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Abstract: Vegetation measures are crucial for assessing changes in the ecological environment. Frac-
tional vegetation cover (FVC) provides information on the growth status, distribution characteristics,
and structural changes of vegetation. An in-depth understanding of the dynamic changes in urban
FVC contributes to the sustainable development of ecological civilization in the urbanization process.
However, dynamic change detection of urban FVC using multi-temporal remote sensing images
is a complex process and challenge. This paper proposed an improved FVC estimation model by
fusing the optimized dynamic range vegetation index (ODRVI) model. The ODRVI model improved
sensitivity to the water content, roughness degree, and soil type by minimizing the influence of bare
soil in areas of sparse vegetation cover. The ODRVI model enhanced the stability of FVC estimation
in the near-infrared (NIR) band in areas of dense and sparse vegetation cover through introducing
the vegetation canopy vertical porosity (VCVP) model. The verification results confirmed that the
proposed model had better performance than typical vegetation index (VI) models for multi-temporal
Landsat images. The coefficient of determination (R2) between the ODRVI model and the FVC was
0.9572, which was 7.4% higher than the average R2 of other typical VI models. Moreover, the annual
urban FVC dynamics were mapped using the proposed improved FVC estimation model in Hefei,
China (1999–2018). The total area of all grades FVC decreased by 33.08% during the past 20 years
in Hefei, China. The areas of the extremely low, low, and medium grades FVC exhibited apparent
inter-annual fluctuations. The maximum standard deviation of the area change of the medium grade
FVC was 13.35%. For other grades of FVC, the order of standard deviation of the change ratio was
extremely low FVC > low FVC > medium-high FVC > high FVC. The dynamic mapping of FVC
revealed the influence intensity and direction of the urban sprawl on vegetation coverage, which
contributes to the strategic development of sustainable urban management plans.

Keywords: dynamic change mapping; fractional vegetation cover; vegetation index; vegetation
canopy vertical porosity; multi-temporal Landsat data

1. Introduction

Vegetation is considered a crucial factor in the study of global change and terrestrial
ecosystems [1,2], reflecting changes, and the status of ecological environment [3]. Fractional
vegetation cover (FVC) is the ratio of the vertical projection area of above-ground vegeta-
tion organs (e.g., branches, leaves, and trunks) on the ground to the total statistics areas,
also called green FVC or photosynthesis FVC [4,5]. The FVC provides information on the
growth status, spatial distribution, and structural changes of vegetation cover [6,7]. FVC
is an essential biophysical parameter for the analysis of regional environmental change,
economic development, and ecological civilization development. Particularly, change
detection of FVC is widely applied to estimate changes in terrestrial ecosystems, including
soil and water conservation [8,9], climate change [10–12], land use/cover change and ap-
plications [13–15], and ecosystem evaluation [16,17]. Moreover, the spatial distribution of
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FVC and its spatiotemporal changes are also investigated in energy exchange calculations
in different application fields, including water cycle models, vegetation photosynthesis, soil
water evaporation, urban expansion, urban environment monitoring, and forest fragmenta-
tion [18,19]. Therefore, an understanding of the dynamic changes in urban FVC contributes
to the sustainable development of ecological civilization in the urbanization process.

Remote sensing retrieval is an approach used to achieve FVC estimation. Remote
sensing data have the characteristics of multi-resolution, flexible revisit cycles, and con-
tinuous surface imaging for wide areas, providing rich spatiotemporal information for
FVC retrieval. The remote sensing method facilitates the dynamic change detection of
large-scale FVC in a timely and effective manner. Numerous FVC estimation methods
based on remote sensing data have been proposed and widely used [20–22]. According
to the implementation method of the FVC estimation model, these methods can be di-
vided into four categories: regression-based model, machine learning-based, mixed pixel
decomposition, and index-based empirical models.

A regression model is developed between the ground-measured FVC data and the
remotely sensed-based vegetation index (VI) data [23]. Linear and nonlinear regression
models have been used, depending on the complexity of the relationship between FVC data
and the VI [24,25]. The regression model is an empirical statistical model that is simple to
implement and has high accuracy for local FVC estimation. However, its accuracy depends
heavily on the ground-measured FVC, posing a considerable challenge for regional or
large-scale FVC estimation [26].

Machine learning-based FVC estimation models use potential prior knowledge and
information to establish the sample space by data mining. The vegetation information
is extracted by sample training and iterative learning, and finally, the FVC inversion is
performed. Typical algorithms include Regression Trees (RT) and Random Forest (RF) [27].
Machine learning methods have relatively high FVC detection accuracy when acquiring
vegetation information. However, the FVC accuracy is influenced by remote sensing images
with different spatiotemporal characteristics. The quality of remote sensing images with
different spatial and temporal resolutions has differences, which affects the accuracy of
vegetation and FVC. Moreover, the quality and quantity of available training samples will
change with different spatiotemporal images to tuning model parameters. Additionally,
machine learning algorithms have low detection efficiency from multi-temporal remote
sensing images, due to high computational complexity and spatial variability [28].

A mixed pixel decomposition estimation model of FVC is based on the information
contribution rate of different ground objects in each pixel. Most coarse and medium-scale
resolution remote sensing images have many mixed pixels, containing spectral information
on different ground objects due to the complexity and fragmentation of ground landscapes.
The mixed pixel decomposition model assigns weights based on the area of different types
of ground objects and their spectral responses [21,29]. Representative mixed pixel decom-
position models include the dimidiate pixel (DP) model [30,31], the vegetation canopy
vertical porosity (VCVP) model [32,33], the vegetation, soil, and atmospheric radiation
transmission estimation (VSAR) model [34], as well as the reflectance of vegetation, lighted
soil and shadow soil estimation (VISS) model. Previous studies have shown that the DP
estimation model of FVC results in FVC overestimation, the VSAR and the VISS model
may cause an underestimated FVC, and the VCVP model has a stable performance of FVC
estimation in high- and low-density vegetation areas [35]. However, mixed pixel decompo-
sition models depend on the reliable identification of diverse endmembers involved in the
model solution, which may limit the utility of these methods in practice.

