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Abstract: Global cloud thermodynamic phase (CP) is normally derived from polar-orbiting satellite
imaging data with high spatial resolution. However, constraining conditions and empirical thresholds
used in the MODIS (Moderate Resolution Imaging Spectroradiometer) CP algorithm are closely
associated with spectral properties of the MODIS infrared (IR) spectral bands, with obvious deviations
and incompatibility induced when the algorithm is applied to data from other similar space-based
sensors. To reduce the algorithm dependence on spectral properties and empirical thresholds for CP
retrieval, a machine learning (ML)-based methodology was developed for retrieving CP data from
China’s new-generation polar-orbiting satellite, FY-3D/MERSI-II (Fengyun-3D/Moderate Resolution
Spectral Imager-II). Five machine learning algorithms were used, namely, k-nearest-neighbor (KNN),
support vector machine (SVM), random forest (RF), Stacking and gradient boosting decision tree
(GBDT). The RF algorithm gave the best performance. One year of EOS (Earth Observation System)
MODIS CP products (July 2018 to June 2019) were used as reference labels to train the relationship
between MODIS CP (MYD06 IR) and six IR bands of MERSI-II. CALIOP (Cloud-Aerosol Lidar
with Orthogonal Polarization), MODIS, and FY-3D/MERSI-II CP products were used together for
cross-validation. Results indicate strong spatial consistency between ML-based MERSI-II and MODIS
CP products. The hit rate (HR) of random forest (RF) CP product could reach 0.85 compared with
MYD06 IR CP products. In addition, when compared with the operational FY-3D/MERSI CP product,
the RF-based CP product had higher HRs. Using the CALIOP cloud product as an independent
reference, the liquid-phase accuracy of the RF CP product was higher than that of operational FY-
3D/MERSI-II and MYD06 IR CP products. This study aimed to establish a robust algorithm for
deriving FY-3D/MERSI-II CP climate data record (CDR) for research and applications.
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1. Introduction

Clouds are the important factors for regulating the global energy exchange and water
cycle, reflecting and absorbing incident solar radiation and Earth’s outgoing long-wave
radiation [1]. As an important geophysical parameter, the cloud thermodynamic phase (CP)
product, derived from space-based imaging sensors such as MODIS (Moderate Resolution
Imaging Spectroradiometer), including ice, ‘uncertain’, and liquid-water phases, aids
further understanding of Earth’s weather and climate systems on global scales. The CP
products derived from measurements of satellite imaging sensors [2–4] provide a priori
and crucial knowledge on cloud-top height (CTH), cloud optical thickness (COT), and
cloud-top effective particle size (CPS).

Various retrieval methods for space-based imaging sensors have been developed
in the past 20 years to improve the understanding of the natural characteristics of CP.
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Five mainstream quantitative algorithms, namely, the two-band thermal infrared (IR)
method [5], the three-band IR method [6,7], the effective absorption of optical thickness
ratio or β index method [8,9], the visible (VIS) and near infrared (NIR) method [10,11], and
a joint method using VIS, NIR, and IR bands [12,13], have been developed for deriving CP
from polar-orbiting satellite imaging measurements. An algorithm using three IR bands
was also developed for official MODIS CP product [7] (MODIS v. 6), while four IR bands
(7.3, 8.5, 11, and 12 µm) are used for constructing the β index in distinguishing between CP
types from measurements of GOES-R (Geostationary Operational Environmental Satellite)
series [9]. The β index method accounts for the influence of surface emissivity, surface
temperature, vertical atmospheric water-vapor distribution, and other factors on cloud
effective emissivity. An obvious weakness in the IR CP algorithm is that it is challenging
and time-consuming to develop corresponding adjustments on various test thresholds for
multiple instruments with different spectral characteristics. Thresholds for a given satellite
sensor can cause noticeable deviations and incompatibilities when it is applied directly to
other similar space-based sensors [14–16].

Fengyun-3D (FY-3D) is the new-generation Chinese polar-orbiting meteorological
satellite launched in 2017 [17]. MERSI-II (Moderate Resolution Spectral Imager-II) is an
optical imaging instrument aboard FY-3D with IR bands similar to those of Aqua/MODIS
but with a higher spatial resolution of 250 m. The operational CP algorithm for FY-
3D/MERSI-II employs VIS, NIR, and IR bands and cloud texture features to identify CP [18].
Due to the use of the VIS band, the current operational FY-3D/MERSI-II algorithm is not
able to retrieve CP at night, and it has relatively low accuracy in ice-phase identification.
This study aims to develop an all-day CP retrieval algorithm for FY-3D/MERSI-II. Spectral
differences between FY-3D/MERSI-II and Aqua/MODIS IR bands mean that the MODIS CP
algorithm cannot be applied directly to FY-3D/MERSI-II without some tests for threshold
adjustments and forward radiative transfer calculations.

