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Abstract: New, accurate and generalizable methods are required to transform the ever-increasing
amount of raw hyperspectral data into actionable knowledge for applications such as environmental
monitoring and precision agriculture. Here, we apply advances in generative deep learning models
to produce realistic synthetic hyperspectral vegetation data, whilst maintaining class relationships.
Specifically, a Generative Adversarial Network (GAN) is trained using the Cramér distance on two
vegetation hyperspectral datasets, demonstrating the ability to approximate the distribution of the
training samples. Evaluation of the synthetic spectra shows that they respect many of the statistical
properties of the real spectra, conforming well to the sampled distributions of all real classes. Creation
of an augmented dataset consisting of synthetic and original samples was used to train multiple
classifiers, with increases in classification accuracy seen under almost all circumstances. Both datasets
showed improvements in classification accuracy ranging from a modest 0.16% for the Indian Pines
set and a substantial increase of 7.0% for the New Zealand vegetation. Selection of synthetic samples
from sparse or outlying regions of the feature space of real spectral classes demonstrated increased
discriminatory power over those from more central portions of the distributions.

Keywords: hyperspectral; vegetation; generative adversarial network; deep learning; data augmen-
tation; classification

1. Introduction

Hyperspectral (HS) Earth observation has increased in popularity in recent years,
driven by advancements in sensing technologies, increased data availability, research and
institutional knowledge. The big data revolution of the 2000s and significant advances in
data processing and machine learning (ML) have seen hyperspectral approaches used in a
broad spectrum of applications, with methods of data acquisition covering wide-ranging
spatial and temporal resolutions.

For researchers aiming to classify or evaluate vegetation, hyperspectral remote sensing
offers rich spectral information detailing the influences of pigments, biochemistry, struc-
ture and water absorption whilst having the benefits of being non-destructive, rapid, and
repeatable. These phenotypical variations imprint a sort of ‘spectral fingerprint’ that allows
hyperspectral data to differentiate vegetation at taxonomic units ranging from broad eco-
logical types to species and cultivars [1]. Acquiring labelled hyperspectral measurements
of vegetation is expensive and time-consuming, resulting in limited training datasets for
supervised classification techniques. However, this has been slightly alleviated through
multi/hyperspectral data-sharing portals such as ECOSTRESS [2] and SPECCHIO [3]. Su-
pervised classification of such high dimensional data has had to rely on feature reduction
or selection techniques in order to overcome small training sample sizes and avoid the
curse of dimensionality, also called the ‘Hughes phenomenon’. Additionally, the general
requirement of large training datasets in ML has meant limited success has been had when
trying to leverage recent ML progress towards classification of HS data, often leading to
overfitting of models and poor generalizability.
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Data augmentation (DA), the process of artificially increasing training sample size,
has been implemented by the ML community when the problem of small or imbalanced
datasets has been encountered. DA methods vary from simple pre-processing steps such
as mirroring, rotating or scaling of images [4] to more complicated simulations [5,6] and
generative models [7,8]. DA for timeseries or 1D data consists of the addition of noise,
or methods such as time dilation, or cut and paste [9]. However, when dealing with
non-spatial HS data, these methods would be unsuitable, as it is important to maintain
reflectance and waveband relationships in order to ensure class labels are preserved.
Methods of DA such as physics-based models [10], or noise injection [11,12] have been
applied to HS data. Whilst successful, these methods are either simplifications of reality
and require domain-dependent knowledge of target features in the case of physical models
or rely upon random noise, potentially producing samples that only approximate the
true distribution.

Generative adversarial networks (GANs) have been used successfully in many fields as
a DA technique, often for images, timeseries/1D [13], sound synthesis [14], or anonymising
medical data [15]. GANs consist of two neural networks trained in an adversarial manner.
The generator (G) network produces synthetic copies mimicking the real training data
while the discriminator (D) network attempts to identify whether a sample was from the
real dataset or produced by G. The D is scored on its accuracy in identifying real from
synthetic data, before passing feedback to G allowing it to learn how best to fool D and
improve generation of synthetic samples [16].

