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Abstract: Seasonal climate is the main driver of crop growth and yield in broadacre grain cropping
systems. With a 40-year record of 30 m resolution images and 16-day revisits, the Landsat satellite
series is ideal for producing long-term records of remotely sensed phenology to build understanding
of how climate affects crop growth. However, the time-series of Landsat images exhibits gaps caused
by cloud cover, which is common in wet periods when crops reach maximum growth. We propose a
novel spatial–temporal approach to gap-filling that avoids data fusion. Crop growth curve estimation
is used to perform temporal smoothing and incorporation of spatial weights allows spatial smoothing.
We tested our approach using Landsat NDVI data acquired for an 8000 ha study area in Western
Australia using a train/test approach where 157 available Landsat-7 images between 2013 and 2019
were used to train the model, and 95 at least 80% cloud-free Landsat-8 images from the same period
were used to test its performance. We found that compared to nonspatial estimation, use of spatial
weights in growth curve estimation improved correlation between observed and predicted NDVI by
75%, MAE by 31% and RMSE by 75%. For cropland, the correlation is improved by 58%, the MAE
by 36% and the RMSE by 76%. We conclude that spatially weighted estimation of crop growth
curves can be used to fill spatial and temporal gaps in Landsat NDVI for the purpose of within-field
monitoring. Our approach is also applicable to other data sources and vegetation indices.

Keywords: continuous sequence; vegetation index; Landsat; crop phenology; gap-filling; spatial–
temporal

1. Introduction

Increasing agricultural production is essential to ensure food security for the world’s
growing population as the area of arable land diminishes amid risks posed by climate
change. Precision agriculture aims for within-field optimisation of crop nutrition and
management of weeds, pests and disease to allow farmers to increase productivity and
profitability and/or reduce inputs to improve sustainability [1]. In dryland cropping
systems, seasonal climate conditions are the main determinant of crop growth and yield [2],
meaning that within-field management decisions rely on our understanding of how climate
drives crop growth. Many farmers make decisions using data from only several years [3],
which is insufficient for quantifying the effects of seasonal variability and climate change.
To understand impacts of seasonal climate conditions on crop growth and yield, we need
long-term spatial records at within-field resolution.

Satellite remote sensing offers a cost-effective means of monitoring fields to build
our understanding of how crop growth varies in space and time according to soil types,
local weather conditions, seasonal climate variability and management. Crop monitoring
from space typically uses vegetation indices (VIs) that combine satellite bands into a
single measure related to green vegetation. While the normalised difference vegetation
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index (NDVI) [4] is the most widely known and used, there are many others [5–7]. Time-
sequences of VIs are used to monitor land surface phenology (LSP), the development of
vegetation as revealed by spectral observation from satellite sensors [7,8].

Our goal is to produce long-term hindcasts of NDVI sequences and LSP at within-field
resolution to support precision agriculture decision-making. We are primarily interested in
dryland grain cropping in a Mediterranean climate with winter-dominant growing seasons.
At the beginning of the year during summer, NDVI is low. It begins to increase after crops
emerge sometime between April and early June and is highest in the winter/late winter
months of July to September when crop growth peaks.

The Landsat satellite series is ideal for long-term monitoring of crop growth in fields.
It has the longest record of medium-resolution multispectral satellite images, with global
coverage at 30 m resolution available since the launch of Landsat-4 in 1982 [9]. There are
two Landsat satellites currently in orbit. Landsat-7 was launched in 1999 and Landsat-8
was launched in 2013 with sufficiently consistent wavelength bands to afford a continuous
sequence of images [10]. They both acquire data across the globe with a 16-day revisit
period. Landsat-9, due for launch in 2021, will ensure future continuity of the Landsat
record [11]. Combining data from Landsat satellites provides a continuous long-term
record. Moreover, Landsat data have been freely available since 2008 [12] and can therefore
be used to offer inexpensive delivery of information to farmers.

There are two main issues affecting the use of Landsat NDVI for monitoring crop
growth. First, the Landsat-7 Scan Line Corrector (SLC) failed in May 2003, causing system-
atic data gaps along diagonal lines of one to four pixels in thickness. Second, cloud cover
is common during winter months when crops reach maximum growth [13], causing both
spatial and temporal gaps in the NDVI time-sequence around the time of peak NDVI.