Since the MODIS CP product was developed with reliable accuracy and precision by
the MODIS science team, it can be used as standard reference for developing CP prod-
ucts from most other similar sensors, for example, used for training the machine learning
(ML)-based retrieval model for other sensors. In such a way, consistent CP products from
other sensors like MERSI-II can be derived. Various ML techniques have been successfully
applied in recent years for retrieving the cloud or aerosol parameters from weather or envi-
ronmental satellite data; those methods include but are not limited to k-nearest-neighbor
(KNN), support vector machine (SVM), random forest (RF), and gradient boosting de-
cision tree (GBDT), and the parameters to be retrieved using ML include the cloud-top
height (CTH), precipitation, cloud-base height (CBH), cloud phase (CP) [16,19–21], aerosol
subtype [22], and surface PM2.5 (particles of ≤2.5 µm) concentrations [23]. ML methods
differ from the traditional physical radiation calculations and manually tuned models, in
that they can flexibly and efficiently learn hidden relationships among features of large
numbers of samples, and they have strong fitting ability for nonlinear variables without
consideration of the effects of sensor spectral features. ML algorithms reduce the cost
of establishing CP classification models and the time required for cloud classification.
Wang et al. (2020) obtained high-precision cloud detection and CP products by separating
land surface types using the RF algorithm, with polar-orbit active remote-sensing data
(from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)) being carefully
selected to provide reference labels. However, problems persist, for example, with the
overlap between active and passive satellite pixels being relatively small and the influence
of satellite observation angles not being fully considered [16].

Spaceborne active sensors, such as CALIOP aboard the CALIPSO (Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observations) satellite [24] and Cloud Profiling
Radar (CPR) aboard CloudSat [25] are commonly used to evaluate the performance of IR
CP algorithms designed for passive satellite sensors [16,26]. Although the FY-3D satellite
has been operational for almost 4 years, there are still insufficient typical matching points
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with the CALIPSO satellite for ML training and testing; they always pass over each other
in the polar regions.

Therefore, an ML-based CP methodology was developed for FY-3D/MERSI-II us-
ing MODIS CP products as label data. To reduce algorithm dependence on spectral
response features and the empirical thresholds of physical retrieval methods, one year of
Aqua/MODIS CP products (July 2018 to June 2019) were used as reference label data to
train the relationship between MODIS IR CP and FY-3D/MERSI-II six IR band radiance
measurements. The official CALIOP cloud product (v. 4.2) and MODIS CP product, along
with the operational FY-3D/MERSI-II CP product from the National Satellite Meteoro-
logical Center of China, were used for independent cross-validation. This ML-based CP
algorithm is expected to mitigate deviations caused by differences in instrument spectral
responses, as well as aid the development of a consistent global CP climate data record
(CDR) through reprocessing the historical FY-3D/MERSI-II measurements.

2. Methodology
2.1. The Optimal Machine-Learning Algorithm

ML techniques provide highly effective solutions to pattern recognition problems [27].
Here, five classical ML algorithms were used to train the prediction model for the FY-
3D/MERSI-II CP, and the optimum algorithm for CP retrieval was obtained through
comparing the results from five independent ML algorithms. The specific implementation
steps were as follows:

1. Training parameters were selected. BT data from the six FY-3D/MERSI-II IR bands (bands
20—3.8 µm, 21—4.05 µm, 22—7.2 µm, 23—8.55 µm, 24—10.8 µm, and 25—12.0 µm),
Airmass (1/cos (satellite zenith angle)), and CP products from MODIS (MYD06; July
2018 to June 2019) were collocated as original features (training samples). To reduce
errors caused by rapid changes in cloud properties, only data from two sensors within
5 min difference were collocated;

2. The ratio between training data and validation data was set. Note that for selecting
the algorithm, only 1% of samples were randomly selected for training and testing
with a ratio of 7:3 to reduce the memory occupation and time consumption;

3. The performances of five ML algorithms were compared in training the sample
set, namely, KNN [28,29], Stacking [30], RF [31], AdaBoost [32], and GBDT [33].
Adjustment parameters and dynamic ranges of the five algorithms are shown in
Table 1 [19,34,35]. Through these comparisons, the GridSearchCV module in Sklearn,
with relatively high accuracy and the shortest running time, was selected to adjust
the parameters automatically and iteratively (Table 2).

Table 1. Adjustment parameters and dynamic ranges of different ML algorithms.

Algorithm
(Dimension) Parameters and Range of Variation

Random forest
(5 × 5 × 5 × 5 = 625)

The number of trees in the
forest (n_estimators):

[100, 200, 300, 400, 500]

maximum depth of the
tree(max_depth):
[10, 20, 30, 40, 50]

minimum number of samples
required to split an internal
node (min_samples_split):

[2, 4, 6, 8, 10]

minimum number of samples required
to be at a leaf node (min_samples_leaf):

[1, 3, 5, 7, 9]

AdaBoost
(5 × 10 = 50)

maximum number of estimators (n_estimators):
[100, 200, 300, 400, 500] Learning rate (learning_rate): [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

K-nearest-neighbor
(5 × 2 = 10)

Number of neighbors to use by default for k neighbors
queries(n_neighbors): [5, 10, 15, 20, 25] weight function used in prediction (weight S): ‘uniform’ or ‘distance’

Gradient Boosting
Decision Tree (5 × 10
× 5 × 5 × 5 = 6250)

maximum
number of
estimators

(n_estimators):
[100, 200, 300,

400, 500]

Learning rate
(learning_rate):

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1]

maximum depth of the
tree (max_depth):
[10, 20, 30, 40, 50]

minimum number of samples
required to split an internal node

(min_samples_split):
[2, 4, 6, 8, 10]

minimum number of
samples required to

be at a leaf node
(min_samples_leaf):

[1, 3, 5, 7, 9]

Stacking Integration of the above four optimal algorithms
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Table 2. Performance of CP classification based on five ML algorithms with optimized parameters.