The use of GANs to generate synthetic HS data is a relatively new field of study.
GANs of varying architectures ranging from 1D spectral [17–19] to 2D [20], and 3D spectral-
spatial [21] with differing data embeddings including individual spectra, HS images, and
principal components have been examined. All have been able to demonstrate the ability
to generate synthesized hyperspectral data and to improve classification outcomes to
varying degrees whether through DA or conversion of the GANs discriminator model to a
classifier. However, issues such as training instability and mode collapse, a common form
of overfitting are prevalent.

The work presented in this paper applies advances in generative models to overcome
limitations previously encountered by Audebert et al. [17] to produce more realistic syn-
thetic HS vegetation data and eliminate reliance on PCA to reduce dimensionality and
stabilise training. Specifically, we train a GAN using the Cramér distance on two vegetation
HS datasets, demonstrating the ability to approximate the distribution of the training
samples while encountering no evidence of mode collapse. We go on to demonstrate the
use of these synthetic samples for data augmentation and reduced under-sampling of class
distributions, as well as establishing a method to quantify the potential classification power
of a synthetic sample by evaluating its relative position in feature space.

Generative Adversarial Networks—Background

GANs are a type of generative machine learning algorithm known as an implicit
density model. This type of model does not directly estimate or fit the data distribution
but rather generates its own data which is used to update the model. Since first being
introduced by Goodfellow et al. [16] GANs have become a dominant field of study within
ML/DL, with numerous variants and being described as “the most interesting idea in the
last 10 years in machine learning” by a leading AI researcher [22]. Although sometimes
utilizing non-neural network architectures, GANs generally consist of two neural networks,
sometimes more, that compete against each other in a minimax game. This is where one
neural network, the discriminator, attempts to reduce its “cost” or error as much as possible.
This occurs in an adversarial manner, where the discriminator is trained to maximize
the probability of correctly labelling whether a sample originates from the original data
distribution or has been produced by the generator. Simultaneously, the generator is
trained to minimize the probability that the discriminator correctly labels the sample [23].
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As a result, the training of GANs is notoriously unstable, with issues such as the
discriminator’s cost quickly becoming zero and providing no gradient to update the
generator, or the generator converging onto a small subset of samples that regularly fool
the discriminator, a common issue known as mode collapse. Considerable research has
gone into attempting to alleviate these issues, improve training stability and improve
quality of synthetic samples, so much so that during 2018 more than one GAN-related
paper was being released every hour [23].

Unlike non-adversarial neural networks, the loss function of a GAN does not converge
to an optimal state, making the loss values meaningless in respect to evaluating the
performance of the model. In an attempt to alleviate this problem, the Wasserstein GAN
(WGAN) was developed to use the Wasserstein distance, also known as the Earth Mover’s
(EM) distance which results in an informative loss function for both D and G that converges
to a minimum [24]. Rather than the D having sigmoid activation in its final layer producing
a binary classification of real or fake, WGAN approximates the Wasserstein distance,
which is a regression task detailing the distance between the real and fake distributions.
Due to gradient loss being a common weakness with WGANs, they were improved by
applying weight clipping to the losses with a gradient penalty (GP) [25], further improving
training stability.

2. Experimental Design

Here, we implement the CramérGAN, a GAN variant using the Cramér/energy
distance as the Ds loss, reportedly offering improved training stability and increased
generative diversity over WGANs [26]. This choice was informed by our preliminary
testing of wGAN and wGAN-GP that produced noisy synthesized samples and lower
standard deviations, in addition to the learning instability and poor convergence previously
reported for wGAN, which may explain mode collapse encountered by Audebert et al. [17].

Individual models were trained for each hyperspectral class, for a total of 38 models.
Each model was trained for 50,000 epochs, at a ratio of 5:1 (5 training iterations of D for
every 1 of G) using the Adam optimiser at a learning rate of 0.0001, with beta1 = 0.5 and
beta2 = 0.9. The latent noise vector was generated from a normal distribution with length
100. The G consists of two fully connected dense layers followed by two convolution
layers, all using the ReLu activation function save for the final convolution layer using
Sigmoid activation. The final layer of G reshaped the output to be a 2D array with shape
(batch size * number of bands). A similar architecture was used for the D, though reversed.
Starting with two convolution layers into a flatten layer, followed by 2 fully connected
dense layers, all layers of D used Leaky ReLu activation except the final layer which used a
linear function (Figure 1) (Appendix A Tables A1 and A2).

