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Abstract: Convolutional Neural Network (CNN) models are widely used in supervised Polarimetric
Synthetic Aperture Radar (PolSAR) image classification. They are powerful tools to capture the
non-linear dependency between adjacent pixels and outperform traditional methods on various
benchmarks. On the contrary, research works investigating unsupervised PolSAR classification are
quite rare, because most CNN models need to be trained with labeled data. In this paper, we propose
a completely unsupervised model by fusing the Convolutional Autoencoder (CAE) with Vector
Quantization (VQ). An auxiliary Gaussian smoothing loss is adopted for better semantic consistency
in the output classification map. Qualitative and quantitative experiments are carried out on satellite
and airborne full polarization data (RadarSat2/E-SAR, AIRSAR). The proposed model achieves
91.87%, 83.58% and 96.93% overall accuracy (OA) on the three datasets, which are much higher than
the traditional H/alpha-Wishart method, and it exhibits better visual quality as well.

Keywords: CNN model; PolSAR image; unsupervised classification; convolutional autoencoder;
vector quantization; Gaussian smoothing loss

1. Introduction
1.1. Related Work

PolSAR is one of the most advanced sensors in the field of remote sensing. It
has unique imaging characteristics such as all-weather, all-day, multi-band and multi-
polarization features. A large amount of valuable information can be obtained through
the post-processing and interpretation of PolSAR images. Compared with the common
SAR system, polarimetric SAR can extract richer information based on the polarization
characteristics of the targets. Therefore, PolSAR is increasingly widely used, and it is also
used in classification tasks. The essence of ground object classification for PolSAR images
is to divide all pixels of the image into several categories according to their properties,
and the typical pipeline of PolSAR image classification contains three parts: preprocess,
feature extraction and classification. Generally, the categories of ground objects are divided
into vegetation, forest, farmland, urban area, water area and bare land. As an important re-
search aspect of PolSAR image interpretation, ground object classification has been widely
used in the field of Earth resource exploration and military systems [1].

The classification of PolSAR images can be divided into unsupervised, supervised
and semi-supervised classification methods. Van Zyl [2] proposed the first unsupervised
classification algorithm, which compares the polarization characteristics of each image
pixel with the simple scattering categories (such as even scattering, odd scattering and dif-
fuse scattering) to classify scattering behaviors. The algorithm provides useful information
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about different ground objects. Pottier and Cloude [3] proposed an unsupervised classifica-
tion algorithm based on target decomposition theory. The target entropy (H) and the target
average scattering mechanism (scattering angle: alpha) are first calculated with the coher-
ence matrix T; then, the two-dimensional plane constructed by H and alpha is divided into
eight intervals which respectively represent the objects with different physical scattering
characteristics. Thus, it can achieve eight categories of object classification. However, due
to the pre-set region boundaries on the H and alpha planes, the classification results lack
details, clusters may fall on the boundaries and a region may contain multiple clusters. Sub-
sequently, Lee et al. [4] proposed a new unsupervised classification method that combines
the polarization target decomposition and maximum likelihood classifier with a complex
Wishart distribution [5]. The classification result from H/alpha decomposition [3] is used
for the initial clusters; then, the K-means algorithm is used to iterate the initial clusters to
obtain the final classification result. Because of its computational efficiency and generally
good performance, it has become the preferred benchmark algorithm, but its classification
process completely relies on K-means clustering which may lead to convergence to a local
optimum. Later, Lee [6] proposed a complex Wishart unsupervised classification based on
Freeman–Durden decomposition. The first step is to apply Freeman–Durden decomposi-
tion to divide pixels into three types of scattering: surface scattering, volume scattering
and double bounce scattering. Each type of scattering is initialized to 30 clusters according
to the scattering intensity. Finally, with the merging criterion based on the Wishart distance,
the initial small clusters are merged to several large clusters for each scattering category.
The convergence stability of this algorithm is better than the previous H/alpha-Wishart
classification algorithm, and the uniform scattering mechanism of the class is retained.
In addition, the algorithm is also flexible in terms of selecting the number of classifications.
However, this method easily misclassifies the human target buildings and rough surfaces
of double bounce scattering as volume scattering. In 2015, Guo et al. [7] proposed an
unsupervised classification method for compact polarimetric SAR (C-PolSAR) images,
which improved the classification results.

In recent years, with the development of machine learning, deep learning has become
important, and a large number of neural network models have been applied to SAR
image classification. Convolutional Neural Networks can automatically extract features
of an input image, and supervised classification based on deep learning algorithms have
thus been developed. Deep convolutional networks can automatically extract high-level
semantic information from images and use data with labels to train softmax classifiers in
a supervised way. Compared with traditional classification methods, these approaches
can perform automatic feature extraction, but they need labeled data during training.
With the development of the autoencoder network [8], the full convolutional segmentation
network (FCN) [9], Unet [10] network, PSPnet [11] and deeplab v1, v2, v3 [12–14] network
are widely used in SAR image classification. Before the output layer of these networks,
the up-sampling module is used, meaning that the output has the same size as the input
and the approaches can therefore achieve image pixel-level classification; however, the
models are more complex and require a large amount of labeled data. In addition, when
the object labels are limited, the supervised neural network model is not able to train to a
sufficient level, and it is difficult to obtain better classification results.

Then, the semi-supervised classification method was developed, which combines the
advantages of supervised and unsupervised classification. First, the autoencoder network
is trained to extract image features, and then a small number of labels are used to train the
classifier based on the learned features. To solve the problem that traditional land use clas-
sification methods cannot obtain better classification results, Ding and Zhoudengren [15]
proposed a remote sensing image classification method based on deep stacked autoen-
coders. In the article, autoencoders are used to learn image features with some 3 ∗ 3 image
blocks as inputs, and the reconstruction loss between the reconstructed image and the input
image is used for self-supervised training. After that, the labels are applied to fine-tune the
classifier parameters through backpropagation, which further improves the convergence of
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the entire network. Sun [16] used a greedy hierarchical unsupervised strategy to train a
series of convolutional autoencoders (CAEs) [17] to learn the prior distribution of unlabeled
SAR patches and coupled multiple CAEs together to form a deeper hierarchical structure in
a stacked and unsupervised manner. Afterwards, the convolutional network with the same
topology structure inherits the pre-trained weights to fine-tune the classification with the
labeled SAR image patches. However, these kinds of feature extraction and classification
are asynchronous; that is, the classification network needs to be trained separately after
the feature extraction network in these models. Furthermore, they also need some labels
during training.