Methods developed to fill gaps caused by the SLC failure using single images [14–17]
or multiple images [18,19] are not suitable for filling large spatial–temporal gaps caused by
cloud cover. Gap-filling of Landsat data has been performed using harmonic time-series
models to generate continuous sequences [20] but that approach depends on having many
cloud-free images, which is not always the case in a Mediterranean winter. Gap-filling is
more commonly performed by fusion with more frequent MODIS data, which has a daily
revisit capability [21–28]. Recently, Landsat data have been combined with other remotely
sensed data with finer resolution and/or more frequent revisits to detect LSP [29] or fill
gaps [30]. However, such data cannot be used to produce long-term hindcasts as they do
not have a sufficiently long record.

We propose an alternative, simpler approach to gap-filling Landsat NDVI that avoids
the need for data fusion and can be used to produce long-term hindcasts. Our method
is a spatial–temporal approach that performs crop growth curve estimation using spatial
weights as applied in geographically weighted regression (GWR).

Growth curve estimation for LSP detection fits mathematical functions to VI time-
sequences, sometimes after smoothing the data using splines [31] or simple smoothers
such as the Savitzky–Golay and Whittaker filters [32–34]. Various types of growth curves
are used, including triangular [35,36], double logistic and multiple-parameter
variations [33,37–40], piecewise logistic [41–43] for multiple growing seasons, asymmetric
Gaussian [33], Fourier analysis [44], wavelets [45], harmonic models [46] and shape models
that are deformed to fit the data [6,47–49]. More general regression splines that do not
necessarily impose shape constraints on the estimated curves [50,51] have also been used
but are dependent on sufficient frequency of data during the growing season [52]. Indeed,
when there are gaps in the NDVI sequence caused by winter cloud, underestimation of
maximum NDVI is likely using most methods for growth curve estimation, and it is diffi-
cult to determine the ‘best’ growth curve model for all situations [7]. We, therefore, apply
our knowledge about the growth of grain crops in a Mediterranean climate and use the
asymmetric double-Lorentz function [53] to allow estimation of high peaks that may be
missing from the NDVI time-sequence because of cloud.
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GWR performs local linear regressions, weighting data according to distance from
each local regression site using a distance–decay kernel [54–56]. Our method for spatially
weighted growth curve (SWGC) estimation uses similar spatial weights in the estimation of
a crop growth curve. In the absence of spatial weights, the estimated growth curve fills gaps
in the NDVI time-sequence. However, growth curve estimation using only data for a single
cell is heavily influenced by temporal gaps caused by cloud [46,52]. We, therefore, use
additional data from a local neighbourhood around each cell, weighting the data according
to geographical distance as applied in GWR. The crop growth curve estimation performs
temporal smoothing and incorporating spatial weights into the estimation allows a degree
of spatial smoothing while also improving the temporal growth curve estimation.

Gap-filling of VIs has been performed by adjusting growth curves using curves from
nearby cells with similar annual growth patterns [34,57,58]. However, these methods
assume growth curves are consistent from year to year, which is not the case for dry-
land crops that have interannual variation due to seasonal rainfall variability and crop
rotation. Moreover, they only use spatial information when the temporal information is
insufficient. SWGC differs by using spatial information in the growth curve estimation
for all cells. Spatial weights have long been used to improve the classification of remotely
sensed data [59,60]. We hypothesise that the use of spatial weights in the SWGC method
will improve accuracy of prediction of continuous long-term Landsat NDVI sequences
compared to using nonspatial growth curve estimation. We test SWGC for our specific
purpose of broadacre crop monitoring but note that it is a universal method that can be
applied to any VI, using any remotely sensed data source and any type of growth curve.
For other LSP purposes, the choice of growth curve and smoothing parameters can be
changed to adapt SWGC for use with different climates and land cover types.

2. Materials and Methods
2.1. Data
2.1.1. Study Area

The study area is located in the Western Australian grain belt at around 31.28 S and
118.16 E (Figure 1). It is approximately 8000 ha in size, which compares to an average farm
size for the region of 5000 ha. Grain crops are grown in a dryland system that is heavily
reliant on winter rainfall during the May to October growing season. Average growing
season rainfall is between 200 and 300 mm. Wheat is the main crop grown, with barley,
lupins, canola and pasture included in cropping rotations. As well as cropland, the study
area includes areas of remnant vegetation (native trees and shrubs) and salt scalds caused
by dryland salinity.