Algorithm Parameter HR POD FAR Time (s)

RF n_estimators = 300; max_depth = 30; min_samples_split = 2;
min_samples_leaf = 7 0.91 0.91 0.10 101

GBDT n_estimators = 400; max_depth = 30; min_samples_split = 2;
min_samples_leaf = 7; learning_rate = 0.4 0.91 0.92 0.10 258

AdaBoost n_estimators = 400;
learning_rate = 0.8 0.88 0.89 0.11 125

KNN n_neighbors = 10;
weight S = ‘uniform’ 0.84 0.88 0.19 179

Stacking Integration of the above four optimal algorithms 0.91 0.91 0.10 648

RF = random forest; GBDT = gradient boosting decision tree; KNN = k-nearest neighbor.

Three metrics were used to measure model accuracy, including hit rate (HR, optimal = 1),
probability of detection (POD, optimal = 1), false-alarm ratio (FAR, optimal = 0), and
elapsed time to measure algorithm running memory (Equations (1)–(3)).

HR = (A + D)/(A + B + C + D), (1)

POD = A/(A + C), (2)

FAR = B/(A + B), (3)

where A is the number of liquid-water-phase pixels also identified as such by the ML
training model, B is the number of ice-phase pixels identified as liquid-water phase by the
ML training model, C is the number of liquid-water-phase pixels classified as ice phase by
the ML training model, and D is the number of ice-phase pixels also identified as such by
the ML training model. HR represents the ratio of the number of liquid-water-phase pixels
and ice-phase pixels correctly identified by the ML training model to the total number of
pixels. It signifies the overall inversion accuracy of liquid-water phase and ice-phase pixels.
POD represents the ratio of the correct number of liquid-water-phase pixels identified by
the ML training model to the total number of liquid-water-phase pixels. Therefore, a higher
POD denotes a higher accuracy of liquid-water-phase inversion. FAR represents the ratio
of the number of ice-phase pixels which are classified as liquid-water-phase pixels by the
ML training model to the total number of liquid-water-phase pixels retrieved from the ML
training model. Apparently, it represents the misjudgment rate of liquid-water phase. Of
the five independent ML methods, the running time of the RF was the shortest, with both
HR and POD scores being at a high level with a relatively low FAR (Table 2). We found
that the RF algorithm gave the best performance. Therefore, the RF algorithm was applied
in the subsequent model building.

As a classical bagging ensemble classification and regression technique, the RF al-
gorithm can easily run in a parallel computing mode and capture nonlinear or complex
relationships between predictor and predictand [31]. This method trains a large number
of decision tree predictors and then ages them on average to improve prediction accuracy
and reduce overfitting [19]. The debugging of the RF model requires the use of many
parameters, including the number of trees in the forest (n_estimators), the maximum depth
of the tree (max_depth), the minimum number of samples required to split an internal node
(min_samples_split), and the minimum number of samples required to be at a leaf node
(min_samples_leaf). It seems like that larger parameters lead to better model precision.
However, model overfitting and memory consumption also occur. The final selection of
the optimal model parameters depends on the change in out-of-bag (OOB) scores, which
can adequately estimate unbiased estimates (deviations) of the regression or classification
models. In this study, the model with the shortest running time and highest fitting degree
was selected on the basis of the variation trend of OOB for next step retrieval.
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2.2. Training Scheme and Model Configuration

The training and validation sets were derived from overlapping data from Aqua/MODIS
and FY-3D/MERSI-II for 2 years (July 2018 to June 2020). The orbits of the two satellites
do not coincide completely; hence, the orbit prediction method was adopted to overlap
the image times of both orbits passing the same region with a time of difference less than
5 min. The different satellites also have spatial and parallax-effect differences [36]. The
zenith angles of both the Aqua and the FY-3D satellites were screened in the overlap
region of 0◦–45◦ to reduce image deformation. To ensure that the training samples were
representative on a global scale, a sample scheme was used to account for the influence of
latitude, season, and overpass time (Figure 1). A total of 70,313,100 geo-located pixels were
involved, with 49,546,611 being used for validation.

1 
 

 

Figure 1. Process for selecting training and verification data according to season, latitude, time period, and satellite zenith
angle, with the July 2018–June 2019 and July 2019–June 2020 periods used for training and verification data, respectively.

As found in previous studies [19,35,37], an increase in the number of samples may not
significantly improve model performance under similar distributions. There were a large
number of collocated pixels for FY-3D and Aqua during the June 2018 to July 2019 period;
thus, a sensitive analysis was undertaken to determine the optimum number of samples.
Totals of 3000, 5000, 10,000, 30,000, 50,000, 100,000, 300,000, or 500,000 pixels of training
data were used, with 100,000 pixels being the optimum, above which further increases had
no significant effect on model accuracy.