1.2. The Problems of the Previous PolSAR Image Classification

In this section, we introduce the problems of the previous PolSAR image classification
and explain our method, which introduces VQ for feature embedding clustering on the
basis of CNN.

The previous traditional unsupervised classification algorithms [18–22] extract fea-
tures of the target in an SAR image by using polarization decomposition or feature decom-
position and then use Wishart, EM, K-means or other methods to perform clustering with
its features. Although these methods can generally interpret image targets, their feature
extraction process is based on independent pixels and does not consider the relationship
between neighboring pixels, resulting in a rough classification result with salt and pepper
noise, and the classification accuracy is not high. At present, the convolutional neural
network (CNN) model, which is popular in the field of computer vision, solves the feature
extraction problem of the previous method. It can use multiple consecutive convolutional
layers to learn image features while capturing the dependency between adjacent pixels.
The classification accuracy of the CNN [23–30] model for PolSAR image is much higher
than the methods based on independent pixel classification, and the visual classification
result is also much smoother. However, most of the previous CNN classification models
cannot be trained without labeled data, which also leads to limitations on the use of these
models in PolSAR image classification.

Vector Quantization (VQ) is a commonly used image or voice compression algorithm.
It can embed a large number of D-dimensional vectors into a discrete codebook E =
{ei, i = 1, 2, · · · , K} with the same dimension D, and the size of K is much smaller than
the number of input vectors. Each vector ei in E is called a code vector or a codeword.
Associated with each codeword, ei is a nearest neighbor region called the Voronoi region;
that is, the whole vector space is divided into K Voronoi regions S, and each region is
represented by a D-dimensional vector ei. For example, Figure 1a shows some vectors
in a two-dimensional space. Associated with each cluster of vectors is a representative
codeword, which is also called the VQ center. Each VQ center resides in its own Voronoi
region. These regions are separated with imaginary lines, given an input vector, and one
codeword is chosen to represent it in the same Voronoi region. Figure 1b is an example of
VQ used for image feature compression. A D-dimensional image feature with height H
and width W whose size can be expressed as H ∗W is used as an input. After each pixel
on the feature passes through the embedding vector space, it is replaced by the nearest
codeword with Euclidean distance. In this case, the entire image feature is represented
by K discrete codewords embedded in the D-dimensional vector space to achieve image
compression. At the same time, the index of codewords with the size of H ∗W is stored
for the easy searching of the set of vectors E. The smaller the size of K, the greater the
compression ratio. Additionally, codewords need to be updated according to the clusters of
input data by continuous learning. Thus, this is equivalent to using K-means to cluster the
input vectors and using cluster centers to update the codewords in the codebook. Finally,
the input vectors are all replaced by codewords.
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(a)

(b)

Figure 1. Vector quantization (VQ) diagram. (a) Embedded codewords in a two-dimensional space.
Input vectors are marked with an x, codewords are marked with red circles, and the Voronoi regions
are separated with blue boundary lines. (b) The example of VQ applied to image. The blue cube
is the input image feature with D dimensions, the green cube is the quantified feature, the purple
matrix is the index of codewords, and the embedded codebook is in the purple box.

1.3. The Proposed Method

Due to the capacity for quantification and unsupervised clustering using VQ, we
introduced the VQ model on the basis of the CNN model, which effectively solves the
problem that CNN cannot be trained in an unsupervised way. The entire unsupervised
classification model is named Vector Quantization Clustering with a Convolutional Au-
toencoder (VQC-CAE). On the one hand, it solves the problem of ignoring the dependency
between adjacent pixels when extracting features; on the other hand, it avoids the problem
of the previous CNN models, which require labeled data for training.

In the rest of this article, the experimental datasets and basic data preprocessing of
PolSAR are introduced, and the proposed unsupervised classification method is described.
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Then, we show the visual experimental results and accuracy. Then, a discussion of the
results is presented, and we end by summarizing the full article.

2. Materials and Methods
2.1. Dataset

Three kinds of data from different sensor platforms were used in this work. The param-
eters of the data are shown in Table 1. The first kind of data was the C band San Francisco
data of RadarSat2 from the spaceborne platform, and the data were acquired on 9 April 2008.
The data is obtained from https://ietr-lab.univ-rennes1.fr/polsarpro-bio/san-francisco/
on 30 September 2020. The size of the images was 1800 ∗ 1380, and the range resolu-
tion was 3 m. The data product format was full polarization single look complex (SLC)
data. The second kind of data was L-band German Oberpfaffenhofen data from the E-
SAR system of the airborne platform, and the data were acquired on 16 August 1989.
The size of the images was 1300 ∗ 1200, the range resolution was 2 m, and the data prod-
uct format was full polarization coherence matrix T. The third kind of data was L-band
“The Netherlands Flevoland” data from the AIRSAR system of the airborne platform.
The size of the images was 202 ∗ 262, and the range resolution was 6.6 m. The data
product format was full polarization coherence matrix T. The last two data sets are
obtained from https://earth.esa.int/web/polsarpro/data-sources/sample-datasets/ on
16 November 2020. The geographic range of the three experimental data sets is shown
on a map in Figure 2, where (a) shows the San Francisco region and the red box in the
right picture is the first experimental data set. Its geographic range is 122.4◦W∼122.5◦W
and 37.75◦N∼37.85◦N; (b) is the Oberpfaffenhofen area in Germany, and the red box in
the right picture is experimental data set 2. Its geographical range is 11.26◦E∼11.29◦E
and 48◦N∼48.1◦N; and (c) is the Flevoland area in The Netherlands, and the red box in
the right picture is experimental data set 3. Its geographical range is 5.3◦E∼5.43◦E and
52.29◦N∼52.41◦N.