Figure 1. The study area: (a) 5000 ha located in the eastern grain belt of Western Australia; and (b) false-colour composite of
the near-infrared, red and green bands from Landsat-8 OLI image acquired 29 August 2019.
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2.1.2. Landsat Data

All bands of Landsat-7 (path/row: 111/082) and Landsat-8 (path/row: 111/082) data
from 2013 to 2019 were obtained from the United States Geological Survey (USGS) website
(https://earthexplorer.usgs.gov accessed on 2 February 2021). There were 157 Landsat-7
images and 150 Landsat-8 images available during 2013 to 2019. Data preprocessing
including geometric correction, top of atmosphere reflectance correction and surface re-
flectance correction were completed using the USGS Earth Resources Observation and Sci-
ence (EROS) Centre Science Processing Architecture (ESPA) online interface
(https://espa.cr.usgs.gov accessed on 2 February 2021). Cells with cloud contamination
or cloud shadow were removed using the cell quality control band. The corrected red
and near-infrared reflectances were used to calculate NDVI for all available image dates.
Figure 2 shows the Landsat data coverage and percentage complete (i.e., the percentage
area not affected by cloud, cloud shadow or the Landsat-7 SLC failure).

Figure 2. Percentage completeness of available Landsat-7 (black) and Landsat-8 (red) images for the period 2013 to 2019.

Due to reflective wavelength differences between the Landsat-7 and Landsat-8 sensors,
Landsat-8 NDVI is typically greater than the Landsat-7 NDVI. Statistical functions can
be used to transform one to the other [61]. Therefore, the observed Landsat-8 images
are calibrated to adjust for differences between Landsat-7 and Landsat-8 NDVI using the
method of Roy et al. [61] with an overlap region near the study site (Figure 3). The formula
used to calibrate Landsat-8 NDVI observations to Landsat-7 NDVI is given by

NDVI7 = −0.02335149 + 0.92543372 NDVI8 (1)

Figure 3. Overlap region (marked in blue) used to calibrate Landsat-8 NDVI to Landsat-7 NDVI
values overlaid on false-colour composites of red, green and blue bands from the Landsat-8 OLI
image acquired 2016-09-21 (left scene) and Landsat-7 ETM+ image acquired 2016-09-22 (right scene).
The study area is marked in red.

https://earthexplorer.usgs.gov
https://espa.cr.usgs.gov
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2.2. Methods
2.2.1. Double-Lorentz Growth Curve

Crop growth was modelled using an asymmetric double-Lorentz function for the
two main phases of crop development as measured by NDVI, which we refer to as the
vegetative phase (from germination to maximum vegetative growth) and the grain-fill
phase (from maximum growth to senescence). The curve takes the form

y =

{
c + (d− c) / (1 + b (x− e)2, x ≤ e
c + (d− c) / (1 + b (x− f )2, x > e

(2)

where x is the day of year, 0 ≤ c ≤ 0.9 is the minimum NDVI, 0.1 ≤ d ≤ 1 is the maximum
NDVI, 0 ≤ e ≤ 260 is the day of year at which maximum NDVI is observed, and b and f
are the shape parameters for the curve before and after maximum NDVI is observed.

2.2.2. Spatially Weighted Phenology Detection

The SWGC method estimates asymmetric double-Lorentz growth curves for each year
using data from a spatial neighbourhood around each cell, where the data are weighted
according to distance from the central cell using a distance–decay kernel. Spatial weights
are similarly used in GWR, and a range of distance weighting kernels are available [62].
To speed implementation, we investigated the specific case of a truncated or ‘moving
window’ Gaussian kernel, where the distance weights are set to zero for all cells (x, y)
outside of a rectangular region centred on the location for which the growth curve is being
estimated, with size specified by MAXD such that the window has width and length equal
to (2 ∗MAXD + 1) m. Within the window, distance weights are given by

wx,y = exp

(
−1

2

(
dx,y

b

)2
)

(3)

where wx,y is the weight for cell (x, y), dx,y is the distance of (x, y) from the location for
which the growth curve is to be estimated and b is the Gaussian kernel bandwidth.