According to RF software package documentation, the empirical default value of
random-split predictor variable max_features for the RF classification model is equal to the
square root of the total number of predictive variables or features (http://scikit-learn.org/
stable/modules/ensemble.html, accessed on 12 April 2021), and this parameter was set on
the basis of model input-variable data. Due to the change in the amount of training data,
related parameters of the RF model were retrained iteratively. The OOB score represents
the fitting result of the unbiased estimation of the RF model; a higher OOB score denotes a

http://scikit-learn.org/stable/modules/ensemble.html
http://scikit-learn.org/stable/modules/ensemble.html
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better fit of the model. A higher number of trees in the forest (n_estimators) and a greater
maximum depth of the trees (max_depth) lead to higher model fitting accuracy and a more
complex model. Therefore, it is necessary to find a balance between model accuracy and
running time by iterative training.

When n_estimators = 400 and max_depth = 20, the OOB score was higher than other
models with similar running times (Figure 2). It had a short running time while maintaining
the OOB value. Similarly, the balance of liquid-water and ice phase sample sizes can also
significantly affect the accuracy of the final prediction [19,37]. Statistics for the number
of liquid-water and ice phase samples during July 2018 to June 2019 indicated a liquid-
water-to-ice-phase ratio during the northern mid-latitude summer of 1.56:1, with winter
and spring–autumn ratios of 1.02:1 and 1.21:1, respectively. At low and high latitudes,
the ratios were 1.35:1 and 0.8:1, respectively. Accordingly, the liquid-water-to-ice-phase
ratio was set to the mean of 1.18:1. After iterative training and filtering, the optimal model
configuration acquired had the following parameters: n_estimators = 400; max_depth = 20;
min_samples_split = 2; min_samples_leaf = 7; max_features = 4; N (number of pixels in
training set) = 100,000.
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Figure 2. Effect of total number of trees in the forest (n_estimators) and maximum depth of the trees
(max_depth) on OOB scores in determining RF CP classification models (with random-split predictor
variables, max_features, set at 4).

The sensitivity of input variables can be calculated using feature_importances in the
RF algorithm, with the sum of importance of all variables being 1. Each input variable has
its own physical characteristics and has a close relationship with the cloud phase (Table 3).
The higher the importance of a variable, the more sensitive it is in the model training. The
order of sensitivity of variables and their importance is shown in Table 3.
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Table 3. The importance scores of predictive variables in the RF model and their corresponding rankings based on the
configuration n_estimators= 400, max_depth = 20, min_samples_split = 2, min_samples_leaf = 7, and max_features = 4 for
CP classification.

Variable Importance Score
for Variable Ranking Physical Characteristics

BTD (8.6–10.8 µm) 0.2015 1 8–10 µm is the weak absorption region of particles.

BTD (10.8–12.0 µm) 0.1080 2
Stronger increases in the absorption of ice particles can be found at

10–11 µm than that at 11–12 µm, while the effect on water particles is the
opposite. This allows distinguishing between ice and water particles.

BT (7.2µm) 0.1070 3 The water vapor absorption channel is very sensitive to the amount of
water vapor

BTD (3.8–10.8 µm) 0.0891 4 Difference between split–window channel

BTD (4.1–10.8 µm) 0.0800 5 Difference between split–window channel

BT (12.0 µm) 0.0769 6 Total water and sea surface temperature

BTD (7.2–10.8 µm) 0.0618 7 Difference between split–window channel

BT (10.8 µm) 0.0613 8 Split–window channel

BT (8.6 µm) 0.0575 9 Surface temperature, cloud phase, and cirrus cloud detection

BT (3.8 µm) 0.0571 10 Cloud effective particle radius, clouds, and underlying surface temperature

BT (4.1 µm) 0.0508 11 Clouds and underlying surface temperature

Airmass (1/cos(satellite
zenith angle)) 0.0490 12 Reduces the inversion error caused by the path of light in the atmosphere

3. Data
3.1. Reference Pixel Label

The Aqua polar-orbiting satellite was launched on 4 May 2002 at 1:30 p.m. local-time in
a sun-synchronous orbit [38], similar to the FY-3D satellite. The MODIS sensor aboard Aqua
has 36 spectral bands, covering the spectrum from VIS to IR (0.4–14 µm). The EOS/MODIS
Collection-5 CP product and early collections combine 8–11 µm brightness temperature
(BT) differences (BTDs) and 11 µm BT to distinguish ice, liquid-water, and mixed-phase
clouds through a series of decision trees and thresholds [3]. To further reduce the influence
of land surface radiation, the University of Wisconsin-Madison team improved the current
CP algorithm from MODIS Collection-6 [3,8,9], providing an additional 1 km resolution CP
product for MODIS based on the 7.3, 8.5, 11, and 12 µm bands for constructing the β index
and BTD in distinguishing cloud phases through decision trees [9]. The cloud phase is
usually classified into three categories: ice, liquid-water, and ‘uncertain’; however, because
of the difficulty in distinguishing mixed-phase and uncertain categories in the MODIS
Collection-6 CP product, they were merged into one ‘uncertain phase’ category [3]. Here,
we conducted training only for certain ice-phase and liquid-water-phase cloud samples
(the ‘uncertain’ phase was not considered).

Considering the rapid movement and evolution of clouds, the MODIS Collection-6
CP product (1 km resolution) from July 2018 to June 2019 was carefully geo-located with
FY-3D/MERSI-II Level-1B data, within 5 min temporal difference. The Aqua/MODIS
Collection-6 CP product was obtained from the US National Aeronautics and Space Ad-
ministration (NASA) website (https://modis.gsfc.nasa.gov/, accessed on 12 April 2021).