Table 1. Experimental data parameters.

Parameter RadarSat2 E-SAR AIRSAR

Platform Spaceborne Airborne Airborne
Polarization mode Quad 1 Quad Quad
Data product SLC 2 Coherence matrix Coherence matrix
Range resolution 3 m 2 m 6.6 m
SAR Band C band L band L band
Region San Francisco Oberpfaffenhofen Flevoland
Image size 1800 ∗ 1380 1300 ∗ 1200 202 ∗ 262

1 Quad shows that the data set contains four polarization modes: HH, HV, VH and VV. 2 SLC represents the
single look complex.

(a)

Figure 2. Cont.

https://ietr-lab.univ-rennes1.fr/polsarpro-bio/san-francisco/
https://earth.esa.int/web/polsarpro/data-sources/sample-datasets/
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(b)

(c)

Figure 2. Geographical extent of the two experimental regions. (a) The San Francisco region, and
the red box in the right picture shows experimental data set 1. (b) The Oberpfaffenhofen area in
Germany, and the red box in the right picture shows experimental data set 2. (c) The Flevoland area
in The Netherlands, and the red box in the right picture shows experimental data set 3.

2.2. Polarimetric SAR Data Preprocessing

The Sinclair complex scattering matrix is normally used to represent the physical
scattering characteristics of target pixels for the single look complex (SLC) data of fully
polarimetric SAR. The scattering matrix S can be expressed as Equation (1).

S =

[
SHH SHV
SVH SVV

]
(1)

where SHH , SHV , SVH and SVV are the scattering elements of four independent polarization
channels, and H and V are horizontal polarization and vertical polarization, respectively.
Under the condition of single station reciprocity, SHV = SVH , the polarization scattering
matrix is simplified to the target vector k under the Pauli basis, and k is expressed as
Equation (2). The square of two norms of the three elements of the k vector ‖k1‖2

2, ‖k2‖2
2,

‖k3‖2
2 are used as three channels of RGB image to synthesize the Pauli pseudo-color image.

k =
1√
2
[SHH + SVV SHH − SVV 2SHV ] (2)
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In addition, when the fully polarimetric SAR data are given in the form of a coherent
matrix T, the coherent matrix T has the following relationship with the Pauli basis vector
k, and the expression is as follows: where the superscript H represents the conjugate
transposition of vector k. Obviously, the coherent matrix T is a Hermitian matrix whose
diagonal elements are real numbers, and the non-diagonal elements are complex numbers.
From Equation (3), we can see that T11 = ‖k1‖2

2, T22 = ‖k2‖2
2, T33 = ‖k3‖2

2, meaning that
we can synthesize the diagonal elements of the T matrix into a Pauli pseudo-color image.

T = k · kH =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 (3)

Figure 3 shows a flowchart of the polarization data preprocessing. When the original
data are single look complex (SLC) data, we extract them into a scattering matrix S, and S is
decomposed into three scattered components by Pauli decomposition; then, we synthesize
the three components to an RGB Pauli pseudo-color image. When the original data are
a polarization coherence matrix (T), we extract the diagonal elements of T and then
synthesize them into an RGB Pauli pseudo-color image. Finally, the values of all pixels in
the pseudo-color image are normalized to [−1, 1], which then are fed into the VQC-CAE
network (the method proposed in this paper) to train.

Figure 3. Flow chart of polarimetric SAR data preprocessing. There are two input sources: single
look complex images and coherence matrix.
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2.3. Convolutional Autoencoder (CAE)

The convolutional autoencoder (CAE) network includes an encoder network and
a decoder network which is realized with multiple convolutional layers and activation
functions. The encoder can extract the high-level semantic features of the input image
and then use the decoder to reconstruct the input image with the features extracted by the
encoder. The reconstruction loss between the reconstructed image and input image are used
to supervise the image feature learning process. The encoder first uses a linear mapping
and the following nonlinear mapping transformation on the input samples to obtain the
feature representation z, and the sample set is expressed as X = {xi}N

i=1. Equation (4)
shows the process of generating latent features after data X through the encoder part. W(1)

and b(1), respectively, represent the weight and bias parameters of the convolution kernel
in the encoder, and f is the activation function after convolutional layers. The decoder is
used to perform linear mapping and nonlinear mapping transformation on the hidden
latent representation z, remapping it to the original data space to obtain the reconstructed
data X′, as shown in Equation (5), where W(2) and b(2) are the weight and bias parameters
of the convolution kernel in the decoder, and g represents the activation function before
output. As shown in Equation (6), the Mean Square Error (MSE) is used as reconstruction
loss and the network is optimized with the backpropagation (BP) algorithm.

z = f (X) = s(W(1) ∗ X + b(1)) (4)

X′ = g(Z) = s(W(2) ∗ z + b(2)) (5)

Loss = ‖X− X′‖2 = ‖X− g( f (X))‖2 (6)