VIs can express the vegetation cover characteristics using the spectral reflectance of
vegetation [36]. A VI derived from a multi-spectral image is a grayscale map, in which
the brightness level indicates the degree of vegetation cover [37,38]. Typical VIs include
the normalized difference vegetation index (NDVI) [39], soil adjusted vegetation index
(SAVI) [40,41], modified SAVI (MSAVI) [42], optimized soil adjusted vegetation index
(OSAVI) [43], and wide dynamic range vegetation index (WDRVI) [44]. These VIs facilitate
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the development of vegetation extraction methods and provide an empirical model for
FVC estimation. However, most VIs have disadvantages. For example, NDVI is not
suitable for the estimation of FVC exceeding 60% due to its insensitivity to the change
of higher 60% FVC [45]. The difference in soil reflectance may lead to a great difference
in NDVI under the same FVC. The SAVI reduces interference from the soil background
but reduces the correlation with FVC. Moreover, most VIs are affected by spatiotemporal
changes in the remote sensing images because different reflectance of the same ground
objects in different images will weaken the correlation between VIs and FVC, which lowers
vegetation extraction accuracy. Thus, the accuracy of FVC estimation also fluctuates with
the spatiotemporal changes of remote sensing images. Furthermore, the results of FVC
estimation are closely related to urban sprawl and climatic conditions [46]. Therefore, a new
VI model should be proposed to minimize the impacts of the spatiotemporal variability of
remote sensing images on the accuracy improvement of VIs-based FVC estimation.

In this paper, to monitor the dynamic changes of FVC, we proposed an improved
FVC estimation model by fusing an optimized dynamic range vegetation index (ODRVI)
model and the vegetation canopy vertical porosity (VCVP) model. We developed a new VI
to improve the accuracy of FVC estimation. The proposed VI minimizes the interference
of soil and reduces the NIR reflectance in areas of high FVC, and improves the standard
deviation of the gray levels in areas with high- and low-density vegetation cover. A
dynamic threshold adjustment method was incorporated in the VI equation (3) to select the
optimal value for multi-temporal Landsat images. The results of the ODRVI were taken as
input parameters of the VCVP. Thus, the overall accuracy of FVC estimation was improved.
Finally, annual FVC dynamics in Hefei, China were mapped by using the proposed models
and corresponding driving factors responsible for the FVC changes were analyzed from
1999 to 2018.

2. Study Area and Datasets
2.1. Study Area

Over the past 20 years (1999–2018), Hefei, China has experienced rapid urbanization
with an average growth ratio of 4%. The urbanization ratio was 76.33%, and Gross Domestic
Product (GDP) grew by 7.6% in 2019. Hefei is located in the central and eastern part of
China (30◦57′–32◦32′ N, 116◦41′–117◦58′ E), and has a subtropical monsoon climate, and
four distinct seasons (Figure 1). The average annual temperature is about 13–17 ◦C, and
the annual average precipitation and sunshine duration are about 800–1700 mm and
1800–2500 h, respectively. Rainfall occurs predominantly in May, June, and July, accounting
for 20–38% of the annual rainfall. The months falling into a rapidly growing season for
vegetation are April to October. The terrain of Hefei consists of mountains, hills, and
plains, with an average elevation of about 150 m. The west mountains of Hefei are oriented
from east to west, and mountains of the east are oriented from northeast to southwest,
and vegetation in the south and southeast are relatively denser. The vegetation in the
mountains is affected by meteorological factors, and the FVC is higher under more favorable
meteorological conditions. The central part of Hefei consists of a plain, and the northern
part is mainly low hills and plains where crops are grown. The vegetation cover includes
large areas of farmland and some mountainous forests. Hefei was awarded the title of
“National Forest City” in 2014.
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Figure 1. The spatial location of the study area and Landsat image (OLI: band 4 R, band 3 G, and band 2 B, WRS-2 Path/Row:
121/038). The blue polygon outlines the exact administrative boundary of the city of Hefei city.

2.2. Datasets

The Landsat images, with a WRS-2 Path/Row tile of 121/038, were acquired in the
growing season from April to October to minimize the influence of bare soil in the harvesting
and planting months. All images had a cloud cover of less than 16% (Figure 2). Cloud cover
was removed during image preprocessing by using the Fmask algorithm [47]. A detailed
description of the Landsat time series images from 1999 to 2018 was summarized in Figure 2.
Figure 2 shows four images obtained in April, May, and August and three images obtained in
July and October, respectively. The multi-temporal images were acquired by three sensors:
The operational land imager (OLI) (6 Landsat 8 images), the thematic mapper (TM) (13
Landsat 5 images), and enhanced thematic mapper plus (ETM+) (1 Landsat 7 image). An
automatic threshold selection algorithm was used to address the difference in the image
reflectance of the three sensors [48,49]. The spatiotemporal dynamic changes of FVC in
Hefei were monitored by extracting the annual FVC from the images.

Figure 2. The average cloud contamination and imaging time (Month) of the selected Landsat images (TM, ETM+, and OLI).

