonstration and Assessments of SkySat Results

For the SkySat experiments, we used one input for the SRGAN, ESRGAN and MARS-
GAN SRR processing and five continuous video frames for the OFTV and OpTiGAN SRR
processing. Four cropped areas (A–D) covering the different artificial targets available at
the Baotou Geocal site are shown in Figure 10 for comparison with the SRR results and the
original input SkySat video frames.
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Materials for full-resolution images with larger size. SkySat image: Skysat L1A imagery provided by Planet Labs, Inc.
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Area A showed the overall area of the bar-pattern targets that ranged from 25 m ×
5 m to 2 m × 0.1 m. We can observe that SRGAN, MARSGAN, OFTV and OpTiGAN were
able to bring out the correct outlines of the 10 m × 2 m bars. The ESRGAN result showed
some high-frequency textures and also showed some reconstruction of the 5 m × 1 m
bars; however, its result was very noisy. OFTV was blurry, but with the least artefact. The
MARSGAN and OpTiGAN results showed the best restoration with little noise and artefact,
for the bar-pattern targets, and, especially, for bringing out the 5 m × 1 m bars. A few
textures have been revealed for the 4.5 m × 0.9 m bars from OpTiGAN, but no individual
4.5 m × 0.9 m bar has been resolved from any SRR result.

Area B showed the centre of the knife-edge target. We can observe artefacts from
SRGAN, noise from ESRGAN, blurring effects from MARSGAN and OFTV. In terms of
edge sharpness for this area, SRGAN and OpTiGAN results were the best, but OpTiGAN
had significantly less artefact and noise compared to SRGAN.

Area C showed a zoom-in view of the smaller 10 m × 2 m and 5 m × 1 m bar-pattern
targets. For the smaller 5 m × 1 m bars, the MARSGAN and OpTiGAN results showed
some good restoration, but both with artefacts and noise.

Area D showed the fan-shaped target. The ESRGAN result showed the best restoration
at the centre, but it was also the noisiest. SRGAN displayed artefacts towards the centre.
MARSGAN and OpTiGAN showed the best restoration for mid-to-long radiuses.

Finally, we give BRISQUE and PIQE image quality scores (0–100, lower scores repre-
sent better quality) in Table 8. We can observe significant improvements in terms of image
quality from all five SRR results. ESRGAN, MARSGAN and OpTiGAN demonstrated the
best overall score for the SkySat experiments.

Table 8. BRISQUE and PIQE assessment of the SkySat video frame (reference frame) and its SRR
results at Baotou Geocal site.

SkySat SRGAN ESRGAN MARSGAN OFTV OpTiGAN

BRISQUE 43.4582 39.0124 28.4039 34.0242 40.0536 36.0347

PIQE 69.0228 37.6772 35.2918 28.8104 33.6981 29.4606

In Figure 11, we present the Imatest® slanted-edge measurements for the knife-edge
target. There were three automatically detected edges and their associated 20–80% profile
rise analysis are shown, for each of the input SkySat video frames, SRGAN, ESRGAN,
MARSGAN, OFTV and OpTiGAN SRR results. The total pixel counts for the 20–80% profile
rise of each slanted edge is summarised in Table 9. We divided the total pixel counts of
the input SkySat video frame (upscaled by a factor of 4 for comparison) with the total
pixel counts of the SRR results to get an indicative effective resolution enhancement factor
for each of the measured edge. The three measurements were then averaged to get the
final effective resolution enhancement factor, as shown in the last row of Table 9. For
the SkySat experiments, we can only observe marginal effective resolution enhancements
for SRGAN, ESRGAN, MARSGAN and OFTV; however, with OpTiGAN, the effective
resolution enhancement factor was much higher, at 3.94 times.