2.4. Unsupervised Classification Model: Vector Quantization Clustering with Convolutional
Autoencoder (VQC-CAE)

The overview of the proposed VQC-CAE model is shown in Figure 4. The input data
are the three-channel Pauli pseudo-color images with a size of H ∗W; we first use the
convolutional autoencoder network (described in the red dashed box) to extract the image
features in an unsupervised way. In order to cluster each pixel of the image when per-
forming feature embedding with VQ later, our encoder does not use four 5 ∗ 5 convolution
kernels without a down-sampling process; it outputs the feature maps with the same size as
the input image as H ∗W, and the dimension of feature maps is D. After that, we use the VQ
(the purple dashed box in Figure 4) to quantize the continuous feature maps extracted by
the encoder. The embedding space maintains a vector table E = e1, e2, e3, . . . eK, as shown
in the purple dashed box. The size of the embedding vector table is K ∗ D, where K is
the number of table E and D is the dimension of table E, which is the same as the output
dimension of the encoder. When the continuous features learned by the encoder are fed
into the Vector Quantization model, it performs a nearest neighbor search according to
the randomly initialized embedding space vector table (clustering center). The search
process is determined by the L2 distance between the input data ze(x) and the embedding
vector table E, and the criterion of the nearest neighbor search is carried out according
to Equation (7); the embedded vector obtained by searching is used to replace the input
data ze(x) to obtain the quantized features zq(x) whose value is a vector ek from the vector
table E. At the same time, each embedding vector corresponds to an integer index between
1 and K in the embedding table. Thus, each embedding vector can represent a cluster
center, where index i means that each data can be assigned to one kind of the K categories.
In the training process, the updating of the embedding vector table is carried out using the
exponential moving average algorithm (EMA) [31], as shown in Equations (8)–(10). When
a certain vector ei in the embedding table is trained to step t, it is updated by weighting the
value of the ni input data ze(x) closest to it at step t and the last vector value at step t− 1.
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Ni is the number of vectors in the embedding table used for quantifying clustering, mi is
the total value of the vector weighted at the previous moment and γ is the discount factor.

zq(x) = arg min
ei

‖ze(x)− ei‖2 (7)

Nt
i = Nt−1

i ∗ γ + ni ∗ (1− γ) (8)

mt
i = mt−1

i ∗ γ +
ni

∑
j

ze(xj) ∗ (1− γ) (9)

ei =
mt

i
Nt

i
(10)

Figure 4. Framework of Vector Quantization Clustering with Convolutional Autoencoder for unsu-
pervised PolSAR image classification. The convolutional autoencoder composed of a CNN is shown
in the red dashed box, the blue rectangular block represents the two-dimensional convolutional layer
Conv2D with the size of 5 ∗ 5, the red rectangular block represents the activation function GELU,
and the yellow block represents the output layer activation function Tanh. The VQ feature embed-
ding is shown in the purple dashed box, the embedding vector table maintains K D-dimensional
vectors. After the feature map passes VQ, a quantitative feature feature map and a category matrix
are obtained.

Therefore, the feature embedding from ze(x) to zq(x) is a clustering process. As a
result, VQ generates both a quantized feature map of size H ∗W ∗ D and a K-way category
matrix of H ∗W. Therefore, when the model is trained to converge, the category matrix can
be colored according to the categories of ground objects to obtain the final classification.



Remote Sens. 2021, 13, 2127 10 of 21

The quantized features are sent to the decoder to reconstruct the original image. At the
same time, in order to ensure the continuity of the features learned by the encoder in the
spatial domain after quantization and reduce the influence of noise on feature learning, we
designed a two-dimensional Gaussian kernel function with a radius of R and a smoothness
parameter σ (variance) to smooth the quantized features and used the L1 loss as an auxiliary
loss to supervise the encoder and the quantizer. The total training loss function Ltrain of the
VQC-CAE model is shown in Equation (11). It includes three parts: the first term lrecon is
the reconstruction loss, which represents the negative log likelihood of the reconstructed
image, and it uses the MSE between all the pixels xi of the input image and reconstructed
image pixels x̂i as the loss in the Equation (12), which is used to optimize the decoder and
encoder, where N is the total number of pixels after feature flattening; the second term lvqc
is the quantized clustering error, which uses the L2 loss between the continuous feature
map ze(x) and the quantized feature map zq(x) as the optimization target. In Equation (13),
sg[·] means the stop gradient, which does not work in the forward propagation network.
Only in the process of backward propagation is the gradient of the quantized variable
zq(x) no longer forwarded, which is done to achieve the training the of only the encoder.
The goal of this is approach to prevent the output of the encoder from frequently jumping
across the vectors in the vector table when clustering. The third term lgs in Equation (14) is
the Gaussian smoothing loss, and zg(x) is the feature smoothed by the Gaussian filter.

Ltrain = lrecon + α ∗ lvqc + β ∗ lgs (11)

lrecon =
1
N

N

∑
i
‖xi − x̂i‖ (12)

lvqc =
1
N

N

∑
i
‖sg
[
zq(x)i

]
− ze(x)i‖ (13)

lgs =
1
N

N

∑
i
‖zg(x)i − zq(x)i‖ (14)

2.5. Evaluation Index of Classification Accuracy in Polarimetric SAR Images

The classification accuracy evaluation of the polarimetric SAR images is performed
by evaluating the accuracy of the classification results based on the ground truth of the
SAR image. We used three evaluation indicators in total, including the overall accuracy
(OA), average accuracy (AA) and Kappa coefficient [15,32], which are widely used in
the evaluation of classification performance and can evaluate the global classification
accuracy in remote sensing images. The confusion matrix was calculated by comparing the
classification result with the corresponding ground truth. For the C categories classification
problem, the confusion matrix M was a C ∗ C matrix, expressed as Equation (15), in which
the element mij represents the number of samples in which the actual object category i
is classified as the category j. According to the confusion matrix M, we can calculate the
accuracy of each category, as well as the OA, AA and Kappa coefficient.

M =


m11 m12 · · · m1C
m21 m22 · · · m2C

...
...

. . .
...

mC1 mC2 · · · mCC

 (15)

Overall accuracy (OA) can reflect the probability that the remote sensing image
classification result is consistent with the ground truth of the object. The calculation
formula is shown in Equation (16). It can be seen that only diagonal elements can affect
the overall accuracy, which is not sufficient to completely judge the classification. Average
accuracy (AA) can reflect the average probability that each category after classification
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is consistent with the ground truth of the object, and the calculation formula is shown in
Equation (17).