3.2. FY-3D/MERSI-II

FY-3D/MERSI-II is capable of global observations with two IR split-window bands of
250 m resolution, providing possible high-precision quantitative atmospheric, land, and
oceanic products such as cloud, aerosol, water vapor, land surface characteristics, and ocean
water color [39]. L1 data were obtained from the Fengyun Satellite Data Service Network
(http://satellite.nsmc.org.cn/, accessed on 12 April 2021). Compared with the previous
MERSI-I [40], the improved MERSI-II added NIR and IR spectral bands with central
wavelengths of 1.38, 3.8, 4.05, 7.2, and 8.55 µm. The original 250 m resolution spectral band

https://modis.gsfc.nasa.gov/
http://satellite.nsmc.org.cn/
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of central wavelength 11.25 µm (bandwidth 2.5 µm) was converted to two split-window
bands of central wavelengths 10.8 and 12 µm. These IR bands also allow CP determination
at night. Moreover, FY-3D/MERSI-II has similar six IR spectral bands of MODIS, which
were used for CP training. The bandwidths of some FY-3D/MERSI-II IR bands are slightly
wider than those of Aqua/MODIS, along with different central wavelengths (see Figure 3).
These differences in sensor spectral features may lead to noticeable deviations in CP
retrievals if the MODIS algorithm is directly applied to FY-3D/MERSI-II.
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The National Satellite Meteorological Center/China Meteorological Administration
(NSMC/CMA) has made an operational CP product based on MERSI-II available since
October 2018. This operational CP product is developed using a combination of MERSI-II
VIS (0.88–0.68 µm), NIR (1.55–1.64 µm and 3.55–3.93 µm), and two IR (10.3–11.3 µm and
11.5–12.5 µm) spectral bands [18]. Both the spectral and the texture characteristics of VIS,
NIR, and IR bands are used to determine CP on a pixel basis with a series of thresholds
for classifying liquid-water, ice, or mixed phases. The definition of the mixed phase in the
FY-3D/MERSI-II CP product differs from that in the MODIS product, with the former being
defined as the mixed-phase state of liquid-water and ice phases. When the reflectivity in
the 1.65 and 3.75 µm bands is greater than a given threshold value, the phase is identified
as a supercooled water cloud or mixed phase. In spite of both supercooled water and
mixed-phase clouds exhibiting a liquid-water phase, they are categorized as ice phase due
to their relatively low temperature [41] (<0 ◦C). For MODIS, water droplets at the top of
the cloud layer and fuzzy ice particles that grow within the cloud (and fall through the
cloud base) are identified as mixed phase, with mixed-phase and ‘undetermined’ classes
being combined to reduce ambiguity [3]. The use of VIS bands in the FY-3D/MERSI-II CP
algorithm means it can generate CP product only during daytime. Li et al. (2019) reported
that the FY-3D/MERSI-II CP product has biases in ice clouds.

3.3. CALIOP Cloud Products

The CALIPSO satellite was launched in 2006 with CALIOP, a wide-field camera (WFC),
and an infrared imaging radiometer (IIR) aboard [42]. CALIOP is the first spaceborne
cloud and aerosol lidar with three detection channels (1064 and 532 nm vertical and
parallel channels) providing accurate high-resolution vertical profiles of aerosols and
clouds globally [43]. The CALIOP cloud classification product includes liquid-water, ice,
oriented ice crystals, and ‘unknown’ types. Validation products were derived from the
CALIPSO 1-km cloud product (v. 4.20) with CALIOP cloud-top phase information [44].
Since Aqua and CALIPSO are in the ‘Afternoon (A)-train’ constellation, they have the
same trajectories and cover the same areas in adjacent time [25]. To reduce the influence of
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vertically distributed mixed-phase cloud on validation, only single-layer cloud samples
detected by CALIOP were used here.

4. Validation and Discussion
4.1. Validation Using Independent MODIS CP Product

Spectral surface emissivity, surface type, and snow and ice coverage are all related to
cloud and aerosol retrievals [45,46]; thus, for validation, different surfaces were classified
according to latitude and season. Data for July 2019 to June 2020 (Section 3.1) were
input into the trained RF model for validation. For subsequent product comparisons, the
consistency of product phase states must be ensured. Here liquid water was defined as
positive and ice as was defined as negative. Five classical indices were used to evaluate the
classification results of liquid and ice phases: POD, FAR, HR, critical success index (CSI,
optimal = 1), and Heidke skill score (HSS, optimal = 1). These are defined as follows:

CSI = A/(A + B + C), (4)

HSS = 2(AD − BC)/[(A + C)(A + D) + (A + B)(B + D)], (5)

where A is the number of pixels that both MODIS reference CP and the FY-3D/MERSI-II CP
retrieved from the ML model (this study) are classified as liquid-water phase, B represents
the number of pixels identified as ice phase by MODIS but classified as liquid-water phase
by MERSI-II in this study, C is the number of pixels labeled as liquid-water phase by
MODIS but classified as ice phase by MERSI-II in this study, and D is the number of pixels
that both the MODIS reference CP and the MERSI-II CP of this study classified as ice phase.