Selection of appropriate values for b and MAXD will depend on the spatial resolution
of the source data. Larger values of b will result in more spatially smooth estimates.
To ensure filling of gaps in Landsat-7 data caused by the SLC failure, we chose kernel
bandwidth b = 60 m and MAXD = 200 m. This kernel bandwidth ensures sufficient data
with nonzero weights in the estimation of SLC failure gaps (Figure 4a). MAXD is chosen to
be as small as possible while retaining all data with weights within three decimal places
from zero (Figure 4b). Predictions obtained using these choices are spatially smoothed but
not so much that they would not be useful at within-field scales (Figure 4c).

Figure 4. Illustration of choice of Gaussian kernel bandwidth and moving window size: (a) NDVI Landsat-7 image acquired
2017-07-30 with SWGC moving window specified by MAXD = 200 centred on gap caused by SLC failure; (b) Gaussian
weights with bandwidth = b (black is high with the central cell having a weight of 1, and white is close to 0) and (c) predicted
NDVI using the SWGC method.
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The SWGC method for spatially weighted estimation of continuous vegetation in-
dex sequences and within-field crop phenology was as applied to each cell using the
following steps:

1. Extract cells within the square MAXD window.
2. Calculate distance-based weights for the extracted cells using a Gaussian kernel with

bandwidth b.
3. For each year:

i. Subset March to December data.
ii. Estimate growth curve parameters for the cell and year using distance-based

weights using nonlinear least-squares regression.
iii. Use the estimated growth curve parameters to predict NDVI for any day

of year.

2.2.3. Comparison of SWGC and Nonspatial Growth Curve Estimation

We compared SWGC with nonspatial growth curve estimation using an asymmetric
double-Lorentz growth curve using a train/test approach. In all, 157 available Landsat-7
images between 2013 and 2019 were used to estimate growth curve parameters using the
nonspatial and SWGC methods. Predictions were made for both the Landsat-7 training data
and for the acquisition dates of the 150 available Landsat-8 images during the same time
period. Of the 150 available Landsat-8 images, 95 were at least 80% cloud free. These were
used as an independent test set to validate the accuracy of the SWGC method compared
to nonspatial growth curve estimation using double-Lorentz growth curves. Accuracy
was assessed using the Pearson correlation coefficient (correlation) between observed and
predicted NDVI, root mean square error (RMSE) and mean absolute error (MAE), defined
as follows:

Correlation =

√√√√1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (5)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (6)

where yi are the observed NDVI values, y is their mean and ŷi are the predicted NDVIs.
We considered accuracy for the entire study area and for cropland only. The cropland

mask was created by manually digitising 22 sites around the study area encompassing
different land cover types: wheat crops, barley crops, canola crops, bare soil, remnant
vegetation, salt-affected and roaded areas. The sites were used as training data for a
random forest classifier using all bands of the Landsat-8 OLI image acquired on 29 August
2019 during the peak of the crop growing season. The random forest was used to classify
the image into land cover classes that were then aggregated to form a binary mask for
cropland, where cropland includes crops and bare soil (Figure 5).

2.2.4. SWGC Validation

To understand the performance of the SWGC method for spatially weighted growth
curve estimation, we performed further validation that considers accuracy for individual
cells (per-cell accuracy) and individual images (per-image accuracy). Our aim in validation
was to communicate when SWGC works well, when it does not and why it can fail.

Per-cell accuracy was calculated by extracting observed and predicted NDVI for each
cell in the Landsat-8 test data sequence and calculating the correlation, MAE and RMSE.
Each of the three accuracy statistics was mapped to show where accuracy is high and
low. To demonstrate how spatial weights are used in the estimation of growth curves for
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different locations, weighted data and estimated growth curves are shown for selected cells
from within the study area.

Figure 5. Cropland mask used for accuracy assessment.