OA =
∑C

i=1 mii

∑C
i=1 ∑C

j=1 mi,j
(16)

AA =
∑C

i=1(
mii

∑C
j=1 mij

)

C
(17)

The Kappa coefficient was also used to evaluate the classification accuracy and to
verify the consistency between the remote sensing classification result and the ground
truth of the object. The Kappa coefficient can reflect the error of the overall remote sensing
image classification. The calculation formula is shown in Equation (18), where N is the
total number of samples.

Kappa =
N ∗ (∑C

i=1 mij)−∑C
i=1(∑

C
j=1 mi,j ∑C

j=1 mji)

N2 −∑C
i=1(∑

C
j=1 mij ∑C

j=1 mji)
(18)

3. Results
3.1. Experimental Model Parameters and Comparison Method
3.1.1. Model Parameters

All the parameters of our model were as follows: the encoder and decoder both
used four-layer Conv2D convolution, and each layer of convolution of the encoder was
followed by an activation function GELU. The GELU activation function replaced Relu
in order to make the model converge quickly. The activation function of the last layer of
the decoder after convolution was Tanh, which was used to keep the reconstructed data
consistent with the input data between [−1, 1]. The size of the convolution kernel was 5 ∗ 5,
stride = 1 and padding = 2, the number of channels of the encoder convolutional layer
was [128,128,128,3], and the number of channels of the decoder convolutional layer was
[128,128,128,3]. The size of the vector quantization embedding table was K ∗ D, where K
is the number of cluster centers (eight) and D refers to three dimensions, which was the
same as the encoder output dimension. Gaussian smoothing kernel parameters were an
R of 15 and σ of 25.0. The discount factor γ was 0.95 in Equations (8) and (9) when using
EMA to update the vector table. The weights α of the lvqc and β of the lgs in Equation (11)
were constrained between [0, 1]. The value of α was 0.25 and that of β was 0.1 in our
experiment. The Adam optimizer was used for gradient descent during model training.
The initial learning rate was 0.0002, and we used cosine annealing descent for learning
rate decay. The model of our experiment was built and trained in the Pycharm compiler
and pytorch deep learning environment on a 2.90 Ghz computer with 8.00 GB RAM, an
NVIDIA RTX3080 GPU (10.00 GB memory) and a Core i7-10700F CPU (8 cores).

3.1.2. Comparison Method

In addition, we used the classical H/alpha-Wishart algorithm as our comparison
method. When the H/alpha-Wishart method is used to classify SAR images, the coherence
matrix T is used as its input, which is different from our method. Usually, PolSAR data
need to be processed for multi-view or filter. The purpose of this is to reduce the impact of
coherent speckle noise; thus, we used the refined Lee filter in this article. The flowchart
of H/alpha-Wishart classification is shown in Figure 5, where the original data are SLC
data, which were extracted into a scattering matrix S, and we used S to calculate T with
Equation (3). Then, we put the coherence matrix T into a refined Lee filter, and the output
of the filter was taken to perform H/alpha decomposition to obtain the initial classification.
Finally, Wishart clustering was used to obtain the result map.
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Figure 5. Flow chart of H/alpha-Wishart classification.

3.2. Experiment Results
3.2.1. RadarSat2 Dataset Experiment Results

The San Francisco area of RadarSat2 was selected as data set 1. Figure 6 shows the
original input image of the San Francisco data and the ground truth. The image size was
1800 ∗ 1380 pixels. In the figure, (a) is the Pauli pseudo color image, synthesized by three
scattering mechanisms; (b) is the ground truth of (a), where 1,804,087 pixels are marked in
the whole image of the ground truth—In total, five objects are included: water, vegetation
(VEG), high-density urban (HDU), low-density urban (LDU) and developed (DEV); and (f)
is the color set for the five objects, where water is blue, vegetation is green, high-density
urban is red, low-density urban is yellow, developed is magenta and the unlabeled pixels
are set as black.

In the experiment, we compared our VQC-CAE model with the H/alpha-Wishart
algorithm. The classification results after coloring are shown in Figure 6c,d, where (c) is
the result of H/alpha-Wishart, (d) is the result of the VQC-CAE model and (e) is the result
of the VQC-CAE model without Gaussian smoothing loss. The results of the experiment
were processed according to the ground truth, and we masked the pixels in the unlabeled
area to black in order to be consistent with the ground truth. First of all, comparing the
two classification results from (c) and (d), it can be seen that the five types of objects were
all distinguished. The classical H/alpha-Wishart classification results were trivial; there
are many cases where there were multiple classification categories in a small area that
should have been the same type of object. However, the classification result of our method
for each type of object was relatively continuous, because it considered the influence of
the spatial neighbors on the central pixel. In addition, the Gaussian smoothing filter was
added. Thus, there was no situation in which multiple object categories appeared in a
small area. For example, in the area of box A, whose category should be water (blue),
the H/alpha-Wishart distinguished it as red (high-density urban) and green (vegetation).
In the area of box B, the red areas (high-density urban) were misclassified to a large amount
of yellow (low-density urban) areas. In the area of box C, a large area that should have been
water was categorized as green (vegetation). This can also be seen from the red oval box
in the confusion matrix in Figure 7. Confusion Matrix M1 was from comparison method
H/alpha-Wishart and M2 was from the proposed VQC-CAE method. The number of pixels
in category 1 divided into 2 reached 28,292, which was much larger than the total of 171 from
our method. This indicates that the H/alpha-Wishart algorithm has certain shortcomings:
it can not completely distinguish categories only with polarization decomposition, which
reflects its target scattering characteristics. However, the classification model based on
feature extraction and clustering in this paper can extract high-level semantic information
of objects, and the misclassification of large areas did not occur. In addition, we present the
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classification results of the model without Gaussian smoothing loss in Figure 6e. In contrast
with (d), it can be seen that the lack of Gaussian smoothing loss made the classification
results very different. There was a large amount of noise on the classification map, and both
low-density urban and developed areas were not classified. This also shows that the
Gaussian smoothing loss was necessary when training the unsupervised classification
model in this article.