The smallest resolvable bar targets from the original SkySat video frame and its SRR
results are summarised in Table 10. With a 70 cm/pixel resolution SkySat video frame, we
can resolve 2 m/5 m bar targets. SRGAN brought the 3 m bars to visually good quality.
ESRGAN did not improved the quality of the 5 m and 3 m bars, but made the 1 m bar
resolvable. MARSGAN improved the quality of the 5 m and 3 m bars and also made the
1 m bar resolvable. OFTV did not make the 1 m bars resolvable, but improved the visual
quality for 5 m, 3 m and 2 m bars. Finally, with the 18 cm/pixel OpTiGAN SRR, 1 m bars
were resolvable and the qualities for 5 m, 3 m and 2 m bars were all improved.
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Figure 11. Imatest® slanted-edge profile measurements for the knife-edge target at the Baotou Geocal site, showing 3
automatically detected edges for each of the input SkySat video frames (upscaled by a factor of 4 for comparison), SRGAN
SRR result, ESRGAN SRR result, MARSGAN SRR result, OFTV SRR result and OpTiGAN SRR result. For each slanted
edge measurement, there is a plot, showing a profile line crossing the detected edge. Imatest® measured the total pixel count
of a 20–80% profile rise. For texts inside the plots, please refer to the original full-resolution figure in the Supplementary
Materials. SkySat image: Skysat L1A imagery provided by Planet Labs, Inc.

Table 9. Summary of slanted-edge measurement as shown in Figure 11, for total pixel counts for the 20–80% rise of the edge
profile and indicated effective resolution enhancement factor comparing to the input SkySat video frame (upscaled by a
factor of 4 for comparison).

SkySat SRGAN ESRGAN MARSGAN OFTV OpTiGAN

Edge-1 pixel counts 7.69 pixels 6.09 pixels 3.55 pixels 3.15 pixels 5.27 pixels 1.76 pixels

Edge-1 enhancement factor - 1.26 times 2.17 times 2.44 times 1.46 times 4.37 times

Edge-2 pixel counts 7.80 pixels 6.37 pixels 6.02 pixels 5.36 pixels 6.95 pixels 1.82 pixels

Edge-2 enhancement factor - 1.22 times 1.30 times 1.46 times 1.12 times 4.29 times

Edge-3 pixel counts 5.45 pixels 3.57 pixels 3.35 pixels 3.10 pixels 5.72 pixels 1.72 pixels

Edge-3 enhancement factor - 1.53 times 1.63 times 1.76 times <1 times 3.17 times

Average enhancement factor - ~1.34 times 1.7 times ~1.89 times ~1.19 times ~3.94 times
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Table 10. Summary of the effective resolution derived from Figure 11 and Table 9, the smallest resolvable bar pattern targets
observed from the SkySat image and each of the SRR results, in comparison to Figure 5, as well as the number of input
images used and computing time for the Baotou Geocal site.

SkySat SRGAN ESRGAN MARSGAN OFTV OpTiGAN

Image size 183 × 183 pixels 732 × 732 pixels

Spatial resolution 70 cm/pixel 17.5 cm/pixel

Effective resolution Assuming
70 cm/pixel 52 cm/pixel 41 cm/pixel 37 cm/pixel 59 cm/pixel 18 cm/pixel