Per-image accuracy was calculated by extracting observed and predicted NDVI for
each image in the Landsat-8 test data sequence and calculating the correlation, MAE and
RMSE for both the entire study area and for cropland only. We considered how the accuracy
varies throughout the year by considering the accuracy for each month. To show when
and where errors occur in any one image, we selected three Landsat-8 images during the
growing season: two with lower accuracy than typically found and one with more-typical
SWGC accuracy. For these three images, we show: (a) the observed Landsat-8 NDVI;
(b) SWGC predicted NDVI; (c) the scatterplot of observed versus predicted NDVI coloured
by density and (d) a time-series plot showing the weighted Landsat-7 NDVI data used in
SWGC estimation, the observed Landsat-8 NDVI data and the estimated growth curve.
Results for all images, including maps of observed and predicted NDVI and scatterplots
(coloured by density) of observed versus predicted NDVI are included in Supplementary
Materials 1 for the Landsat-7 training data and Supplementary Materials 2 for the Landsat-8
test data. Supplementary Materials 1 includes instances when cloud cover affected most or
all of the image. Supplementary Materials 2 only shows results for images that were more
than 80% cloud free.

3. Results
3.1. Comparison of SWGC and Nonspatial Growth Curve Estimation

Table 1 shows the overall accuracy of predicting NDVI for each cell in the 95-image
Landsat-8 test data set using nonspatial growth curve estimation and SWGC. Statistics
are reported for the entire study area and for cropland only. Because both the spatial
and nonspatial methods constrain temporal predictions by use of the growth curve, both
methods have higher accuracy for cropland areas. SWGC results in more accurate per-cell
predictions for both the study area and cropland. For the entire study area, SWGC improves
the correlation by 75%, MAE by 31% and RMSE by 75%. For cropland, the correlation is
improved by 58%, the MAE by 36% and the RMSE by 76%.

Table 1. Average accuracy of nonspatial growth curve and SWGC methods for NDVI prediction for
the Landsat-8 test data.

Method Correlation MAE RMSE

Study area Nonspatial 0.534 0.048 0.211
Cropland only Nonspatial 0.601 0.042 0.194

Study area SWGC 0.932 0.033 0.053
Cropland only SWGC 0.952 0.027 0.047
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3.2. SWGC Validation
3.2.1. Per-Cell Accuracy

Figure 6 maps the per-cell accuracy of the SWGC method. Areas with high RMSE but
not necessarily high MAE have greater NDVI variability, such as lower-yielding cropland.
Accuracy is highest for cropland, which has higher correlation and lower RMSE than
noncropland areas that include remnant vegetation, which has greater NDVI variability,
and for bare or salt-affected areas, dams, roads and paddock boundaries that do not
experience annual green-up and brown-off cycles.

Figure 6. Per-cell accuracy of the SWGC method NDVI prediction for the Landsat-8 test data: (a) correlation; (b) MAE and
(c) RMSE.

Figure 7 shows the fitted response curves for four cells in the study area. Figure 7a
shows the fitted response curve and data for a typical remnant vegetation cell with higher
error. The NDVI data (both the Landsat-7 and Landsat-8) are noisier, and the seasonal signal
of the NDVI has smaller amplitude and a larger wavelength with green-up beginning
earlier and brown-off later than for cropland. In contrast, Figure 7b shows a typical
cropland cell with low error. Green-up tends to occur around June/July and brown-off
at around the end of October. The growth curve amplitude varies from season to season
depending on the type of crop grown and seasonal rainfall. Figure 7c shows a cropland
cell with poorer accuracy. Because the growth curves are estimated independently for each
year, there can be a mismatch at the start of the year as seen here. Years 2013 and 2014
appear to fit the data reasonably well, despite missing data in the Landsat-7 training set in
the early part of the growing season.
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Figure 7. Fitted growth curves and test accuracy statistics for cells at four locations: (a) remnant
vegetation, longitude 118.127, latitude −31.266; (b) cropland, longitude 118.123, latitude −31.248;
(c) cropland, longitude 118.181, latitude−31.277 and (d) cropland, longitude 118.142, latitude−31.296.
The Landsat-7 training data used to estimate the growth curves are shown in shades of grey according
to their spatial weight (white lowest and black highest). Landsat-7 data for the cell are shown in red,
and Landsat-8 test data are shown in blue.

However, the SWGC method performed poorly in 2016. This is due to a combination
of missing data early in the growing season and because the Landsat-7 cell quality control
band did not adequately detect cloud in the image acquired on 2016-07-19 (see Supplemen-
tary Materials 2). This resulted in underprediction of NDVI prior to maximum greenness.
In years 2018 and 2019, there appears to be NDVI variability in the combined Landsat-7 and
Landsat-8 sequence that leads to less-accurate predictions of Landsat-8 NDVI. Figure 7d
shows that for 2014 and 2017, SWGC can predict a higher peak of season NDVI than is
evident in the data.