(a) (b) (c)

(d) (e) (f)

Figure 6. Experimental data of San Francisco area, ground truth of the ground object and classification
results by proposed method and comparison method. Rectangles A, B and C are the specific
comparative analysis areas of the classification maps in (c,d). (a) Pauli pseudo color image synthesized
by single look complex data. (b) The ground truth of the five objects. (c) The classification result of
H/alpha-Wishart. (d) The classification result of the VQC-CAE model. (e) The classification result of
the VQC-CAE model without Gaussian smoothing loss. (f) The color set of the ground truth: blue for
water, green for vegetation (VEG), red for high-density urban (HDU), yellow for low-density urban
(LDU), magenta for developed (DEV) and the unlabeled pixels are black.

In addition, we performed a statistical analysis on the classification accuracy of each
object based on all the marked pixels of the object on the ground truth of images in this
experiment. According to the confusion matrix, the classification accuracies of each type
of object were calculated, alongside the three indicators of AA, OA and Kappa, as shown
in Table 2. The table shows that the classification accuracies of the proposed method in
this paper and the traditional H/alpha-Wishart method were more than 99% in the water
category, but in the remaining four types of ground objects, the method proposed in this
paper performed much better than the comparison method: the accuracy of vegetation
reached 92.76% which was 11% higher than the comparison method. The lowest classifica-
tion accuracy was for the category high-density urban, but it also reached 77.47%, higher
than the value of 68.25% of the comparison method. In addition, the three classification
accuracy indicators of OA, AA and Kappa reached 91.87%, 89.27% and 88.28%, which were
5% to 10% higher than the comparison method.
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Figure 7. Confusion matrix of H/alpha-Wishart method and VQC-CAE model. The categories
from the first row to the fifth row are water, vegetation, high-density urban, low-density urban and
developed. The blue gradient arrow represents the difference of confusion matrix element values
from 0 to 106; the larger the matrix element value, the darker the color. The larger the value of the
non-diagonal element in the confusion matrix, the easier it is to classify pixels from other categories
into this category. The larger the diagonal element, the smaller the misclassification of the category.

Table 2. Comparison of the classification accuracy of our approach with other methods.

Method Water VEG 1 HDU 2 LDU 3 DEV 4 OA AA Kappa

H/alpha-Wishart (Basic) 0.9995 0.8183 0.6825 0.7262 0.6851 0.8501 0.7823 0.7859
Basic + Mean Filter 0.9997 0.8730 0.7565 0.8449 0.8910 0.9010 0.8730 0.8584
Proposed Method 0.9970 0.9276 0.7747 0.8866 0.8774 0.9187 0.8927 0.8828

1 VEG represents the vegetation category. 2 HDU represent the high-density urban category. 3 LDU represent the
low-density urban category. 4 DEV represents the developed category.

3.2.2. E-SAR Dataset Experiment Results

The Oberpfaffenhofen area in Germany presented by E-SAR was selected as data set
2. Figure 8 shows the original input image of the San Francisco data and its ground truth.
The image sizes were 1300 ∗ 1200 pixels. In the figure, (a) is the Pauli pseudo color image
and (b) is the ground truth of (a), and there are 1,374,298 pixels marked in the whole image
of the ground truth. In total, three objects are included: built-up area (Build), wood land
(Wood) and open area (Open). (e) is the color set for the objects, where Build is red, Wood
is green, Open is yellow and the unlabeled pixels are set as black.

In the experiment, we compared our VQC-CAE model with the H/alpha-Wishart
algorithm. The classification results after coloring are shown in Figure 8c,d. (c) is the
result of H/alpha-Wishart and (d) is the result of the VQC-CAE model. The results of the
experiment were processed by masked the pixels in the unlabeled area to black according
to the ground truth in order to be consistent with the ground truth. First of all, comparing
the two classification results, it can be seen that five types of objects were all distinguished.
However, the traditional H/alpha-Wishart classification was not able to separate Build
and Open areas in the areas of A and B, with most of the pixels of the red built-up area
being classified into yellow open areas. On the contrary, the classification with our method
of each type of objects was relatively continuous, and in the area of A, most of the pixels
of the red (Build) area were classified correctly. This can also be seen from the red oval
box of the confusion matrix in Figure 9, Confusion Matrix M1 was from the comparison
method H/alpha-Wishart and M2 was from the proposed VQC-CAE method. The number
of pixels in category 1 divided into category 3 reached 115,106 which is almost four times
the total of 26,843 from our method. At the same time, it can be seen from the purple
oval boxes in the confusion matrix that the numbers of pixels in the second category
divided into the first category were 60,676 and 57,708 respectively, which are similar.
For the proposed VQC-CAE method, the number of pixels in the third category divided



Remote Sens. 2021, 13, 2127 15 of 21

into the first category was 70,886, which is much larger than the score of 11,249 for the
comparison method. This can also be seen from the purple oval areas in (c) and (d) in
Figure 8. This shows that our method exhibited some deviations in the classification of the
open areas in this oval area. In addition, we present the classification results of the model
without Gaussian smoothing loss in Figure 8e. In contrast with (d), it can be seen that the
lack of Gaussian smoothing loss made the classification results very different. The two
categories of green (wood land) and red (built-up) areas were mixed together, and they
were almost indistinguishable. The whole classification map has large amounts of noise.
Thus, the Gaussian smoothing loss is necessary when training to reduce the influence of
noise and obtain better classification results.

(a) (b) (c)

(d) (e) (f)

Figure 8. Experimental data of the Oberpfaffenhofen area, ground truth of the ground object and
classification results with the proposed method and comparison method. Rectangles A and B are the
specific comparative analysis areas of the classification maps in (c,d). (a) Pauli pseudo color image
synthesized by polarimetric coherence matrix T. (b) The ground truth of the three objects. (c) The
classification result of H/alpha-Wishart. (d) The classification result of the VQC-CAE model. (e) The
classification result of the VQC-CAE model without Gaussian smoothing loss. (f) The color set of the
ground truth: green for wood land (Wood), red for built-up area (Build), yellow for open area (Open),
and the unlabeled pixels are black.