All images were downloaded from the U.S. Geological Survey (USGS) website (https:
//glovis.usgs.gov/app, accessed on 18 September 2019). The data have been geometrically
and atmospherically corrected by USGS to level 2 surface reflectance products. Different

https://glovis.usgs.gov/app
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numbers of images were used for each sensor due to climate effects and the imagery
quality. The historical data of economic development and meteorology in Hefei (1999–2018)
were collected from the Anhui Provincial Bureau of Statistics (http://data.ahtjj.gov.cn/
shxfplsze/index.jhtml, accessed on 20 December 2019).

3. Methods
3.1. An Improved Vegetation Index

The spectral VIs are introduced to improve the interpretation of vegetation signals
when using remote sensing data and can be used to measure vegetation status and growth
while minimizing solar irradiance and soil background effects. Basically, vegetation extrac-
tion from a VI image consists of at least two steps in Landsat images, i.e., the calculation of
the VI and the threshold selection to separate vegetation from other ground objects [41].
The band selection to develop a VI is the first consideration. The reflectance of an object
differs in different bands. The vegetation reflectance is low in the red band and peaks in
the green and NIR bands. The chlorophyll of vegetation absorbs light in the red spectrum
(0.63–0.69 µm), and cellulose in vegetation foliage absorbs the NIR spectrum (0.7–1.1 µm)
and the structure or compactness of cellulose highly affects the absorption rate. Therefore,
the NIR and red bands were used in many VIs, such as the NDVI, SAVI, MSAVI, OSAVI,
and WDRVI. The performance of these VIs was quite different in the same spatiotemporal
Landsat images. The accuracy of the VIs was compared for the extraction and linear fitting
results of the FVC in Hefei. The previous studies showed that the MSAVI, OSAVI, WDRVI,
and SAVI had higher accuracy than other VIs, and the linear fitting between the FVC and
the OSAVI and WDRVI provided the best performance [44]. Additionally, the FVC estima-
tion accuracy for high-density vegetation and low-density vegetation was relatively stable.
However, OSAVI is sensitive to soil type, roughness, and water content [43], whereas
the WDRVI reduces the reflectance in the NIR band in areas of high-medium vegetation
cover [44]. The bands’ calculation of OSAVI is shown as follows:

OSAVI = (1 + L)(ρNIR − ρRed)/(ρNIR + ρRed + L) (1)

where ρNIR and ρRed are the surface reflectance of the NIR band and red band, respectively.
The optimum value of the parameter L, which reduces the effects of soil background, was
set to 0.16 in the current work.

The WDRVI is calculated as follows:

WDRVI = (α× ρNIR − ρRed)/(α× ρNIR + ρRed) (2)

where α is a weighting coefficient of the VI, and α < 1. The WDRVI is derived from
NDVI. The term α× ρNIR reduces the contribution of the NIR band for FVC estimation
and improves the FVC estimation stability in areas of high-medium vegetation cover.

In this paper, we proposed an improved VI that combines the strengths of OSAVI and
WDRVI. The index is called the optimized dynamic range vegetation index (ODRVI). It
improves the ability to distinguish between vegetation and non-vegetation, and minimizes
the influence of the bare soil in areas of sparse vegetation cover. The ODRVI model
optimizes the parameter settings and band operation and is defined as follows:

ODRVI = (1 + θ)(ρNIR − ρRed)/(θ × ρNIR + ρRed + θ) (3)

where θ is an adjustable parameter. θ enhances the sensitivity to the soil type, roughness,
and water content at the molecular level and reduces the contribution of the NIR band
in areas of high-density vegetation cover in the denominator. The appropriate value of θ
depends on the Landsat image type and spatiotemporal change. θ has a range of 0 to 1,
like the parameter L of the OSAVI [43]. The parameter θ improves the accuracy of FVC
estimation in areas of high-medium and sparse vegetation covers. Verification and results

http://data.ahtjj.gov.cn/shxfplsze/index.jhtml
http://data.ahtjj.gov.cn/shxfplsze/index.jhtml
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comparison was conducted to determine the parameter value, θ (empirical value) was set
to 0.5 for the Hefei area in the current work.

3.2. VCVP–Based FVC Estimation

The VCVP model is a mixed-pixel decomposition model. The VCVP model provides
FVC estimates based on the contribution rate of different cover types. Most pixels are
mixed and contain different spectral responses of ground objects. The spectral structure in
the pixels is calculated by the weight of the area ratio for all types of ground objects.

The VCVP model is expressed by an exponential function of the leaf area index (LAI)
as follows:

L0(0) = e−KL LAI (4)

where KL is the extinction coefficient, which depends on the vegetation structure. For
a given observation condition [32], most VIs can be obtained by calculating the LAI
as follows:

VI = VIveg +
(
VIsoil −VIveg

)
eKVI LAI (5)

where VIveg and VIsoil are the index values of vegetation and bare soil, respectively, KVI
depends on the solar observation angle, solar zenith angle, vegetation canopy structure,
and leaf optical characteristics. The VCVP model is expressed as:

L0(0) =
(

VI −VIveg

VIsoil −VIveg

)KL/KVI

. (6)

FVC can be expressed as 1 minus the VCVP L0(0). The FVC equation is as follows:

fveg = 1− L0(0) = 1−
(

VI −VIveg

VIsoil −VIveg

)KL/KVI

(7)

where KL/KVI is an experimental value and a simulated value. Previous studies have
shown that the FVC estimation based on the VCVP model provides stable estimates in
areas of both high density and sparse vegetation cover [50]. The ODRIV was taken as
parameters for the VCVP-based FVC estimation. The new equation of the FVC estimation
is as follows:

fveg = 1− L0(0) = 1−
(

ODRVI −ODRVIveg

ODRVIsoil −ODRVIveg

)KL/KODRVI

(8)

where KL/KODRVI is an empirical value that depends on the location of the study region
and simulated values.