3.2.2. Per-Image Accuracy

Detailed results including images and scatterplots (coloured by density) of observed
and predicted NDVI are included in Supplementary Materials 1 for the Landsat-7 training
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data and in Supplementary Materials 2 for the Landsat-8 test data. Supplementary Materi-
als 1 includes instances when cloud cover affected most or all of the image. Supplementary
Materials 2 only shows results for images that were more than 80% cloud free. This section
summarises the results for the Landsat-8 test data.

Figure 8 shows the correlation, MAE and RMSE between observed and predicted
NDVI for each image in the Landsat-8 test data for the entire study area and for cropland
only. Per-image correlation ranged from 0.29 to 0.90, with a mean of 0.79. Per-image
cropland correlation was higher, ranging from 0.29 to 0.98, with a mean of 0.91. MAE and
RMSE were similar for cropped and non-cropped areas, with mean MAE of 0.03 and mean
RMSE of 0.04.

Figure 8. Per-image accuracy for the Landsat-8 test data for the entire train/test area (black) and cropland only (green):
(a) correlation; (b) MAE and (c) RMSE.

Figure 9 shows monthly accuracy statistics. Per-image MAE and RMSE are higher
in winter months because of higher greenness, but the months from July to September
have the highest correlations. MAE and RMSE are similar in winter, meaning there are few
errors caused by large outliers. However, summer RMSE is higher than MAE meaning
there are likely high observed NDVI outliers.
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Figure 9. Per-image accuracy for the Landsat-8 test data: (a) correlation; (b) MAE and (c) RMSE.

Errors in any one image occur when there are too many missing cloud-free images
in the NDVI sequence. For example, in 2014 there were no Landsat-7 images available
from June to mid-August. As a result, SWGC failed to adequately estimate maximum
NDVI for some cells. This is shown in Figure 10. Compared to the observed NDVI for
2014-08-15 (Figure 10a), the predicted NDVI (Figure 10b) was too high during the season’s
peak in some areas, as shown in Figure 10c. Figure 10d shows the time series of observed
and predicted data for a typical cell where this occurred. The full dynamics of the NDVI
time-sequence can be seen in Supplementary Materials 2.

Figure 10. 2014-08-15 Landsat-8 test data: (a) observed NDVI; (b) predicted NDVI; (c) scatterplot of observed versus
predicted NDVI coloured by density (red = high, blue = low) with overall accuracy statistics and (d) estimated annual
growth curve for longitude 118.162, latitude −31.268 marked by X in (b) with the spatially weighted Landsat-7 training
data used to estimate the growth curves shown in shades of grey according to their spatial weight (white lowest and black
highest, Landsat-7 data for the cell shown in red and Landsat-8 test data shown in blue).
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As noted in Section 3.2.1, SWGC performs poorly in 2016 because of a combination
of missing data early in the growing season and inadequate cloud-masking for the image
acquired on 2016-07-19. Figure 11 shows the effect on the 2016-07-03 prediction, where the
observed NDVI (Figure 11a) is lower than the predicted NDVI (Figure 11b) for the eastern
part of the image. This can be seen in the scatterplot of observed versus predicted NDVI
for the image (Figure 11c). The time-series for a cell in the affected area (Figure 11d) shows
how the early season missing data and low observed NDVI that was not flagged as being
cloud-affected (and therefore masked out) on 2016-07-19 affect the growth curve estimation.

Figure 11. 2016-07-03 Landsat-8 test data: (a) observed NDVI; (b) predicted NDVI; (c) scatterplot of observed versus
predicted NDVI coloured by density (red = high, blue = low) with overall accuracy statistics and (d) estimated annual
growth curve for longitude 118.162, latitude −31.268 marked by X in (b) with the spatially weighted Landsat-7 training
data used to estimate the growth curves shown in shades of grey according to their spatial weight (white lowest and black
highest, Landsat-7 data for the cell shown in red and Landsat-8 test data shown in blue).