Figure 1. Schematic of Generative Adversarial Network (GAN)architecture.

The three classification models (SVM, RF and NN) were evaluated in four permuta-
tions: trained on real data and evaluated on real data (real–real); trained on real data and
evaluated on synthetic data (real–synthetic); trained on synthetic data and evaluated on
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synthetic data (synthetic–synthetic); and trained on synthetic data and evaluated on real
data (synthetic–real). Each dataset was split into training and testing subsets with 10 times
cross-validation. All synthetic datasets were restricted to the same number of samples
per class as the real datasets unless specified otherwise. The real–real experiments were
expected to have the highest accuracy and offer a baseline of comparison for the synthetic
samples. If the accuracy of real–synthetic is significantly higher than real–real experiments,
this potentially indicates that the generator has not fully learned the true distribution
of the training samples. Conversely, accuracy being significantly lower could mean the
synthetic samples are outside the true distribution and are an unrealistic representation of
the spectra.

Extending this analysis, synthetic–synthetic and synthetic–real experiments were
performed with the number of synthesized training samples increasing from 10 to 490
samples by increments of 10 samples per class. The real–synthetic and real–real experiments
were included for comparison with a consistent number of training samples, though
training and evaluation subsets differed every iteration. The initial DA experiment was
performed with the same number of samples for real and synthetic datasets with the
augmented set having twice the number before the number of synthetic samples were
incremented by 10 from 10 to 490 samples per class.

The data augmentation capabilities of the synthetic spectra were evaluated by similar
methods. First, the three classifiers were trained with either real, synthetic or both combined
into an augmented dataset and tested against an evaluation dataset that was not used in
the training of the GAN.

All code was written and executed in Python 3.7. The CramérGAN based upon [27]
using the Tensorflow 1.8 framework. Support Vector Machine (SVM), and Random Forests
(RF) classifiers make use of the Scikit-Learn 0.22.2 library, with Tensorflow 1.8 utilized for
the neural network (NN) classifier. Additionally, Scikit-Learn 0.22.2 provided the dimen-
sionality reduction functions for Principal Components Analysis (PCA) and t-distributed
Stochastic Neighbourhood Embedding (t-SNE), with Uniform Manifold Approximation
and Projection (UMAP) being a standalone library. Hyperparameters for all functions are
provided in Appendix A.

2.1. Classification Power

Potential classification power of a sample was estimated with the C metric devised in
Mountrakis and Xi [28] for the purpose of predicting the likelihood of correctly classifying
an unknown sample by measuring its Euclidean distance in feature space to samples in the
training dataset. Mountrakis and Xi [28] demonstrated a strong correlation between close
proximity to number of training samples and likelihood of correctly being classified. The C
metric is bound between −1 indicating low likelihood and 1 indicating high likelihood of
successful classification.

Rather than focusing on the proximity of an unknown sample to a classifier’s training
data, we are interested in the distance of each synthesized sample to that of the real data in
order to evaluate any potential increase in information density. We hypothesise that a C
value closer to the lower bound for a synthetic sample would indicate it being further away
from real data points and of any synthetic samples with C values close to the upper bound.
Such a sample could potentially contain greater discriminatory power for the classifier as it
essentially fills a gap in feature space of the class distribution.

To determine whether some samples of the NZ dataset provide more information to
the classifier than others, and that the improvement in classification accuracy is not purely
from increased sample size, the distance of each generated sample was measured to all
real samples of its class before being converted to a C value as per Mountrakis and Xi [28],
with an h value range of 1–50 at increments of 1. Two data subsets were then created using
the first 100 spectral samples after all synthetic samples were ordered by their C value in
ascending (most distant) and descending (least distant) order. The first 100 samples from
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each ordered dataset rather than the full 500 were used to maximize differences, reduce
computation time and simplify figures.