Smallest resolvable bar
(recognisable) 2 m 2 m 1 m 1 m 2 m 1 m

Smallest resolvable bar (with
good visual quality) 5 m 3 m 5 m 3 m 2 m 2 m

Number of LR input used - 1 1 1 5 5

Computing time - <1 s <1 s <1 s ~5 min ~5 min

3.5. OpTiGAN Results Demonstration over Different Areas

In this section, we demonstrate further OpTiGAN SRR results for 31 cm WorldView-3
images and 75 cm Deimos-2 PAN band images over different areas. These included small
building blocks within the Baotou site, from WorldView-3 (Figure 12), a non-urban area
(snow covered) in Greenland, from WorldView-3 (Figure 13), small and flat residential
building blocks in Adelaide, from Deimos-2 (Figure 14), and tower buildings, ships and
highway roads over Dubai, from Deimos-2 (Figure 15). It should be noted that all OpTiGAN
SRR results in this section were produced with four input images from the two datasets
(WorldView-3 and Deimos-2) and image IDs of the reference images are given in the figure
captions. We can observe from the different examples of urban and non-urban scenes, that
OpTiGAN was able to restore structural outlines (e.g., buildings, roads and geological
surface features) and small objects (e.g., windows of a building, cars and ships), with much
higher edge sharpness and no obvious artefact.
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Figure 12. Examples of the 31 cm/pixel WorldView-3 image (18AUG18040034-P2AS-012860253020_01_P006) crops and the
corresponding OpTiGAN SRR results showing small buildings over the Baotou site. All sub-figures have a size of 27 m by
27 m. WorldView-3 image courtesy of Maxar 2020. Data provided by the European Space Agency.
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Figure 13. Examples of the 31 cm/pixel WorldView-3 image (20MAY16150148-P2AS-012860253010_01_P002) crops and the
corresponding OpTiGAN SRR results showing snow surface features over a Greenland site. All sub-figures have a size of
27 m by 27 m. WorldView-3 image courtesy of Maxar 2020. Data provided by the European Space Agency.
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Figure 15. Examples of the 75 cm/pixel Deimos-2 image (DE2_PAN_L1B_000000_20180624T071049_20180624T071052) 
crops and the corresponding OpTiGAN SRR results showing building towers, ships and roads over the Dubai site. All 
sub-figures have a size of 87.5 m by 87.5 m. Deimos-2 image courtesy of Deimos Imaging, S.L. 2021. 
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Figure 14. Examples of the 75 cm/pixel Deimos-2 image (DE2_PAN_L1B_000000_20180506T021306_20180506T021310) crops
and the corresponding OpTiGAN SRR results showing residential building blocks over the Adelaide site. All sub-figures
have a size of 87.5 m by 87.5 m. Deimos-2 image courtesy of Deimos Imaging, S.L. 2021.
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Figure 15. Examples of the 75 cm/pixel Deimos-2 image (DE2_PAN_L1B_000000_20180624T071049_20180624T071052)
crops and the corresponding OpTiGAN SRR results showing building towers, ships and roads over the Dubai site. All
sub-figures have a size of 87.5 m by 87.5 m. Deimos-2 image courtesy of Deimos Imaging, S.L. 2021.

4. Discussion

We can observe from the results, OFTV has played an important role in producing the
initial SRR image (intermediate output in the first-stage processing of OpTiGAN) to provide
initial controls on potential artefacts and noises, from the follow-on GAN-based refinement
process (the second-stage processing in OpTiGAN). Although SRGAN, ESRGAN and
MARSGAN alone were able to produce visually pleasing SRR results, due to effects from
artefact and noise, we did not observe significant improvement in terms of resolving
smaller bar targets, from all three experiments.

In addition, the effective resolutions achieved from SRGAN, ESRGAN and MARS-
GAN alone, for ultra-high resolution satellite imagery, when a network did not have any
prior knowledge of the HR counterpart of the input images (i.e., network had not been
trained with any HR truth at such ultra-high spatial resolution), were generally limited, as
demonstrated in the slanted-edge measurements. OpTiGAN provides a solution for SRR
of ultra-high resolution satellite image sequences or videos.

The proposed multi-image OpTiGAN SRR system benefits from more input images;
we based our test on a minimal number of LR inputs and tested its limit for only three LR
inputs for the Deimos-2 datasets. We can observe better effective resolution enhancement
factors with OpTiGAN using five LR inputs for WorldView-3 and SkySat, in comparison to
using three LR inputs for Deimos-2.

However, more LR inputs (or larger input image size) require more computing time.
The processing speed of a SRR system that involves MAP approaches is generally not
comparable with a deep learning-based inference system. However, with OpTiGAN,
as most of the components are portable to GPU, we were able to produce SRR results for
small inputs (≤300 × 300 pixels, ≤5 inputs) within a fairly short time (≤10 min). The
other downside is that we observed some artefacts, in our experiments from the first stage
(OFTV) of the OpTiGAN processing, for using large input LR images (typically for input
images >1000 × 2000 pixels). This issue can be fully eliminated by using tiles of smaller
input images (≤500 × 500 pixels).
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In the future, different optical flow algorithms and/or different SRR networks can
be explored to further improve performance of each of the two processing stages of the
OpTiGAN system. A multi-scale approach can be explored to replace the current sequential
approach, in order to better integrate the traditional MAP solution with the deep learning-
based result. Better training of the MARSGAN model is expected in the future, when there
are more training images available. In addition, separating the MARSGAN model with
respect to different types of targets/surface features (separately trained) may potentially
improve the performance. In this case, an automated system to identify such different
types of targets and surface features will be helpful both for training (scene classification)
and for inferencing (trained model selection).