Figure 12 shows more typical results for a winter image acquired on 2018-07-25 with
observed NDVI shown in Figure 12a, predicted NDVI in Figure 12b, scatterplot of observed
versus predicted NDVI in Figure 12c and the time-series for a cropland cell shown in
Figure 12d.



Remote Sens. 2021, 13, 2128 13 of 18

Figure 12. 2018-07-25 Landsat-8 test data: (a) observed NDVI; (b) predicted NDVI; (c) scatterplot of observed versus
predicted NDVI coloured by density (red = high, blue = low) with overall accuracy statistics and (d) estimated annual
growth curve for longitude 118.162, latitude −31.268 marked by X in (b) with the spatially weighted Landsat-7 training
data used to estimate the growth curves shown in shades of grey according to their spatial weight (white lowest and black
highest, Landsat-7 data for the cell shown in red and Landsat-8 test data shown in blue).

4. Discussion

In this study, we developed a new method for the estimation of continuous sequences
of VIs that uses spatially weighted data from a neighbourhood around each cell in the
estimation of crop growth curves. The SWGC method was designed specifically for Landsat
data to generate long-term records of grain crop growth to assist precision agriculture
decision-making in Mediterranean environments, but it could be applied to VIs derived
from any remote source. It differs from other methods for gap-filling Landsat data in that
it does not require fusion with data from satellites with more frequent revisit times or
finer spatial resolution. Using only Landsat data, it fills gaps caused by the Landsat-7 SLC
failure and cloud and adequately captures peak of season NDVI despite frequent cloud
occurrence during winter when crops reach maximum growth.

We tested SWGC using an independent data set, where all 157 available Landsat-7
images between 2013 and 2019 were used to train the model, and 95 Landsat-8 images from
the same period that were at least 80% cloud free were used to test its performance. Our
results show that use of spatially weighted data in crop growth curve estimation improves
the estimation of continuous Landsat NDVI sequences. The combined use of an asymmetric
double-Lorentz growth curve and spatially weighted data allow estimates of peak of season
NDVI that are higher than observed NDVI values. Because the growth curve was chosen
to capture winter crop growth, SWGC as we have implemented it performs better for
cropland than for non-crop areas, but accuracy statistics for the entire study area are still
good. Using a 7-year data record, the only major errors occurred when cloud-affected
Landsat-7 data in 2016 were not flagged as cloudy and removed from the training data.
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In years 2013 and 2014, scenes were missing during the vegetative phase of the growing
season with no complete Landsat-7 scene in June or July in 2013, and there were four
missing consecutive scenes between July and August in 2014. Despite this, there was only
one Landsat-8 scene in those periods for which the test data accuracy was poorer and that
was a scene with only a small area that was not cloud-affected, which resulted in biases
toward lower scene-average correlation and higher scene-average MAE and RMSE. Thus,
SWGC can correct for continuously and frequently missing data in the NDVI training set,
except in cases where cloud removal is not adequately performed prior to analysis.

SWGC accuracy (correlation = 0.932, MAE = 0.033, RMSE = 0.053 overall and correla-
tion = 0.952, MAE = 0.027, RSE = 0.047 for cropland) can be compared with other published
methods for gap-filling Landsat data. Zhu et al. [20] used harmonic time-series for each cell
to fill gaps in Landsat sequences and reported RMSEs of 0.01 to 0.02 for visible bands and
0.02 to 0.03 for the near-infrared band, which would correspond to a slightly lower RMSE
for the NDVI than we found using SWGC (RMSE = 0.053). However, their validation is
biased because they reported accuracy statistics calculated using the same data that were
used to train the models rather than an independent data set, and therefore their statistics
do not capture the ability to fill actual data gaps. Roy and Yan [46] also used harmonic
models with Landsat data. To compare different model forms, they estimated accuracy
using root mean square difference (RMSD), which takes the number of model parameters
into account. Histograms for six regions showed similar or higher values than SWGC
RMSE for cropland.