2.2. Datasets

Two hyperspectral datasets were used to train the GAN: Indian Pines agricultural land
cover types (INDI); and New Zealand plant spectra (NZ). The Indian Pines dataset (INDI)
recorded by the AVIRIS airborne hyperspectral imager over North-West Indiana, USA,
is made available by Purdue University and comprises 145 × 145 pixels at 20 m spatial
resolution and 224 spectral reflectance bands from 400 to 2500 nm [29]. Removal of water
absorption bands by the provider reduced these to 200 wavebands, and then reflectance
of each pixel was scaled between 0 and 1. Fifty pixels were randomly selected as training
samples except for three classes with fewer than 50 total samples, for which 15 samples
were used for training (Table 1).

Table 1. Land cover classes, training and evaluation sample numbers for Indian Pines dataset.

Class ID Class Name Training Samples Evaluation Samples

INDI1 Alfalfa 15 31
INDI2 Corn-no-till 50 1378
INDI3 Corn-min-till 50 780
INDI4 Corn 50 187
INDI5 Grass-pasture 50 433
INDI6 Grass-trees 50 680
INDI7 Grass-pasture-mowed 15 13
INDI8 Hay-windrowed 50 428
INDI9 Oats 15 5
INDI10 Soybean-no-till 50 922
INDI11 Soybean-min-till 50 2405
INDI12 Soybean-clean 50 543
INDI13 Wheat 50 155
INDI14 Woods 50 1215
INDI15 Buildings-Grass-Trees-Drives 50 336
INDI16 Stone-Steel-Towers 50 43

The New Zealand (NZ) dataset used in this study is a subsample of hyperspectral
spectra for 22 species taken from a dataset of 39 native New Zealand plant spectra collected
from four different sites around the North Island of New Zealand and made available
on the SPECCHIO database [3]. These spectra were acquired with an ASD FieldSpecPro
spectroradiometer at 1 nm sampling intervals between 350 and 2500 nm. Following
acquisition from the SPECCHIO database, spectra were resampled to 3 nm and noisy
bands associated with atmospheric water absorption were removed (1326–1464, 1767–2004,
2337–2500) resulting in 540 bands per spectra. Eighty percent of samples per class were
used for training the GAN and 20% held aside to evaluate classifier performance (Table 2).

Table 2. Plant species classes, training and evaluation sample numbers for New Zealand dataset.

Class ID Common Name Botanical Name Training Samples Evaluation Samples

NZ0 Manuka Leptospermum scoparium 58 14
NZ1 Pohutukawa Metrosideros excelsa 32 8
NZ2 Koromiko Hebe stricta 42 10
NZ3 Lemonwood Pittosporum eugenioides 46 12
NZ4 Kawakawa Macropiper excelsum 34 9
NZ5 Whiteywood Melicytus ramiflorus 48 12
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Table 2. Cont.

Class ID Common Name Botanical Name Training Samples Evaluation Samples

NZ6 Totara Podocarpus totara 34 8
NZ7 New Zealand Flax Phormium tenax 36 9
NZ8 Akiraho Olearia paniculata 8 2
NZ9 Rata Metrosideros robusta 9 2

NZ10 Ngaio Myoporum laetum 38 10
NZ11 Mapou Myrsine australis 36 9
NZ12 Cabbage tree Cordyline australis 32 8
NZ13 Karaka Corynocarpus laevigatus 34 9
NZ14 Kauri Agathis australis 15 3
NZ15 Silver fern Cyathea dealbata 28 7
NZ16 Tangle fern Gleichenia dicarpa var. alpina 14 4
NZ17 Black tree fern Cyathea medullaris 18 4
NZ18 Pigeonwood Hedycarya arborea 18 5
NZ19 Rangiora Brachyglottis repanda 12 3
NZ20 Karamu Coprosma robusta 13 3
NZ21 Red Pine Dacrydium cupressinum 16 4

3. Results and Discussion
3.1. Mean and Standard Deviation of Training and Synthetic Spectra

In order to visualize similarities between synthetic and real spectra, the mean and
standard deviation for each class are shown for the real, evaluation, and synthetic datasets.
All low-frequency spectral features, as well as mean and standard deviations, appear to
be reproduced with high accuracy by the GAN. At finer scales of 3–5 wavebands noise is
present, most notably throughout the near infra-red (NIR) plateau (Figure 2). Smoothing of
synthesized data by a number of methods resulted in either no improvement or decreased
performance in a number of tests; for this reason, no pre-processing was performed on
synthesized samples. Due to the high frequency and random nature of the noise, once
mean and STD statistics are calculated the spectra appear smooth.