A high POD value indicates high accuracy in liquid-water phase identification, while
a low FAR value indicates high accuracy in ice-phase identification; the highest CSI index
indicates the highest success rate of retrieval model for the liquid-water phase. As can be
seen from Table 4, except for mid-latitude winters, the POD values of all categories were
>0.9, FAR values were <0.2, and HR values were >0.8. The four evaluation indices for
the mid-latitude summer were all relatively high with the best performance. POD in the
mid-latitude winter was only 0.8, but FAR was relatively low. A low liquid-water cloud
detection rate led to reduced HR. The influence of snow cover may have contributed to
the low detection rate of liquid water in mid-latitude winters when snow cover was not
uniform because of the mixed pixel effect, and high snow reflectivity affected accuracy for
other surface types near the snow-covered area, which, in turn, influenced the accuracy
of classification by the RF model. Wang et al. (2020) found that the MODIS CP product
accuracy for snow, ice, and barren surface types is much lower than that of other types,
leading to the identification of too many liquid-water phases as ice phases, consistent
with the MERSI-II results in this study. The quality of the MODIS CP product resulted
in a reduction in liquid-water phase detection capability; performances in mid-latitude
spring and autumn and at low latitudes were generally similar, with relatively high POD
and high FAR, indicating the classification of too many ice-phase clouds as liquid-water
phase. At high latitudes, where there are large areas of ice and snow cover, the total annual
POD reached 0.94, and FAR was relatively low, indicating good ML performance, which
differs from the results of Wang et al. (2020). This inconsistency may be due to the FY-3D
and Aqua satellite orbits generally overlapping at high latitudes, since both training and
validation data with small satellite viewing angles at high latitudes are more prevalent
than in the mid-latitude winter.
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Table 4. Statistics of performance metrics of CP classification for different seasons and latitudes.

Classification POD FAR CSI HR HSS

Mid-latitude spring and autumn 0.91 0.13 0.76 0.86 0.72

Mid-latitude winter 0.80 0.08 0.74 0.82 0.61

Mid-latitude summer 0.90 0.08 0.84 0.87 0.63

Low latitude all year 0.91 0.13 0.77 0.84 0.68

High latitude all year 0.94 0.11 0.84 0.90 0.8

All year 0.85 0.06 0.80 0.84 0.60

4.2. Comparison of Spatial Distributions

To better understand the reliability of the FY-3D/MERSI-II CP retrieval method based
on the ML approach, the trained RF CP product was further compared with the MODIS
CP product, as well as the operational FY-3D/MERSI-II CP product. Five images were
randomly selected from each region of mid-latitude winter, mid-latitude spring and au-
tumn, mid-latitude summer, low, and high latitudes. In the RF classification process, each
pixel was assigned a SCORE: if >0.5, the classification tended toward the liquid-water
phase; if <0.5, the classification tended toward the ice phase; if around 0.5, the classification
model had no obvious CP classification. Pixels with a score of 0.48–0.52 were defined as
being of an ‘uncertain’ phase. For each latitude and season, a total of 15 random images of
FY-3D and Aqua with coincident areas were selected for comparison. Overlapping pixels
of liquid-water or ice phase in each image were extracted for comparison, and the POD,
FAR, CSI, HR, and HSS precision indices were calculated. Results are shown in Table 5.

Table 5. Statistics for the performance metrics of CP classification when comparing RF CP product and operational
FY-3D/MERSI-II CP product, based on images from five time periods representing five categories of season and latitude.