5. Conclusions

In this paper, we proposed a multi-image SRR system, called OpTiGAN, for con-
tinuous ultra-high-resolution satellite image acquisitions or video frames, based on the
MAGiGAN SRR system [1]. OpTiGAN is a complementary and lightweight SRR system in
comparison to MAGiGAN in terms of using different types of inputs (i.e., non-multi-angle
and multi-angle) and takes much shorter computing time. OpTiGAN follows the two-stage
processing framework used in MAGiGAN, using a traditional multi-image MAP approach
(i.e., OFTV) and a state-of-the-art deep learning-based approach (i.e., MARSGAN). In this
way, we produced the best effective resolution improvement with the least artefact.

We have shown the optimal performance of OpTiGAN, in comparison to the two
popular single-image deep learning-based SRR techniques (i.e., SRGAN and ESRGAN),
as well as the two processing stages of OpTiGAN alone (i.e., OFTV and MARSGAN),
for processing of different geocal/MTF datasets that have the highest spatial resolutions.
Generally speaking, there is barely any SRR technique that has demonstrated with ultra-
high resolution satellite images (30–80 cm/pixel), due to the lack of HR counterpart
for training. We have demonstrated resolution improvement for such datasets, via the
proposed two-stage SRR processing, that combines the advantages from a classic MAP
technique and a new deep learning-based single-image SRR technique.

In this work, we have provided quantitative assessments and qualitative evaluations
for SRR results on the artificial optical targets available at the Baotou Geocal site. We
demonstrated 3.69 times effective resolution enhancement with the proposed OpTiGAN
SRR system for the 31 cm WorldView-3 images, 2.69 times effective resolution enhancement
for the 75 cm Deimos-2 images and 3.94 times effective resolution enhancement for the
70 cm SkySat video frames.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13122269/s1. All figures in full resolution. Processing results and assessment figures in
original resolution.

Author Contributions: Conceptualization, Y.T. and J.-P.M.; methodology, Y.T.; software, Y.T.; val-
idation, Y.T. and J.-P.M.; formal analysis, Y.T.; investigation, Y.T. and J.-P.M.; resources, Y.T. and
J.-P.M.; data curation, Y.T. and J.-P.M.; writing—original draft preparation, Y.T.; writing—review
and editing, Y.T. and J.-P.M.; visualization, Y.T.; supervision, J.-P.M.; project administration, Y.T.
and J.-P.M.; funding acquisition, Y.T. and J.-P.M. All authors have read and agreed to the published
version of the manuscript.

Funding: The research leading to these results has received funding from UCL Enterprise Space-
Jump, under grant agreement no. STFC KEI2019-03-01, UK Space Agency Centre for Earth Ob-
servation Instrumentation under SuperRes-EO project (UKSA-CEOI-10 2017–2018), grant agree-
ment no. RP10G0435A05, and OVERPaSS project (UKSA-CEOI-11 2018–2019), grant agreement no.
RP10G0435C206, UKSA Aurora programme (2018–2021), under grant no. ST/S001891/1, and STFC
consolidated grant STFC “MSSL Consolidated Grant” ST/K000977/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://www.mdpi.com/article/10.3390/rs13122269/s1
https://www.mdpi.com/article/10.3390/rs13122269/s1


Remote Sens. 2021, 13, 2269 25 of 27

Data Availability Statement: Not applicable.