Figure 2. Synthetic spectra of NZ class 0, 350–2400 nm at 3 nm bandwidths.

Class 0 is one of the NZ classes with the largest number of samples, resulting in its
mean and standard deviation being similar between its real, evaluation, and synthetic
subsets. However, this is not the case for all classes, with NZ-9 showing the mean and
standard deviation of the randomly selected evaluation samples being vastly different
to those of real and synthetic spectra (Figure 3). The same is seen amongst INDI classes,
with class 2 matching across all 3 data subsets, and class 4 with only 40 samples showing
substantial difference between evaluation and real samples, especially in the visible wave-
bands (Figure 4). Although some classes may struggle to represent the evaluation dataset
due to the initial random splitting of the datasets, in general, mean and standard deviation
of the synthetic samples very closely match the real training data.
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Figure 3. Mean and +/− 1 STD for training (real), synthetic, and evaluation (real) datasets. (A) NZ class 0; Manuka
(L. scoparium). (B) NZ class 9; Rata (M. robusta).

Figure 4. Mean and +/− 1 STD for training (real), synthetic, and evaluation (real) datasets. (A) INDI class 2; corn-no-till.
(B) INDI class 4; corn.

3.2. Generation and Distribution of Spectra

Here, we demonstrate the ability of the GAN to reproduce realistic spectral shapes
and to capture the statistical distribution of the class populations. Three dimensionality
reduction methods—PCA, t-SNE, and UMAP—were applied to both the real and synthetic
datasets of INDI and NZ spectra to reduce their 200 and 540 wavebands (respectively)
down to a plottable 2D space (Figures 5 and 6). Upon visual inspection, the class clusters
formed by the augmented data across all reduction methods mimic the distribution of
those of the real data. Additionally, due to its small sample sizes the structure of clusters
for the real NZ data is sparse and unclear, though is emphasised by the large number of
synthetic samples.
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Figure 5. Dimensional reduced representations of INDI real and synthetic datasets; highlighted classes: INDI1—Alfalfa
(green); INDI11—Soybean-min-till (blue). (A) Real dataset; PCA reduction, (B) synthetic dataset; PCA reduction, (C) real
dataset; t-SNE reduction, (D) synthetic dataset; t-SNE reduction, (E) real dataset; UMAP reduction, and (F) synthetic dataset;
UMAP reduction.
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Figure 6. Dimensional reduced representations of NZ real and synthetic datasets; + highlighted classes: NZ0—Manuka
(L. scoparium) (green), NZ9—Rata (M. robusta) (blue). (A) Real dataset; PCA reduction, (B) synthetic dataset; PCA reduction,
(C) real dataset; t-SNE reduction, (D) synthetic dataset; t-SNE reduction, (E) real dataset; UMAP reduction, and (F) synthetic
dataset; UMAP reduction.

Such strong replication of the 2D representation of the classes is a good indication of
the generative model’s ability to learn distributions. Even when the models are trained
separately for each class, the relationship between classes is maintained. However, the
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increased sample number in the synthetic datasets do in some cases extend beyond the
bounds of the real samples. Whilst some may represent potential outliers the majority
are artefacts of increased sample sizes. This is most evident in the UMAP representation,
where a parameter that defines minimum distance between samples can be set a larger
value, which results in increased spread of samples in the 2D representation [30]. This is
most notable in the INDI dataset, with classes 1, 7, and 8 extending more broadly than the
real dataset (Figure 5F).

3.3. Training Classification Ability

In order to further examine the similarity of synthetic spectra to the real training data,
three classifiers were trained (SVM, RF, NN), with four permutations of each (real–real,
real–synthetic, synthetic–synthetic, and synthetic–real) (Table 3). With few exceptions,
the neural network classifier outperformed the others, with SVM being the second most
accurate, followed by RF. The INDI dataset recorded the highest accuracy for the real–real
test with RF and NN classifiers at 74.76% and 84.13%, respectively, although the highest
accuracy for the SVM classifier occurred during the synthetic–real test with 81.42% accuracy.
Comparing the four combinations of real and synthetic, real–real had the highest accuracy
for four experiments, with INDI synthetic–real with the SVM, and NZ real–synthetic with
the RF classifier being the only exceptions.