The FVC can be divided into different cover levels according to the vegetation cover
types, spatial distribution, growth conditions, and other factors in the study area. It is
divided into 5 vegetation cover grades: Extremely low FVC (ELF, 0–20%), low FVC (LF,
20–40%), medium FVC (MF, 40–60%), medium-high FVC (MHF, 60–80%), and high FVC
(HF, 80–100%) [51]. The division is suitable for areas with a mixture of high density and
sparse vegetation cover.

3.3. Automatic Threshold Selection and ODRVI Model Validation

The reflectance difference of ground objects depends on the season, spectral band, and
remote sensing image types. Landsat TM, ETM+, and OLI images were used in this study.
These led to an accuracy difference using a fixed threshold for multi-temporal Landsat
images. A dynamic threshold selection tailored to the different images will improve the
overall accuracy of vegetation extraction. Therefore, an automatic threshold selection
algorithm was used to adjust the vegetation extraction from different Landsat images.
An improved particle swarm optimization algorithm provides a fast search and iterative
updating of the threshold to find the optimal threshold for segmentation in the global
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solution space [48]. The method uses image entropy as a fitness function to obtain the
optimal threshold. An index image is divided into m gray levels, corresponding to a
segmentation threshold Ti for every gray level. The segmentation threshold dataset of the
gray levels is defined as Tv = {T0, T1, T2, · · · , Ti, · · · Tn} (0 ≤ n ≤ m, 0 ≤ i ≤ m). If Ti is
the optimal threshold, vegetation and non-vegetation is classified by Ti. The conditional
equation is defined as:

VIT =

{
vegetation, Index value ≥ Ti

non− vegetaion, Index value < Ti
. (9)

The threshold divides the index images into the foreground (vegetation) and back-
ground colors (non-vegetation). The vegetation shows light or bright gray and non-
vegetation shows dark gray in index images. Dynamic threshold overcomes manual
identification, fine-tuning, and testing in traditional threshold selection, and reduces accu-
racy interference from artificial adjustment for multi-temporal images.

We used quantitative and qualitative verification strategies to validate the ODRVI
model performance and to evaluate the FVC estimation, including the relative accuracy
verification, comparing with the results of convolutional neural networks (CNNs) and other
typical VIs [44]. We used a CNN’s deep learning algorithm to establish image supervision
classification by 970 vegetation pixels, 1223 water pixels, 156 bare soil pixels, and 723
impervious surface pixels as learning samples.

4. Results
4.1. Performance of the ODRVI Model

The ODRVI model was established using Landsat surface reflectance images of Hefei,
and the corresponding VI images are presented on the right line in Figure 3. Five types
of ground objects were labeled and compared point by point with the original multi-
spatiotemporal Landsat images, including impervious surface, bare soil, water, low veg-
etation cover, and high vegetation cover. Figure 3a,b shows the Landsat OLI image of
Dashu Mountain Forest Park and the surrounding area of Hefei. The forest park is an area
with high vegetation cover, showing bright colors with high gray values in the ODRVI
image (Figure 3b). Areas of low vegetation cover are light gray in the VI image. Bare soil
and impervious surfaces appear black-gray, light bright values indicate vegetation, and
water tends to be dark with the lowest index value. There are many construction sites and
considerable amounts of bare soils in this area, on the left side of the forest park. Vegetation,
areas with sparse buildings, and high-density construction were identified in the index
image (Figure 3b).

Figure 3c,d shows a Landsat ETM+ image of a wetland area of Chaohu Lake with
abundant vegetation cover. Watergrass and cyanobacteria show scattered distribution
from the shore to the center of Chaohu Lake. Farmland, grasslands, and forests surround
the lake. Figure 3e,f shows a Landsat TM image of the rural-urban fringe of the northern
part of downtown Hefei. In the ODRVI images, high-density and low-density vegetation
cover have high brightness values, water has the lowest index values, and bare soil and
impervious surface have intermediate index values. The ground objects are identified in
the VI images, facilitating the identification of vegetation and non-vegetation. The ODRVI
enhances the areas of vegetation and is suitable for all types of Landsat images. The pixel
average value range of the marked five ground object types in ODRVI images was listed in
Table 1.
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Figure 3. The depicting capabilities of the ODRVI model to different land cover types in different spatiotemporal Landsat
images. Subfigures (a,c,e) are the original Landsat OLI, ETM+, and TM natural color composites, respectively. Subfigures
(b,d,f) are the corresponding ODRVI images.
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Table 1. The range of the marked five ground object types in ODRVI images. Impervious surface (IS),
low vegetation coverage (LVC < 60%), and high vegetation coverage (HVC, >60%).

Ground Object IS Bare Soil Water LVC HVC

Range (±0.05) 0.04–0.15 0.21–0.35 −0.56–−0.18 0.98–1.32 1.89–2.21

The ODRVI image of Hefei obtained from the Landsat OLI image (25 July 2016) is
shown in Figure 4. Downtown Hefei is located in the central area north of Chaohu Lake.
The Dashu Mountain Forest Park with high-density vegetation cover is highlighted with a
red circle in the downtown area. Forests are located west, east, and south of Hefei (marked
as blue circles), and farmland is shown north of Hefei. In Figure 4b, non-vegetation is
shown in low index values, water is black, and urban impervious surface areas are in dark
gray. The vegetation is shown in light gray, and the higher the vegetation cover, the higher
the brightness values are, such as the forests. The results show that the ODRVI facilitates
distinguishing vegetation from non-vegetation.
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4.2. ODRVI Model Validation

The validation of the ODRVI model included an assessment of the relative accuracy of
the VI obtained from the multi-spatiotemporal images and comparisons with typical VIs.