Acknowledgments: The research leading to these results has received funding from UCL Enterprise
SpaceJump, under grant agreement no. STFC KEI2019-03-01, UK Space Agency Centre for Earth
Observation Instrumentation under SuperRes-EO project (UKSA-CEOI-10 2017–2018), grant agree-
ment no. RP10G0435A05, and OVERPaSS project (UKSA-CEOI-11 2018–2019), grant agreement no.
RP10G0435C206, UKSA Aurora programme (2018–2021), under grant no. ST/S001891/1, and STFC
consolidated grant STFC “MSSL Consolidated Grant” ST/K000977/1. The authors would like to
thank UrtheCast (Now EarthDaily Analytics) Corp. for providing the Deimos-2 training datasets and
Deimos Imaging, S.L. for providing the Deimos-2 testing dataset, as well as ESA for providing the
Maxar® WorldView-3 test dataset and Planet Labs, Inc for providing the SkySat testing dataset used
in this work. We would like to thank Lingling Ma and Yongsheng Zhou for providing the diagram of
the reference image of the bar-pattern target that is used for results assessment in this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tao, Y.; Muller, J.P. Super-resolution restoration of MISR images using the UCL MAGiGAN system. Remote Sens. 2019, 11, 52.

[CrossRef]
2. Shin, D.; Muller, J.-P. Progressively weighted affine adaptive correlation matching for quasi-dense 3D reconstruction. Pattern

Recognit. 2012, 45, 3795–3809. [CrossRef]
3. Tao, Y.; Muller, J.P. A novel method for surface exploration: Super-resolution restoration of Mars repeat-pass orbital imagery.

Planet. Space Sci. 2016, 121, 103–114. [CrossRef]
4. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.P.; Tejani, A.; Totz, J.; Wang, Z.; et al.

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. CVPR 2017, 2, 4.
5. Farneback, G. Two-frame motion estimation based on polynomial expansion. Lect. Notes Comput. Sci. 2003, 2749, 363–370.
6. Farsiu, S.; Robinson, D.; Elad, M.; Milanfar, P. Fast and robust multi-frame super-resolution. IEEE Trans. Image Process. 2004, 13,

1327–1344. [CrossRef] [PubMed]
7. Cullingworth, C.; Muller, J.-P. Contemporaneous Monitoring of the Whole Dynamic Earth System from Space, Part I: System

Simulation Study Using GEO and Molniya Orbits. Remote Sens. 2021, 13, 878. [CrossRef]
8. Peleg, S.; Keren, D.; Schweitzer, L. Improving image resolution using subpixel motion. Pattern Recognit. Lett. 1987, 5, 223–226.

[CrossRef]
9. Keren, D.; Peleg, S.; Brada, R. Image sequence enhancement using subpixel displacements. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, Ann Arbor, MI, USA, 5–9 June 1988; pp. 742–746.
10. Bascle, B.; Blake, A.; Zisserman, A. Motion deblurring and super-resolution from an image sequence. In Proceedings of the 4th

European Conference on Computer Vision, Cambridge, UK, 15–18 April 1996; pp. 312–320.
11. Cohen, B.; Dinstein, I. Polyphase back-projection filtering for image resolution enhancement. IEE Proc. Vis. Image Signal Process.

2000, 147, 318–322. [CrossRef]
12. Zomet, A.; Rav-Acha, A.; Peleg, S. Robust super-resolution. In Proceedings of IEEE International Conference on Computer Vision

and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; pp. 645–650.
13. Luttrell, S.P. Bayesian autofocus/super-resolution theory. In Proceedings of IEE Colloquium on Role of Image Processing in

Defence and Military Electronics, London, UK, 9 April 1990; pp. 1–6.
14. Cheeseman, P.; Kanefsky, B.; Kraft, R.; Stutz, J. Super-Resolved Surface Reconstruction from Multiple Images; Technical Report FIA9412;

NASA: Washington, DC, USA, 1994.
15. Schultz, R.R.; Stevenson, R.L. A Bayesian Approach to Image Expansion for Improved De_nition. IEEE Trans. Image Process. 1994,

3, 233–242. [CrossRef]
16. Pan, M.C.; Lettington, A.H. E_cient method for improving Poisson MAP super-resolution. Electron Lett. 1999, 35, 803–805.