SWGC can also be compared to methods for gap-filling that fuse Landsat with MODIS
data. Walker et al. [24] used the STARFM [27] algorithm and tested its performance using
5% of vegetated cells from 10 images acquired in 2006 and 2009, which were the same image
used as reference images to train the STARFM algorithm. They calculated the median
correlation between observed and actual reflectances, which ranged from 0.521 to 0.945
with a median of 0.70, compared to the SWGC mean correlation of 0.952 between observed
and predicted NDVI. Gao et al. [23] similarly used STARFM to estimate phenology from
Landsat-MODIS fusion using data from 2001 to 2014. They omitted Landsat images with
missing data and years with insufficient images from the data fusion process and used
non-cloud cells from incomplete scenes to assess the estimation of NDVI from the fused
data set. They reported a correlation of 0.918 between observed and predicted NDVI,
with MAE of 0.072 and RMSE of 0.100, which compares with SWGC results of 0.952, 0.027
and 0.047for correlation, MAE and RMSE, respectively. Zhou and Zhong [25] presented a
Kalman filter approach for generating synthetic time-series of fused Landsat and MODIS
images for 2016, with correlations for visible bands ranging from 0.921 to 0.96 and for the
near-infrared band 0.960 to 0.939. RMSE ranged from 0.007 to 0.015 for visible bands and
from 0.023 to 0.032 for the near-infrared band. This corresponds to similar correlation for
NDVI prediction and slightly lower MAE and RMSE than we found for SWGC.

The main limitation of the SWGC method is that predictions are spatially smoothed.
Our use of a Gaussian kernel with a 60 m bandwidth resulted in visible smoothing where
lineal features one cell wide (such as roads and paddock boundaries) can lose definition
and spatial variability in fields is also reduced. This means that SWGC estimates are less
precise than methods for gap-filling that fuse Landsat with MODIS data, and they will
not be as useful for applications that require fine-scale estimates. However, our goal is to
produce long-term, medium-resolution records to understand the climate–crop dynamics
of broadacre grain cropping systems and support on-farm decision-making. Are spatially
smoothed estimates useful for this purpose? We assert that they are because (1) field size
is large; and (2) most decisions about in-field crop management are currently based on
interpolated yield maps that have been substantially smoothed. Of course, the degree of
smoothing by SWGC is determined by the choice of smoothing kernel and its bandwidth,
and these choices can be adapted for different uses. This makes the SWGC algorithm
adaptable. While it may not be useful in highly heterogenous landscapes, it can potentially
be used for other landcover monitoring, such as pastures, grassland, forestry and wetlands.
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We developed SWGC for use with Landsat NDVI data for long-term, within-field crop
monitoring. However, it can be applied to any VI from any remotely sensed source and
using any method of growth curve estimation.

So that the Landsat-8 data could be retained for use as an independent test set, we
only used Landsat-7 data to train SWGC in this study. We tested SWGC using a relatively
small study area located in a dryland cropping region with low rainfall. It is likely that the
percentage completeness of the Landsat-7 training data within the growing season was
higher for our study area than for other areas with more rainfall and more rainy days. For
this reason, it may be difficult to apply SWGC in different areas and achieve the levels
of accuracy we report. Many studies have demonstrated better results for LSP detection
when using a higher frequency of observations [34,52,63]. We expect the SWGC method
will have better performance when combined Landsat-5, Landsat-7 and Landsat-8 data are
used and recommend combined data sets be used as best practice to take full advantage of
the Landsat series data. However, there may still be instances when there are insufficient
cloud-free images for SWGC to be applied in some locations and growing seasons.

SWGC is a simple approach that is more computationally efficient than most methods
requiring fusion of data from multiple sources. Its novelty lies in the incorporation of
spatial weights into crop growth curve estimation to gap-fill Landsat images and produce
long-term, complete sequences of Landsat NDVI. We envisage two main ways that the
SWGC method can be improved to reduce spatial smoothing of predicted sequences of
NDVI. First, a local geostatistical approach could be used to vary the spatial weights
by location according to local autocorrelation calculated using the empirical semivari-
ogram [64]. Second, a land cover classification could be employed to ensure only weights
from neighbouring cells with the same land cover are used as used by [15,16]. Our pro-
posed improvements would still differ from other geostatistical gap-filling methods by
using crop growth curves rather than linear kriging.

5. Conclusions

We conclude that incorporating spatial weights according to geographic distance in
the estimation of crop growth curves can improve the estimation of continuous sequences
of NDVI from Landsat data. This allows the generation of long-term sequences to develop
a better understanding of how crop growth varies in space and time according to soil
types, local weather conditions, seasonal climate variability and management to support
decision-making about how to optimise crop management within fields.
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