The relative accuracy of the ODRVI was verified using different spatiotemporal Land-
sat images, including Beijing (OLI: 10 July 2017), Hefei (OLI: 25 July 2016), and Guangzhou
(OLI: 23 October 2017). The ODRVI images were achieved by the ODRVI model and the
automatic threshold selection algorithm derived from spatiotemporal Landsat images. The
classification accuracy obtained from the CNNs and the ODRVI images of the three regions
was compared. The vegetation pixels obtained from the CNNs method were used as the
reference to determine the vegetation extraction accuracy of ODRVI for the three regions.
The overall classification accuracy of the CNNs for Beijing, Hefei, and Guangzhou was
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96.75%, 95.68%, and 95.93%, respectively, and the classification accuracy of the vegetation
class was 97.21%, 96.54%, and 97.32%, respectively. Table 2 lists the relative accuracy
obtained from the CNNs and the ODRVI in the three regions. The relative accuracy of the
ODRVI in Beijing, Hefei, and Guangzhou was 93.35%, 96.79%, and 95.88%, respectively.

Table 2. The relative accuracy of vegetation extraction of ODRVI model in different regions.

Verification Regions
CNNs ODRVI

Number of Vegetation
Pixels

Accuracy of
Vegetation Extraction

Number of Vegetation
Pixels

Relative Accuracy of
Vegetation Extraction

Beijing 14,981,044 97.21% 13,984,601 93.35%
Hefei 9,490,172 96.54% 9,185,964 96.79%

Guangzhou 6,100,657 97.32% 5,849,127 95.88%

Figure 5 shows a comparison of the results between CNNs classification and ODRVI
classification for the three regions. In Figure 5d–f, the vegetation cover in Beijing, Hefei,
and Guangzhou was 42.2%, 36.1%, and 37.1%, respectively. Hefei had the lowest vegetation
density due to large areas of farmland north of Hefei, and Beijing had the highest vegetation
density. Most of the vegetation occurred in the west and the northern mountainous areas
of Beijing. The vegetation cover in the northern part of Guangzhou was higher than that in
the southern part. Areas of high-density vegetation occurred in the mountainous areas,
and areas of low-density vegetation were located near the city. In Figure 5g–i, a bright gray
indicates vegetation cover, and non-vegetation is dark gray or black in the ODRVI image.
The results showed that the ODRVI model is suitable for multi-spatiotemporal Landsat
images and provides high accuracy for vegetation classification.

Figure 5. Cont.
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Figure 5. The relative accuracy verification of ODRVI over CNNs algorithm from multi-spatiotemporal Landsat images in
the three regions. (a–c) are the original natural color images of Beijing, Hefei, and Guangzhou (bands 4, 3, and 2, stretched
by 2%); (d–f) are the classification results of CNNs; and (g–i) are the ODRVI-derived results.

Moreover, the accuracy of ODRVI was further verified by the local magnified contrast
of ground objects in Figure 6. There is obvious identification between vegetation and non-
vegetation in the ODRVI images. The high-density vegetation and low-density vegetation
show in bright gray and light gray, respectively, and the non-vegetation display dark gray
or black. The circles mark the comparison areas between original images, CNNs, and
ODRVI images.

Figure 6. The accuracy verification of ODRVI by a local magnified contrast of ground objects in three regions. Where
(a,d) are original images, (b,e) are CNNs classification, and (c,f) are ODRVI index results, and the ellipse shows vegetation
comparison points.
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In comparison to pre-existing VIs, the typical VIs being OSAVI, WDRVI, VARI, and
MSAVI, ODRVI showed good performance in the extraction of vegetation from multi-
temporal Landsat images. Landsat images of Beijing, Hefei, and Guangzhou acquired on
10 July 2017, 25 July 2016, and 23 October 2107, respectively, were selected. The relative
accuracy based on CNNs of the typical VIs is listed in Table 3. The relative accuracy of
the ODRVI was 7.24%, 7.41%, and 8.55% higher than that of the typical VIs for Beijing,
Hefei, and Guangzhou, respectively. The average relative accuracy of the ODRVI was
0.91% higher than that of the OSAVI.

Table 3. Comparison of relative accuracy between the ODRVI and the typical vegetation indices in the three regions.

Compared
Regions Beijing Hefei Guangzhou

CNNs

Number of
vegetation pixels Accuracy Number of

vegetation pixels Accuracy Number of
vegetation pixels Accuracy

14,981,044 97.21% 9,490,172 98.75% 6,100,657 97.32%

Vegetation
indices

Number of
vegetation pixels

Relative
Accuracy

Number of
vegetation pixels

Relative
Accuracy

Number of
vegetation pixels

Relative
Accuracy

OSAVI 13,749,602 91.78% 9,183,707 96.77% 5,779,152 94.73%
WDRVI 13,020,025 86.91% 8,499,710 89.56% 5,346,006 87.63%
MSAVI 11,899,443 79.43% 7,708,087 81.22% 4,911,639 80.51%
VARI 12,931,637 86.32% 8,536,484 89.95% 5,274,018 86.45%

ODRVI 13,984.601 93.35% 9,185,964 96.79% 5,849,127 95.88%

A comparison of gray value STD between the ODRVI and the typical VIs is shown
in Table 4. The index gray value STDs of the typical VIs is lower than the ODRVI in
three regions. The performance of vegetation identification from non-vegetation in the
ODRVI performed best, followed by the MSAVI. Therefore, the identification performance
of the ODRVI was better than other typical VIs in multi-spatiotemporal Landsat images.
Compared with OSAVI, WDRVI, MSAVI, and VARI, the overall accuracy of the ODRVI
model was improved by an average of 7.73% (See Table 3). The fitting degree (coefficient
of determination (R2)) of the ODRVI by linear regression with FVC enhanced by 7.4% on
average compared to other VIs (Figure 7).