Table 3. Classification accuracies for classifiers trained on real or synthesized spectral data and
evaluated on either real or synthesized data for both Indian Pines and New Zealand datasets based
on real class sample sizes. Highest achieved accuracy for each classifier per dataset indicated in bold.

INDI SVM RF NN

Real–Real 73.48 74.76 84.13
Real–Synthetic 77.04 66.68 76.50

Synthetic–Synthetic 79.48 69.38 80.91
Synthetic–Real 81.42 70.51 81.66

NZ

Real–Real 79.86 47.65 95.76
Real–Synthetic 78.73 60.23 80.54

Synthetic–Synthetic 74.20 51.33 91.82
Synthetic–Real 78.19 54.76 81.13

To further evaluate the synthetic spectra, synthetic–synthetic and synthetic–real exper-
iments were performed with the number of synthesized training samples increasing from
10 to 490 samples by increments of 10 samples per class (Figure 7). Synthetic–synthetic
accuracy improves with more samples: this too is to be expected as this simply adds more
training samples from the same distribution. Most importantly, synthetic–real accuracy,
though often slightly lagging behind synthetic–synthetic, improves in the same manner,
indicating that the synthetic samples are a good representation of the true distribution
and that increasing their number for training a classier is an effective method of data
augmentation. The main exception to this is the NN NZ classier, where synthetic–synthetic
quickly reaches ~100% accuracy, while synthetic–real maintains ~80% before slowly de-
creasing in accuracy as more samples are added. This could indicate the NN classifier
focuses on different features than the other classifiers, potentially being more affected by
the small-scale noise apparent in the NZ-generated samples as the noise is not as apparent
in the INDI data and the INDI NN classifier does not show such a discrepancy between
synthetic–synthetic and synthetic–real.
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Figure 7. Classification accuracies for classifiers trained on real or synthesized spectral data and evaluated on either real
or synthesized data for both Indian Pines and New Zealand datasets ranging from 10 to 490 samples per class. (A) New
Zealand dataset; SVM classifier, (B) Indian Pines dataset; SVM classifier, (C) New Zealand dataset; RF classifier, (D) Indian
Pines dataset; RF classifier, (E) New Zealand dataset; NN classifier, and (F) Indian Pines dataset; NN classifier.

3.4. Data Augmentation

In order to test the viability of the synthetic data for data augmentation, the same three
classifiers were trained with either real, synthetic or both combined into an augmented
dataset and tested against an evaluation dataset (Table 4). All classifiers had higher accuracy
when trained on the real dataset compared to synthetic, though the highest accuracy overall
was with the augmented dataset. For the INDI data, this increase was minor, being <1%
for all classifiers. A far more significant improvement was seen for the NZ data with
increases of 3.54% (to 86.55%), 0.53% (to 50.80%), and 3.73% (to 85.14%) for SVM, RF, and
NN, respectively.

Table 4. Classification accuracies for classifiers trained on real, synthesized, or augmented spectral
data and evaluated on an evaluation dataset for both Indian Pines and New Zealand datasets based
on real class sample sizes. Highest achieved accuracy for each classifier per dataset indicated in bold.