In addition, we performed a statistical analysis on the classification accuracy of each
object based on all the labeled pixels on the ground truth of images in this experiment.
According to the confusion matrix, the classification accuracy of each type of object was
calculated, and the three indicators of AA, OA and Kappa are shown in Table 3. This shows
that the method proposed in this paper performed better than the comparison method in
the classification of wood land and open area; the classification accuracy of our method for
wood land was 11% better than comparison method, and the classification accuracy for
open area reached 95.71%, which is much higher than the score of 83.5% for the comparison
method. The classification accuracy of the built-up area was the lowest, but it was also
nearly 4% higher than the comparison method. In addition, from a holistic perspective,
the values of OA, AA and Kappa were much higher than the comparison method, and
the OA was 83.58%, which was higher than the comparison method by 5%; furthermore,
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the Kappa coefficient of the proposed method also reached 72.69% while the comparison
method scored less than 60%.

Figure 9. Confusion matrix of thhe H/alpha-Wishart method and VQC-CAE model. The categories
from the first row to the third row are built-up area, wood land and open area. The blue gradient
arrow on the right represents the difference of confusion matrix element values from 0 to 106;
the larger the matrix element value, the darker the color. The larger the value of the non-diagonal
element in the confusion matrix, the easier it is to classify pixels from other categories into this
category. The larger the diagonal element, the smaller the misclassification of the category.

Table 3. Comparison of the classification accuracy of our approach with other methods.

Method Build 1 Wood 2 Open 3 OA AA Kappa

H/alpha-Wishart (Basic) 0.5963 0.7034 0.8350 0.7740 0.7116 0.5958
Basic + Mean Filter 0.6019 0.6219 0.8560 0.7707 0.6932 0.5934
Proposed Method 0.6305 0.8100 0.9571 0.8358 0.7992 0.7269

1 Build represents the built-up area category. 2 Wood represents the wood land category. 3 Open represents the
open area category.

3.2.3. AIRSAR Dataset Experiment Results

The Flevoland area in The Netherlands presented by AIRSAR was selected as data
set 3. Figure 10 shows the original input image of the Flevoland data and its ground truth.
The image size was 202 ∗ 262 pixels. In the figure, (a) is the Pauli pseudo color image,
synthesized by three scattering mechanisms, and (b) is the ground truth of (a), where
25,282 pixels are marked in the whole image of the ground truth. In total, six objects are
included: peas, Lucerne, beet, potatoes, soil and wheat. Additionally, (e) is the color set
for the six objects, where peas is light blue, Lucerne is navy blue, beet is pink, potatoes is
orange, soil is brown, wheat is light green, and the unlabeled pixels are set as black.

In the experiment, we compared our VQC-CAE model with the H/alpha-Wishart
algorithm. The classification results after coloring are shown in Figure 10c,d, where (c)
is the result of H/alpha-Wishart, (d) is the result of the VQC-CAE model. The results
of the experiment were processed by masking the pixels in the unlabeled area to black
according to the ground truth in order to be consistent with the ground truth. First of all,
comparing the two classification results, it can be seen that the six types of objects were all
distinguished by VQC-CAE. However the traditional H/alpha-Wishart classification was
not able to separate light blue (peas) from pink (beet) in the area of A, as all the pixels of
peas were mixed into beet. On the contrary, each type of objects was distinguished with
our approach. This can also be seen from the red oval box of the confusion matrix in Figure
11, Confusion Matrix M1 was from the comparison method H/alpha-Wishart and M2 was
from the proposed VQC-CAE method. The number of pixels in category 1 divided into
category 3 reached 3434, and no pixels are classified into the first category in yellow oval
box. At the same time, it can be seen from the purple oval boxes in the confusion matrix
that only the fifth number in the fifth column had a value other than 0, which means that
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the classification accuracy obtained from the two methods for the fifth category of soil
was 100%. In addition, we present the classification results of the model without Gaussian
smoothing loss in Figure 10e. In contrast with (d), it can be seen in areas B and area C that
the lack of Gaussian smoothing loss meant that the model could not distinguish pink (beet)
and light green (wheat) areas, and several categories were mixed together.

(a) (b) (c)

(d) (e) (f)

Figure 10. Experimental data of the Flevoland area, ground truth of the ground object and classifica-
tion results by the proposed method and comparison method. Ellipse A, Rectangles B and C are the
specific comparative analysis areas of the classification maps in (c–e). (a) Pauli pseudo color image
synthesized by the polarimetric coherence matrix T. (b) The ground truth of the three objects. (c) The
classification result of H/alpha-Wishart. (d) The classification result of the VQC-CAE model. (e) The
classification result of the VQC-CAE model without Gaussian smoothing loss. (f) The color set of the
ground truth: light blue for peas, navy blue for Lucerne, pink for beet, orange for potatoes, brown for
soil, light green for wheat, and the unlabeled pixels are black.

Figure 11. Confusion matrix of H/alpha-Wishart method and the VQC-CAE model. The categories
from the first row to the sixth row are peas, Lucerne, beet, potatoes, soil and wheat. The blue
gradient arrow on the right represents the difference of confusion matrix element values from 0 to
104; the larger the matrix element value, the darker the color. The larger the value of the non-diagonal
element in the confusion matrix, the easier it is to classify pixels from other categories into this
category. The larger the diagonal element, the smaller the misclassification of the category.
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In addition, we performed a statistical analysis on the classification accuracy of each
object based on all the labeled pixels on the ground truth of images in this experiment.
According to the confusion matrix, the classification accuracy of each type of object was
calculated, and the three indicators of AA, OA and Kappa are shown in Table 4. This shows
that the method proposed in this paper performed better than the comparison method in
the classification of all the objects. The classification accuracy of our method for peas was
98.20%, but that of H/alpha-Wishart was 0 because the category peas was misclassified
as beet, which also caused the accuracy of beet to be only 44.59%. The accuracy for beet
with the proposed method was 82.66%. In addition, from a holistic perspective, the values
of OA, AA and Kappa were much higher than the comparison method, and the OA was
96.93%, which was higher than the comparison method by 15%; the Kappa coefficient of
the proposed method also reached 95.95%, and the comparison method was less than 80%.