Time Picture CP Product POD FAR CSI HR HSS

11 October 2020 14:10 Mid-latitude spring and autumn
RF 0.90 0.17 0.76 0.84 0.67

FY-3D/MERSI-II 0.82 0.17 0.70 0.80 0.60

12 July 2020 12:25 Mid-latitude winter
RF 0.95 0.06 0.95 1.00 0.97

FY-3D/MERSI-II 0.99 0.06 0.99 1.00 0.99

12 July 2020 9:30 Mid-latitude summer
RF 0.60 0.35 0.45 0.84 0.53

FY-3D/MERSI-II 1.00 0.60 0.40 0.67 0.38

11 October 2020 15:35 Low latitude
RF 0.90 0.07 0.85 0.90 0.80

FY-3D/MERSI-II 0.91 0.09 0.79 0.90 0.80

11 October 2020 20:20 High latitude
RF 0.61 0.19 0.54 0.86 0.61

FY-3D/MERSI-II 0.03 0.11 0.03 0.74 0.04

The MODIS, RF FY-3D, and operational FY-3D CP products are compared in Figures 4–8
where images highlight the spatial differences in the three products. As the liquid-water
phase temperature is higher than that of the ice phase, the FY-3D/MERSI-II band 24
(10.3–11.3 µm) BT could be set as the reference image, whereby bluer colors denote lower
temperatures and redder colors denote higher temperatures. Hence, cooler clouds are in
blue, while warmer clouds are in red. Figure 4 demonstrates that, in mid-latitude spring
and autumn, the RF CP product (Figure 4b) is consistent with the MODIS CP product
(Figure 4a). In the area of 60◦N 10◦W, operational FY-3D/MERSI-II CP product (Figure 4c)
identifies most liquid-water phases as ice and mixed phases, as reflected in the BT image
(Figure 4d). In the region near 61◦N 12◦W, the RF CP indicated an ice phase in most
liquid-water-phase regions of the MODIS CP product, with the RF product being able to
identify fine ice-phase regions. CP retrieval results obtained by the RF algorithm were
significantly improved compared with those of the operational FY-3D algorithm (Table 5),
with POD increasing from 0.82 to 0.90.
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In the mid-latitude winter, RF products and MODIS CP products had strong spatial
consistency (Figure 5). In the area 48◦S 15◦E, many pixels were identified as liquid-water
phase by both RF (Figure 5b) and MODIS CP products (Figure 5a). However, for the
operational FY-3D/MERSI-II CP product (Figure 5c), these pixels were classified as mixed
phase because the definition of mixed phase in the operational FY-3D/MERSI-II CP product
differs from the definition of uncertain phase in the MODIS algorithm. Apart from the
mixed phase, the mid-latitude winter RF CP product performed comparably with the
operational FY-3D CP product (Table 5).
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UTC, (b) the RF CP product at 12:25 UTC, (c) the operational FY-3D/MERSI-II CP product at 12:25 UTC, and (d) the
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Very few uncertain phases were produced by the RF method in the mid-latitude
summer (Figure 6), due mainly to the relatively strict threshold for that phase. More pixels
were identified as uncertain or mixed phases for the MODIS (Figure 6a) and operational
MERSI-II CP products (Figure 6c). In the area near 65◦N 50◦E, the operational MERSI-
II CP product gave a large number of pixels of mixed phase, whereas, for the MODIS
and RF products (Figure 6b), this region was covered mainly by liquid-water and ice
phases, respectively. The significant reduction in FAR for the RF CP product represented
an improvement in ice-phase detection accuracy (Table 5), and its POD decrease indicated
a reduction in liquid-water phase detection capability. The CSI, HR, and HSS of RF CP
product all increased significantly while FAR decreased, indicating the improved ice-
phase detection capability of the RF CP product associated with an overall increase in
detection accuracy.
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The three products had strong spatial consistency in the low-latitude region (Figure 7),
although the cloud detection results of MODIS (Figure 7a) and FY-3D (Figure 7c) were
significantly different. In the area near 7◦N 40◦W, the operational FY-3D/MERSI-II cloud
mask product was significantly different from MODIS CP product. Just as in the mid-
latitude spring and autumn case (Figure 6), the operational FY-3D/MERSI-II CP product
identified ice and mixed phases in areas where the other two products identified a liquid-
water phase. With the reduction in FAR, the accuracy of ice-cloud detection for the RF CP
product was improved with CSI increasing significantly (Table 5).
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band 24 BT image at 15:35 UTC. The red box is the outline of the 15:35 UTC FY-3D image, and the blue box is the contour of
the 15:35 and 15:40 UTC Aqua images.

The RF CP product obtained from the high latitude was obviously more consistent
with MODIS CP product than the FY-3D product (Figure 8). FY-3D CP products (Figure 8c)
generally inverted liquid-water phase to ice phase, with almost all liquid-water phases
being wrongly identified as ice phases in the operational FY-3D CP product in high-latitude
images (Table 5). The RF CP product (Figure 8b) significantly improved liquid-water phase
detection capability while ensuring the accuracy of ice phase identification, which also
significantly increased CSI, HR, and HSS.

From the above five comparisons, it can be seen that RF-derived CP and MODIS CP
were generally consistent. Compared with these two products, too many liquid-water
phase pixels were identified as ice phase in the operational FY-3D CP product in almost all
cases regardless of season and latitude. The accuracy of the RF CP product in each case
was higher than or equal to that of the operational FY-3D CP product, indicating that the
consistency between MODIS and RF CP was much better than with the operational FY-
3D/MERSI-II product. However, there were two disadvantages with the RF approach: (1) in
the process of pixel basis for retrieval, the derived CP image might appear discontinuous,
i.e., there are isolated pixels with a cloud phase different from that of neighboring pixels;
(2) the determination of the threshold range of the uncertain phase is a problem affecting
the size of the uncertain-phase region, with the threshold here being set according to
experience, which might have influenced the final results.
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Figure 8. Comparisons of CP products for high latitudes on 11 October 2020 for (a) the MODIS
CP product at 20:15 and 20:20 UTC, (b) the RF CP product at 20:15 UTC, (c) the operational FY-
3D/MERSI-II CP product at 20:15 UTC, and (d) the FY-3D/MERSI-II band 24 BT image at 20:15 UTC.
The red box is the outline of the 20:15 UTC FY-3D image, and the blue box is the contour of the 20:15
and 20:20 UTC Aqua images.

4.3. Comparison with Active CALIOP CP Data

When the optical thickness is low, cloud products retrieved from spaceborne active
lidar systems (e.g., CALIOP) are often regarded as true values in determining the quality
of passively observed cloud products [42]. Here, the MODIS CP, RF, and operational
FY-3D/MERSI-II products were further validated using CALIOP cloud-top phase data
from the CALIPSO 1 km resolution cloud product. As the liquid-water and ice phases of
the MODIS IR CP product were used as reference labels, the quality of the product should
be assessed to test the accuracy of the MODIS CP product against ‘true’ liquid-water and
ice phase detections. The accuracy of the RF and operational FY-3D CP products should
also be assessed relative to the CALIOP CP product. These validations were undertaken as
described below.