INDI SVM RF NN

Real–Evaluation 70.40 66.40 62.06
Synthetic–Evaluation 62.82 57.73 51.30

Augmented–Evaluation 70.56 66.91 62.76

NZ

Real–Evaluation 83.01 50.27 81.41
Synthetic–Evaluation 63.02 36.69 68.60

Augmented–Evaluation 86.55 50.80 85.14

Of course, however, the number of synthetic samples does not have to be limited in
such a manner. As with previous experiments the number of synthetic samples started
at 10 and incremented by 10 to a total of 490, demonstrating the potential of this data
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augmentation method. Dramatic increases in accuracy were seen for the synthetic dataset,
with the smallest increase being 5.13% for INDI-SVM occurring at 490 samples, the largest
being 20.47% for NZ-RF at 420 samples. These increases brought the synthetic dataset very
close to the accuracy of the real samples or even above in the cases of INDI-NN, NZ-RF,
and NZ-NN. Increases in accuracy were also seen in the augmented dataset, though not
as dramatic as those for the synthetic dataset. Improvements in accuracy ranged from
0.16% for INDI-SVM at 10 synthetic samples to 9.45% for NZ-RF at 280 synthetic samples.
These improvements raise the highest accuracy for the INDI dataset from 70.40% to 70.56%,
resulting in an increase of 0.16% over the highest achieved by just the real data. A larger
increase was seen in the NZ dataset with the previous highest accuracy raising from 86.55%
to 90.01%, an increase of 3.45% from the previous augmented classification with restricted
sample size, and a 7% increase over the real dataset alone (Table 5).

Table 5. Classification accuracies for classifiers trained on real, synthesized, or augmented spectral
data and evaluated on an evaluation dataset for both Indian Pines and New Zealand datasets with
sample sizes ranging from 10 to 490 per class for synthetic and augmented while real contained all
real samples. Highest achieved accuracy for each classifier per dataset indicated in bold.

INDI SVM/Sample Size RF/Sample Size NN/Sample Size

Real–Evaluation 70.40/All 66.40/All 62.06/All
Synthetic–Evaluation 67.95/490 65.59/490 65.05/50

Augmented–Evaluation 70.56/10 68.25/140 69.77/320

NZ

Real–Evaluation 83.01/All 50.27/All 81.41/All
Synthetic–Evaluation 81.35/490 57.16/420 87.78/450

Augmented–Evaluation 90.01/120 60.25/280 89.25/120

3.5. Classification Power of a Synthetic Sample

Ordering the synthetic samples by their C value before iteratively adding samples one
at a time from each class to the training dataset of an SVM classifier shows the differing
classification power of the synthetic samples from lower to upper bounds of C and vice
versa (Figure 8).

Figure 8. Classification accuracy of a SVM classifier for C metric ascending and descending ordered synthetic datasets
incremented by single samples.

When in ascending order from lower to upper bounds, classification accuracy in-
creases dramatically, reaching ~60% accuracy with ~100 samples, while 200 samples were
required for similar accuracy in descending order. At approximately half the number of
samples, accuracies converge, then increase at the same rate before reaching 80% accuracy
at 500 samples. These classification accuracies (Figure 8) provide the first insight into
increased discriminatory power associated with synthetic samples that occur at distance to
real samples. Although not encountered here, a maximum limit to this distance would be
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present, with synthetic samples needing to remain within the bounds of their respective
class distributions.

A similar, though reduced, trend can be seen when the ordered synthetic samples
are used to augment the real dataset. Both ascending and descending datasets improve
classification over that of the real dataset when samples are iteratively added to the clas-
sifiers training dataset (Figure 9). Despite descending ordered samples outperforming
ascending at times, on average, ascending samples achieved ~1.5% higher accuracy across
the classifications compared with the 79.72% to 78.24% accuracy of descending samples.

Figure 9. Classification accuracy of a SVM classifier for C metric ascending and descending augmented datasets with
randomly ordered real dataset incremented by single samples.

This artificial selection of synthetic data points distant or close to the real data influ-
ences sample distribution used to train the classifiers. As one might expect, the ordered
data points come from the edges or sparse regions of the real data distribution, dramatically
shifting the mean and standard deviation of the ordered datasets (Figure 10).

Figure 10. (A) Mean and (B) STD of C metric ascending, descending, and randomly ordered synthetic datasets incremented
by single samples.

The inclusion of synthetic data points selected at random provides a baseline for
comparison with the ordered datasets. Once the number of samples increases beyond a
few points, the means for descending and random converge and stay steady throughout.
Mean values for ascending start significantly higher, though initially begin to converge
towards the other datasets before plateauing at a higher level. Whilst being averaged
across all classes and all wavebands of spectra, the mean reflectance for the ascending
data is consistently higher. Standard deviation of the descending dataset is consistently
low, only slightly increasing as samples are added. This is in stark contrast to the STD
of the ascending dataset being ~5–6 x higher across all n samples. The mean of the
randomly selected dataset occurs between the means of the two ordered, though closer
to the ascending mean, indicating the samples that make up the descending dataset are
highly conserved.