Table 4. Comparison of gray-value standard deviation (STD) between the ODRVI and typical VIs.

Cities OSAVI WDRVI MSAVI VARI ODRVI

Beijing 0.418 0.447 0.414 0.255 0.866
Hefei 0.501 0.501 0.767 0.251 0.931

Guangzhou 0.597 0.559 0.866 0.226 0.998

Figure 7. Comparison of the FVC fitting degree between ODRVI and typical VIs.

4.3. FVC Verification and Estimation

FVC estimation was performed using the ODRVI model and the VCVP model. The
results of the ODVRI, the pure vegetation portion of a vegetation pixel ODRVIveg, and
the pure soil portion of a vegetation pixel ODRVIsoil were input into Equation (8). The
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empirical value KL/KODRVI was obtained from field measurements in Dashu and Zepeng
Mountain Forest Parks in Hefei, China in 2015; the optimal value of KL/KODRVI was 0.653.
We compared the results between the field measurements FVC and the proposed FVC
estimation model for two sample plots in Table 5. The average accuracy of the improved
FVC model was obtained at 92.97% in two sample sites. The accuracy was directly related
to the vegetation growth in the current year. Experimental results showed that the average
accuracy of FVC estimation would be improved in years of vegetation growing well. The
average accuracy of FVC estimation in HF and MHF areas was more closed to the results
of the field measurements.

Table 5. Accuracy comparison of the proposed FVC estimation between the two sample sites from
filed measurements in Hefei (2015). Extremely low FVC (ELF), low FVC (LF), medium FVC (MF),
medium-high FVC (MHF), and high FVC (HF) are listed.

Sample Sites
Accuracy (%)

ELF LF MF MHF HF

Dashu Mountain Forest Park 93.2 91.5 92.4 93.1 94.3
Zepeng Mountain Forest Park 92.7 92.3 92.8 93.3 94.1

The value of the pure vegetation portion and pure soil portion of a vegetation pixel
was calculated using the maximum index value ODRVImax and the minimum index value
ODRVImin, respectively. In this experiment, the ODRVI images obtained from the three
sensors (OLI, ETM+, and TM) in four seasons were used for FVC estimation. The values
of ODRVIveg and ODRVIsoil in the images were calculated using the automatic threshold
algorithm. The parameters of the FVC estimation equation used in the four seasons are
listed in Table 6.

Table 6. The derived parameters for FVC estimation in four seasons of Hefei.

Parameters
Seasons and Landsat Image Types (KL/KODRVI = 0.653)

Winter: OLI 15
January 2016

Spring: TM 30
May 2009

Summer: ETM
+ 22 July 2012

Autumn: OLI 11
October 2015

ODRVIveg 2.13 2.29 2.57 2.38
ODRVIsoil 0.839 0.906 1.275 0.891

Figure 8 shows the FVC estimation results derived from the multi-temporal Landsat
images over four seasons in Hefei. The bare soil observed in the autumn was due to
farmland harvest and field management, which is shown in dark gray in northern Hefei
in Figure 8d. The vegetation cover is depicted in light gray and occurs predominantly in
the forests in the west, east, and south of Hefei. Spring is the beginning of the growing
season, and the vegetation canopy has not been closed thus, this season does not represent
the real FVC (Figure 8b). Since most plants are deciduous in this area, the vegetation cover
in winter also does not reflect the real FVC (Figure 8a). The outline of the downtown
urban area is not well delineated in spring and summer. Summer is most suitable for FVC
estimation because it is the growing peak season. The ellipses show the forests of Hefei in
Figure 8, and Dashu Mountain Forest Park is shown in yellow in downtown Hefei, which
is bright gray in Figure 8a,c,d. The FVC value is between 0 and 1 from ELF to HF. The HF
is in bright gray and the ELF is in light gray.
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Figure 8. The FVC estimation results from multi-temporal Landsat images over four seasons in Hefei. (a–d) are FVC
estimations from multi-temporal Landsat images covering four seasons.

The proposed FVC estimation was also compared with the DP-based FVC estimation
in high- and low-density vegetation cover (Figure 9). Two Landsat images of Hefei with
notorious differences in vegetation growth were selected: An image with lush vegetation
(23 July 2006), and an image with relatively sparse vegetation cover (19 March 2010). The
results showed that the medium-high and high FVC was 6.63% and 12.78% higher than the
ground-truth value in the DP-based FVC estimation for the lush vegetation image, and the
respective values were 2.25% and 1.57% in the VCVP-based FVC estimation. For the low
vegetation cover image, there was not much difference between the DP- and VCVP-based
FVC estimation, and the mean error in each FVC level was 2.45%. The VCVP-based FVC
estimation exhibited a more stable performance than the DP-based FVC estimation for both
high- and low-density vegetation cover, and the error was relatively low.
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4.4. FVC Dynamic Change Mapping in Hefei (1999–2018)

The FVC dynamic change maps in Hefei derived from the VCVP-based FVC estima-
tion from 1999 to 2018 are shown in Figure 10. The corresponding parameter values of
ODRVIveg, ODRVIsoil , and KL/KODRVI derived from this analysis are listed in Table 7. In
Figure 10, areas with HF levels are in darker green and the bright green indicates an ELF.
The same FVC level shows different colors over time due to the differences in the image
acquisition time, surface temperature, and rainfall. In the past 20 years, the areas of MF and
HF were relatively small; the HF areas accounted for about 1% of the total vegetation area,
and the MHF areas comprised about 6% in Hefei. The areas of ELF, LF, and MF accounted
for about 80%, among which the MF accounted for 18.7%, and the ELF comprised over 60%.
However, the areas of different FVC levels varied from year to year; for example, the MF
was 48.89% in 2005, the MHF was 33.23% in 2006, and the combined area of the MF and
MHF FVC was 4.91% in 2014. The differences in the areas of the FVC levels were attributed
to social and environmental factors, such as urban sprawl, commercial development, and
changes in rainfall and temperature. We will discuss this in Section 5.