[CrossRef]
17. Elad, M.; Hel-Or, Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant

blur. IEEE Trans. Image Process. 2001, 10, 1187–1193. [CrossRef] [PubMed]
18. Hardie, R.C.; Barnard, K.J.; Armstrong, E.E. Joint MAP registration and high resolution image estimation using a sequence of

undersampled images. IEEE Trans. Image Process. 1997, 6, 1621–1633. [CrossRef] [PubMed]
19. Schultz, R.R.; Meng, L.; Stevenson, R.L. Subpixel motion estimation for super-resolution image sequence enhancement. J. Vis.

Commun. Image Represent. 1998, 9, 38–50. [CrossRef]
20. Borman, S.; Stevenson, R.L. Simultaneous multi-frame MAP super-resolution video enhancement using spatio temporal priors.

In Proceedings of IEEE International Conference on Image Processing, Kobe, Japan, 24–28 October 1999; pp. 469–473.
21. Pickup, L.; Roberts, S.; Zisserman, A. A sampled texture prior for image super-resolution. In Proceeding of the 16th International

conference on Advances in Neural Information Processing Systems, Vancouver, Canada, 8–13 December 2003.
22. Keller, S.H.; Lauze, F.; Nielsen, M. Video super-resolution using simultaneous motion and intensity calculations. IEEE Trans.

Image Process. 2011, 20, 1870–1884. [CrossRef] [PubMed]

http://doi.org/10.3390/rs11010052
http://doi.org/10.1016/j.patcog.2012.03.023
http://doi.org/10.1016/j.pss.2015.11.010
http://doi.org/10.1109/TIP.2004.834669
http://www.ncbi.nlm.nih.gov/pubmed/15462143
http://doi.org/10.3390/rs13050878
http://doi.org/10.1016/0167-8655(87)90067-5
http://doi.org/10.1049/ip-vis:20000333
http://doi.org/10.1109/83.287017
http://doi.org/10.1049/el:19990543
http://doi.org/10.1109/83.935034
http://www.ncbi.nlm.nih.gov/pubmed/18255535
http://doi.org/10.1109/83.650116
http://www.ncbi.nlm.nih.gov/pubmed/18285233
http://doi.org/10.1006/jvci.1997.0370
http://doi.org/10.1109/TIP.2011.2106793
http://www.ncbi.nlm.nih.gov/pubmed/21245009


Remote Sens. 2021, 13, 2269 26 of 27

23. Yuan, Q.; Zhang, L.; Shen, H. Multiframe super-resolution employing a spatially weighted total variation model. IEEE Trans.
Circuits Syst. Video Technol. 2012, 22, 379–392. [CrossRef]

24. Purkait, P.; Chanda, B. Super resolution image reconstruction through Bregman iteration using morphologic regularization. IEEE
Trans. Image Process. 2012, 21, 4029–4039. [CrossRef]

25. Zhang, H.; Zhang, Y.; Li, H.; Huang, T.S. Generative Bayesian image super resolution with natural image prior. IEEE Trans. Image
Process. 2012, 21, 4054–4067. [CrossRef]

26. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In Proceedings of the
ECCV 2014, Zurich, Switzerland, 6–12 September 2014; pp. 184–199.

27. Kim, J.; Kwon Lee, J.; Mu Lee, K. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1646–1654.

28. Dong, C.; Loy, C.C.; Tang, X. Accelerating the super-resolution convolutional neural network. In European Conference on Computer
Vision; Springer: Cham, Switzerland, 2016; pp. 391–407.

29. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video
super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1874–1883.

30. Wang, C.; Li, Z.; Shi, J. Lightweight image super-resolution with adaptive weighted learning network. Arxiv Prepr. Arxiv 2019,
1904, 02358.

31. Sajjadi, M.S.; Scholkopf, B.; Hirsch, M. EnhanceNet: Single image super-resolution through automated texture synthesis. In
Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4491–4500.

32. Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Change Loy, C. ESRGAN: Enhanced super-resolution generative
adversarial networks. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany,
8–14 September 2018.