To further illustrate the relationship of the ordered datasets and the real distribution,
a PCA of one of the classes is shown (Figure 11). As the mean and STD indicated, the
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descending samples are tightly grouped near the mean and densest area of the real data
distribution, with the ascending samples generally occurring along the border of the real
distribution. Whilst ascending selects for samples with low C and greater distance from
real samples, it is important to note that these synthetic samples still appear to conform
to the natural shape of the real distribution, a further indication the generative model is
performing well.

Figure 11. PCA of NZ class 0; Manuka (L. scoparium) real samples, with first 100 samples of the ascending and descending
C ordered synthetic datasets.

4. Conclusions

In this paper, we have successfully demonstrated the ability to train a generative
machine learning model for synthesis of hyperspectral vegetation spectra. Evaluation of
the synthetic spectra shows that they respect many of the statistical properties of the real
spectra, conforming well to the sampled distributions of all real classes. Further to this,
we have shown that the synthetic spectra generated by our models are suitable for data
augmentation of a classification models training dataset. Addition of synthetic samples to
the real training samples of a classifier produced increased overall classification accuracy
under almost all circumstances examined. Of the two datasets, the New Zealand vegetation
showed a maximum increase of 7.0% in classification accuracy, with Indian Pines demon-
strating a more modest improvement of 0.16%. Selection of synthetic samples from sparse
or outlying regions of the feature space of real spectral classes demonstrated increased dis-
criminatory power over those from more central portions of the distributions. We believe
further work regarding this could see targeted generation to maximize the information
content of a synthetic sample that would result in improved classification accuracy and
generalizability with a smaller augmented dataset. The use of these synthesized spectra
to augment real spectral datasets allows for the training of classifiers that benefit from
large sample numbers without a researcher needing to collect additional labelled spectra
from the field. This is of increasing significance as modern machine and deep learning
algorithms tend to require larger datasets.
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Appendix A

Table A1. Layer architecture of the GANs generator.

Layer Type/Parameters Shape Activation

Conv1D (100,100) ReLU
Conv1D (100,50) ReLU
Conv1D (100,10) ReLU
Flatten
Dense 2048 Leaky ReLU (alpha = 0.2)

Batch Normalization (momentum = 0.4)
Dropout (0.5)

Dense 4096 Leaky ReLU (alpha = 0.2)
Batch Normalization (momentum = 0.4)

Dropout (0.5)
Dense 2048 Leaky ReLU (alpha = 0.2)

Batch Normalization (momentum = 0.4)
Dropout (0.5)

Dense 22 Softmax

Table A2. Layer architecture of the GANs discriminator.

Layer Type/Parameters Shape Activation

Dense 1024 Leaky ReLU (alpha = 0.2)
Dense 1024 Leaky ReLU (alpha = 0.2)
Dense 256 Linear

Table A3. Epochs with Kullback–Leibler divergence loss, Adam optimiser with a learning rate of
0.00001, and a batch size of 32.

Layer Type/Parameters Shape Activation

Conv1D (100,100) ReLU
Conv1D (100,50) ReLU
Conv1D (100,10) ReLU
Flatten
Dense 2048 Leaky ReLU (alpha = 0.2)

Batch Normalization (momentum = 0.4)
Dropout (0.5)

Dense 4096 Leaky ReLU (alpha = 0.2)

https://specchio.ch/
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Table A3. Cont.

Layer Type/Parameters Shape Activation

Batch Normalization (momentum = 0.4)
Dropout (0.5)

Dense 2048 Leaky ReLU (alpha = 0.2)
Batch Normalization (momentum = 0.4)

Dropout (0.5)
Dense 22 Softmax

Table A4. Hyperparameters used during UMAP dimension reduction for each dataset.

Dataset Number of
Neighbours Minimum Distance Distance Metric

INDI 20 1 Canberra
NZ 100 0.3 Correlation

Figure A1. (A) New Zealand dataset; SVM classifier, (B) Indian Pines dataset; SVM classifier, (C) New Zealand dataset; RF
classifier, (D) Indian Pines dataset; RF classifier, (E) New Zealand dataset; NN classifier, and (F) Indian Pines dataset; NN
classifier.
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