Table 7. Parameter selection of ODRVIsoil and ODRVIveg (1999–2018) in Hefei.

Year ODRVIsoil ODRVIveg Year ODRVIsoil ODRVIveg

1999 0.465 1.67 2009 0.906 2.35
2000 0.681 2.36 2010 0.836 2.08
2001 0.411 1.88 2011 0.811 2.31
2002 1.297 2.63 2012 1.275 2.69
2003 0.763 2.29 2013 1.153 2.55
2004 0.823 2.41 2014 1.052 2.66
2005 1.057 2.56 2015 0.891 2.43
2006 1.103 2.59 2016 1.117 2.75
2007 0.947 2.51 2017 0.897 2.29
2008 0.864 2.28 2018 0.963 2.44
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Figure 11 shows the annual area changes of each FVC level in Hefei from 1999 to
2018. The total FVC area decreased by 3265.52 km2 over the past 20 years, representing a
decline of 33.08%. In 1999, the total area of all FVC levels was 9872.09 km2, but in 2004,
the total area decreased to 7926.51 km2, a decrease rate of 19.71%. From 2004 to 2010, the
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total area of all FVC levels continuously dropped to 4594.06 km2, a decrease rate of 42.04%.
However, from 2010 to 2018, the total FVC area showed an increasing trend. In 2018, the
total area of all FVC levels had increased by 2012.51 km2 compared with 2010, representing
an increased rate of 30.46%. The total area of all FVC levels in 2005 was 10,051.28 km2.
The MF accounted for 48.89% of the total area. In 2002, 2007, and 2015, the total area of
all FVC levels exceeded 10,000 km2, and the area of MF and MHF increased, indicating
a growth of vegetation coverage in these years. In the past 20 years, the area of MF had
greater fluctuation change than other FVC grades. For the other grades FVC, the order of
the standard deviation of the change ratio was ELF > LF > MHF > HF.

Figure 11. Annual area changes of each FVC grade in Hefei (1999–2018). The horizontal axis is the year, and the vertical axis
is the area of change for each FVC grade. A value less than 0 represents an area decrease, and greater than 0 represents an
area increase.

4.5. Results Analysis of FVC Changes in Hefei (1999–2018)

The total area of all FVC levels decreased from 44.74% in 1999 to 29.94% in 2018.
However, the area proportion of all FVC levels fluctuated over time. The highest area share
of all FVC levels was 62.34%, and the lowest was 20.82%. The FVC change was divided
into four stages in the past 20 years.

(1) Continuously rapid decay (1999–2004). The total area of all FVC levels showed a rapid
decline, with an average decline rate of 1.76% and a total area decrease of 1380.46 km2.
The area of ELF, LF, and MF decreased by 1.06%, 5.63%, and 14.29%, respectively. The
area of MHF and HF in the mountains of Hefei increased by 1.15% and 11.83 km2,
respectively.

(2) Rapid decline with fluctuations (2005–2008). The total area of all FVC levels decreased
by 3883.28 km2 from 2005 to 2008, with an average decrease rate of 7.97%. From 2005
to 2008, the area of MF decreased by 45.03%, and those of LF, MHF, and HF decreased
by 11.99%, 14.14%, and 0.19%, respectively.

(3) Fluctuated attenuation (2009–2013). The average vegetation cover area decreased by
382.9 km2 per year, the total area of all FVC levels decreased by 5.45%, and the areas
of ELF, LF, and MF decreased by 13.73%, 6.53%, and 1.61%, respectively. The area
of HF increased by 0.54%. The changes in the areas of LF and MF occurred in areas
surrounding the southwest, southeast, and south of downtown Hefei, and changes in
the area of HF were observed in the eastern and southeastern areas.
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(4) Fluctuated increase (2014–2018). The overall area of all FVC levels showed an increas-
ing trend (policy intervention factor), and the area increased by 1294.59 km2 in Hefei.
The areas of MF, LF, MHF, and HF increased by 10.02%, 1.12%, 4.22%, and 0.19%,
respectively. A rapid increase in the area of 1972 km2 occurred from 2015 to 2016. The
areas of LF, MF, and MHF increased by 5.76%, 21.21%, and 3.39% in the north and
center of downtown Hefei, respectively.

In the past 20 years, the fluctuations in the area of all FVC levels decreased, and the
vegetation cover increased in some years (2005, 2009, 2012, 2016, and 2017). The changes
in FVC were closely related to the current year’s temperature, rainfall, sunshine duration,
and other factors. The related discussions of driving factors will be shown in Section 5.

5. Discussion
5.1. Performance of the ODRVI Model

The ODRVI model comprehensively used a red band, NIR band, and a dynamic
adjustment parameter θ to construct a VI model, meeting the requirements of vegetation
extraction accuracy from multi-temporal Landsat images. In comparison with the OSAVI
model, the ODRVI model reduced the contribution of the NIR band by parameter ad-
justment, which improved the FVC estimation stability in high-medium vegetation cover
areas [43]. Compared with the WDRVI model, the ODRVI model enhanced sensitivity
to the soil type, roughness, and water content at the molecular level, which reduced the
influence from soil background [44]. Moreover, the ODRVI model applied an automatic
threshold adjustment method based on the particle swarm optimization algorithm (PSO).
The automatic threshold algorithm reduced the accuracy difference of vegetation extraction
from multi-temporal Landsat images. The algorithm had some advantages and could
be summarized as follows: (1) The PSO-based method avoided inaccuracies of coding,
and achieved a higher accuracy with fewer parameters; (2) the PSO-based method used
a single information-sharing mechanism, and obtained a better search speed; and (3) the
image entropy method was used for the fitness function of the PSO-based algorithm, which
ensured an optimal threshold for multi-temporal Landsat images [52].