33. Rakotonirina, N.C.; Rasoanaivo, A. ESRGAN+: Further improving enhanced super-resolution generative adversarial network. In
Proceedings of the InICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4 May 2020; pp. 3637–3641.

34. Zhang, W.; Liu, Y.; Dong, C.; Qiao, Y. RankSRGAN: Generative adversarial networks with ranker for image super-resolution. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp.
3096–3105.

35. Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017; pp.
136–144.

36. Yu, J.; Fan, Y.; Yang, J.; Xu, N.; Wang, Z.; Wang, X.; Huang, T. Wide activation for efficient and accurate image super-resolution.
Arxiv 2018, arXiv:1808.08718.

37. Ahn, N.; Kang, B.; Sohn, K.A. Fast, accurate, and lightweight super-resolution with cascading residual network. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 252–268.

38. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

39. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 286–301.

40. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1637–1645.

41. Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3147–3155.

42. Liu, Z.S.; Wang, L.W.; Li, C.T.; Siu, W.C.; Chan, Y.L. Image super-resolution via attention based back projection networks. In
Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October
2019; pp. 3517–3525.

43. Tao, Y.; Conway, S.J.; Muller, J.-P.; Putri, A.R.D.; Thomas, N.; Cremonese, G. Single Image Super-Resolution Restoration of TGO
CaSSIS colour images: Demonstration with Perseverance Rover Landing Site and Mars science targets. Remote Sens. 2021, 13,
1777. [CrossRef]

44. Tao, Y.; Muller, J.-P. Repeat multiview panchromatic super-resolution restoration using the UCL MAGiGAN system. In Proceed-
ings of the Image and Signal Processing for Remote Sensing XXIV 2018, Berlin, Germany, 10–13 September 2018; Volume 10789.
Issue 3.

45. Jolicoeur-Martineau, A. The relativistic discriminator: A key element missing from standard GAN. Arxiv 2018, arXiv:1807.00734.
46. Mittal, A.; Moorthy, A.K.; Bovik, A.C. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process.

2012, 21, 4695–4708. [CrossRef]
47. Venkatanath, N.; Praneeth, D.; Chandrasekhar, B.M.; Channappayya, S.S.; Medasani, S.S. Blind Image Quality Evaluation Using

Perception Based Features. In Proceedings of the 21st National Conference on Communications (NCC) 2015, Mumbai, India, 27
February–1 March 2015.

http://doi.org/10.1109/TCSVT.2011.2163447
http://doi.org/10.1109/TIP.2012.2201492
http://doi.org/10.1109/TIP.2012.2199330
http://doi.org/10.3390/rs13091777
http://doi.org/10.1109/TIP.2012.2214050


Remote Sens. 2021, 13, 2269 27 of 27

48. Li, C.R.; Tang, L.L.; Ma, L.L.; Zhou, Y.S.; Gao, C.X.; Wang, N.; Li, X.H.; Wang, X.H.; Zhu, X.H. Comprehensive calibration and
validation site for information remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 1233. [CrossRef]

49. Zhou, Y.; Li, C.; Tang, L.; Ma, L.; Wang, Q.; Liu, Q. A permanent bar pattern distributed target for microwave image resolution
analysis. IEEE Geosci. Remote Sens. Lett. 2016, 14, 164–168. [CrossRef]

http://doi.org/10.5194/isprsarchives-XL-7-W3-1233-2015
http://doi.org/10.1109/LGRS.2016.2632181

	Introduction 
	Previous Work 
	Datasets 

	Methods 
	An Overview of the Original MAGiGAN SRR System 
	The Proposed OpTiGAN SRR System 
	Training Details of the MARSGAN Model 
	Assessment and Evaluation Methods 

	Results 
	Experimental Overview 
	Demonstration and Assessments of WorldView-3 Results 
	Demonstration and Assessments of Deimos-2 Results 
	Demonstration and Assessments of SkySat Results 
	OpTiGAN Results Demonstration over Different Areas 

	Discussion 
	Conclusions 
	References