First MODIS, RF, operational FY-3D/MERSI-II, and CALIPSO/CALIOP cloud prod-
ucts collected within 5 min of each other from July 2019 to June 2020 were collocated, and
a dataset of collocated pixels was generated. From this dataset, only pixels identified as
liquid-water and ice phase in MODIS CP product were selected and labeled as single-layer
clouds in CALIOP (other pixels in the dataset were removed). The numbers of liquid-water
and ice phase pixels in MODIS CP, RF, and CALIOP were calculated (Table 6). For the oper-
ational FY-3D/MERSI-II product, the phase corresponding to overlapping pixels included
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liquid-water, ice, and mixed phases. As the temperature of the mixed phase is below the
freezing point (0 ◦C), it was categorized as ice phase. The accuracies of the MODIS, RF, and
operational FY-3D/MERSI-II products were compared and validated against the CALIOP
CP benchmark.

Table 6. CALIOP cloud-top phase cross-validation with MODIS IR, RF, and operational FY-3D/MERSI-II CP products
based on season and latitude (the uncertain phase in MODIS and RF products was eliminated, and the mixed and ice phases
were merged in the operational FY-3D/MERSI-II product).

CALIOP Phase
MODIS IR Phase RF Phase FY-3D Phase

Liquid Ice Liquid Ice Liquid Ice

mid-latitude spring and autumn
Liquid 75.0% 25.0% 88.3% 11.7% 56.1% 43.9%

Ice 6.6% 93.4% 6.6% 93.4% 5.4% 94.6%

Mid-latitude Winter
Liquid 96.4% 3.6% 87.6% 12.4% 69.8% 30.2%

Ice 18.7% 81.3% 50.0% 50.0% 7.8% 92.2%

Mid-latitude Summer
Liquid 75.2% 24.9% 77.12% 22.8% 87.6% 12.4%

Ice 19.4% 80.6% 13.4% 83.6% 18.7% 81.3%

Low latitude
Liquid 65.1% 34.9% 61.9% 38.1% 73.5% 26.5%

Ice 6.0% 94.0% 12.6% 87.4% 31.0% 69%

High latitude
Liquid 72.1% 27.9% 75.9% 24.1% 16.2% 83.8%

Ice 5.9% 94.1% 6.3% 93.7% 2.5% 97.5%
Oriented ice crystal 0 100% 0 100% 0 100.0%

All
Liquid 76.8% 23.2% 78.2% 21.8% 60.6% 39.4%

Ice 11.3% 88.7% 18.4% 81.6% 13.1% 86.9%
Oriented ice crystal 0 100% 0 100% 0 100%

Yellow shading represents the correct probability of the CP products.

The RF and MODIS CP products generally had comparable accuracy (Table 6). In
mid-latitude summer and mid-latitude spring and autumn, the RF approach demonstrated
slightly better ability in identifying the ice phase. In high latitudes, mid-latitude summer,
and mid-latitude spring and autumn, the RF approach detected more liquid-water phases
than MODIS. The performance of the RF model in the mid-latitude winter was significantly
poorer than that of MODIS, which remains a problem to be addressed. The retrieval
accuracy of the operational FY-3D/MERSI-II CP product was inferior to that of the RF
product for liquid-water and ice phases (Table 6), and the liquid-water phase accuracy
of the RF product was higher than that of the MODIS and operational FY-3D/MERSI-II
product. A possible reason is the satellite zenith angle range control during training. The
RF CP product, thus, improved liquid-water phase inversion.

5. Summary

This study aimed to establish a global, all-day FY-3D/MERSI-II algorithm for long-
term CP CDR Fengyun satellite data. To reduce algorithm dependence on the spectral
response properties and the empirical thresholds of physical methods, an ML-based
methodology was developed for retrieving CP from China’s polar-orbiting satellite FY-
3D/MERSI-II. The MODIS CP product was used as reference data for training, with five
ML algorithms being used to train the sample set. The RF module, with relatively high
accuracy and the shortest running time, was selected for use in training and retrieval.
Using the RF algorithm for verification, we obtained POD values for all other categories
>0.9, except for winter at mid-latitudes, and FAR and HR values <0.2 and >0.8, respectively.
The RF CP product was, thus, consistent with MODIS CP product. Derived CP images of
different representative regions were selected for comparisons, with the HR of each RF CP
product image being higher than that of the corresponding operational FY-3D/MERSI-II
product. When compared with CALIOP cloud products, the accuracy of liquid-water
phase detection by the RF product was higher than that of Operational FY-3D/MERSI-II
CP products. The following conclusions were drawn from the validation analyses:
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1. The RF CP product is spatially consistent with MODIS CP product, and its accuracy
is comparable with that of MODIS CP product when compared with CALIPSO
cloud products.

2. The RF-based CP algorithm has the highest accuracy at high latitudes and the lowest
accuracy at mid-latitude winter compared with the MODIS CP product.

3. The RF product developed here may supplement the lack of data from existing
MERSI-II CP products at night; it also indicates an improvement in accuracy over the
operational FY-3D/MERSI-II CP product.

Although the accuracy of the RF CP product is comparable to that of the MODIS CP
product, large uncertainties remain concerning the threshold of the uncertain phase. The
ML method has potential for use in exploiting image data from FY-3D weather satellites
and in providing global CP product with higher spatial resolution (e.g., 250 m).
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