Table 4. Comparison of classification accuracy with other methods.

Method Peas Lucerne Beet Potatoes Soil Wheat OA AA Kappa

H/alpha-Wishart (Basic) 0.0000 0.7509 0.4459 0.8838 1.0000 0.9901 0.8179 0.6784 0.7616
Basic + Mean Filter 0.0000 0.8330 0.4444 0.9274 0.9981 0.9951 0.8302 0.6997 0.7772
Proposed Method 0.9820 0.9837 0.8266 0.9864 1.0000 0.9980 0.9693 0.9628 0.9595

3.2.4. Analysis of Classification Maps with Post-Processing

Due to the poor robustness of the basic H/alpha-Wisahrt classification method to noise,
speckle noise exists on the three classification maps shown in Figure 12a,c,e. Therefore,
the post-processing operation of the classification map needed to be performed. Inspired
by the smoothing filtering in [33], we used a mean filter with a window size of w ∗ w to
perform sliding window filtering on the classification map. We conducted experiments on
the values of window sizes w from 3 to 25 and found that the best filtering effect could be
obtained when w was 15. Thus, we give the post-processing results of the classification map
when w was 15 in Figure 12b,d,f. Comparing the left and right classification maps of the
three data sets, respectively, it can be found that many noise points have been eliminated.
In addition, we show the classification accuracy after post-processing in Tables 2–4. It can
be found that the mean filter improved the classification accuracy of San Francisco and
Flevoland data sets. The OAs of the two data sets increased from 85.01% and 81.79% to
90.10% and 83.02%, respectively, but these were still lower than the scores of 91.8% and
96.93% for the proposed VQC-CAE method. For Oberpfaffenhofen data, the large amount
of misclassification led to more category confusion and reduced the classification accuracy
after filtering, and the OA decreased from 77.40% to 77.07%.

(a) (b)

Figure 12. Cont.
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(c) (d)

(e) (f)

Figure 12. Comparison of basic H/alpha-Wishart classification map and post-processed classification
map with mean filter. (a) The classification result of H/alpha-Wishart (basic) for San Francisco.
(b) The classification result of the basic approach with a mean filter for San Francisco. (c) The
classification result of H/alpha-Wishart (basic) for Oberpfaffenhofen. (d) The classification result of
the basic approach with a mean filter for Oberpfaffenhofen. (e) The classification result of H/alpha-
Wishart (basic) for Flevoland. (f) The classification result of the basic approach with a mean filter
for Flevoland.

4. Discussion

In this paper, we first analyzed the classical unsupervised classification algorithms for
SAR images. These methods use polarization decomposition and feature decomposition
to extract the features of an image and then use clustering methods such as K-means or
Wishart to implement clustering. Because the correlation between neighboring pixels is
not considered in the feature extraction, the classification result is imprecise, with salt and
pepper noise, and the classification accuracy is not high. Then, we considered the CNN
model for classification; it extracts semantic information of images and can capture the
non-linear dependency between adjacent pixels. The classification accuracy is much higher,
but it requires labeled data during training, and the model has high complexity. Thus, we
introduced the VQ into the feature stage on the basis of CNN so that the whole model
could be trained in a fully unsupervised way. This approach can train the process of feature
extraction and clustering simultaneously. In addition, the Gaussian smoothing filter was
added after the VQ to further eliminate the influence of image noise and obtain better
classification results. The three experiments proved that the classification accuracy of our
model was much higher than the H/alpha-Wishart algorithm. It can also be seen from
the visualized classification map that the classification of each object area was relatively
continuous without salt and pepper noise. However, as shown in the yellow oval box of the
classification confusion matrix in Figure 7, there were many misclassified pixels between
category 3 and category 4; that is, the classifications of high-density urban and low-density
urban building still showed shortcomings, which is also an important impacting factor
on the overall classification accuracy of this method. We consider that the reason for this
result is that the similarity between these two types of objects is very high. In addition,
using only Pauli pseudo-color images as an input may lead to a lack of sufficient object
information. Therefore, the classification of image features that incorporate polarization
decomposition, feature decomposition and grayscale texture as the input of the VQC-CAE
model may improve the classification accuracy. More importantly, comparing (d) and (e) in
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Figures 6 and 8, respectively, it can be found that if Gaussian smoothing loss is not used
for auxiliary training after using VQ for feature embedding, there will be a large amount
of noise in the classification result, and targets with similar features such as high-density
urban and low-density urban areas will therefore be difficult to distinguish.

5. Conclusions

This paper proposes a novel unsupervised classification network model named VQC-
CAE for fully PolSAR images. The proposed method has creative significance for unsu-
pervised classification applications. Compared with the H/alpha-Wisahrt algorithm, it
not only considers the correlation of the neighborhood but also has good robustness to
speckle noise. We have performed experiments on three real PolSAR data sets to verify
the performance of the model. The results show that the proposed method can obtain a
more continuous classification map and the classification accuracy and Kappa coefficient
are both much higher than that of the comparison method. In addition, although the post-
processing of mean filtering was performed for the comparison method, the classification
accuracy of the proposed method was better, which also shows that the VQC-CAE method
has better noise suppression ability.

Future work can be carried out in the following directions: on one hand, we can use
only single-polarization or dual-polarization data to verify the applicability of this deep
vector quantization clustering model; on the other hand, we can try to use K-means or
other clustering methods instead of the EMA algorithm as a vector table update strategy
when performing VQ clustering to verify classification accuracy.
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