The gray value identification of the ground object is a critical point of the performance
of VI models. The higher the gray value standard deviation (STD) between vegetation and
non-vegetation, the more accurate the identification of them [44]. The ODRVI enhanced
the gray value STD via parameter configuration (see Equation (8)). The performance of the
ODRVI model was verified with better identification of gray value cover in three regions
(Beijing, Hefei, and Guangzhou) and different temporal Landsat images in Section 4.2 (see
Table 2 and Figure 5). The overall accuracy of the ODRVI model was improved by an
average of 7.73% (see Table 3), the gray value STD increased by an average of 0.45 (see
Table 4), and the coefficient of determination (R2) of the ODRVI by linear regression with
FVC increased by 7.4% on average compared to other VIs. Therefore, the performance of
the ODRVI was better than other typical VIs, meeting the needs of vegetation mapping
from multi-spatiotemporal Landsat images.

However, the verification of the ODRVI model only used the surface reflectance
values of ground objects in Landsat images, and no other spectral image data were tested.
The same ground object imaged by different sensor types will have different reflectance
values due to different spectral response functions used, which brings some challenges for
accurate vegetation extraction. To overcome these challenges, further development of new
approaches or improving the VI model is required. In the current study, for different optical
remote sensing data, high accuracy of vegetation extraction was achieved by fusing the
characteristics of wavebands and automatic threshold algorithm. Further work will focus
on the utility testing of the proposed model in some other satellite images, for example,
Sentinel-2, ZY-2, and high spatial resolution data such as Worldview 4.

Comparison with machine learning algorithms, the overall accuracy of the ODRVI
model was slightly inferior, but it had many advantages in large-scale, multi-temporal
vegetation mapping and FVC estimation. These advantages can be summarized as follows:
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(1) The computational complexity was low and the production efficiency was high. The
spectral band’s computation load of the ODRVI model is far less than the machine learning
algorithms in both time and space complexity [28]. (2) The ODRVI model does not need
sample selection and training. However, for machine learning algorithms, the quality and
quantity of samples directly affected the accuracy of the algorithm [27]. (3) The ODRVI
model was more conducive to the FVC estimation using the mixed pixel decomposition
estimation model. The linear regression fitting degree was high between the ODRVI model
and FVC estimation models.

5.2. Influence Factors of the ODRVI Model

Like other typical VIs, ODRVI achieves a division of ground object gray grade by bands
combination calculation, which can improve the display of vegetation and suppressed
non-vegetation display in index images. However, the accuracy of ODRVI is affected by
the external environment, such as the quality of remote sensing images, spatiotemporal
change, seasonal change, weather, and climate [53]. The results of vegetation extraction
have differences derived from multi-temporal remote sensing images. In this experiment,
the selected images were acquired during the lush vegetation period. During the vegetation
growing season, the natural bare soil was covered by vegetation to reduce the interference
for vegetation extraction. Moreover, surface temperature, rainfall, and sunlight have
a crucial influence on vegetation growth. Suitable temperature, plentiful rainfall, and
adequate illumination bring dense and healthy vegetation and improve FVC with areas
increasing high and medium-high FVC levels. Conversely, the area of ELF and LF increased.
For example, compared with 2000, in 2001, the area of total FVC decreased by 516.85 km2,
among them, the area proportion of MHF and HF FVC decreased by 5.08% and 4.05%,
respectively. In 2017, compared with 2016, the area of total FVC decreased by 3888.42km2,
the area proportion of MF and MHF decreased by 27.56% and 7.51%.

Additionally, the performance of ODRVI is also related to the geographic spatial
variation of images and the value of parameter θ. Spatial variation leads to a difference in
reflectivity of the same ground objects. The values of parameter θ change the index value
of ground objects with variable discrimination, bringing a difference of accuracy. In this
study, the same value of parameter θ was selected for three regions to verify the applicable
performance of ODRVI in different spatial regions, which would lead to accuracy deviations
of FVC in special regions. However, an automatic threshold adjustment algorithm can
address the difference by selecting the optimal threshold for multi-temporal images [48].

5.3. Performance of FVC Estimation

The performance of FVC estimation is affected by the model sensitivity to the soil
background, atmospheric, spatial scale, and sensor type [4]. The soil noise affects VI
values due to soil properties and leads to FVC estimation deviation from the ground-truth
value [54]. FVC in high density vegetation cover areas tends to be overestimated, while
FVC in low density vegetation cover areas tends to be underestimated. In this paper,
improved FVC estimation fused the ODRVI and the VCVP model. The results of the
ODRVI were taken as input parameters and determined the accuracy of the FVC estimation.
All of the FVC estimation factors mentioned above were reflected in the ODRVI model. The
ODRVI model minimizes the influence from the soil background by parameter adjustment.
Therefore, the improved FVC model reduced the influence from the soil background.
Moreover, the proposed ODRVI model also reduced the influence of the atmosphere by a
dynamic adjustment of the reflectance value of the NIR band. For the influence of spatial
scale and sensor type, the ODRVI proposed an automatic threshold adjusting the algorithm
to overcome the accuracy difference for multi-spatiotemporal images [48], and improving
the stability of FVC estimation.

In experiments, we designed a comparison between the proposed FVC estimation
and ground-truth value. The proposed FVC estimation was also compared with the
DP-based FVC estimate in high- and low-density vegetation cover (see Figure 9). The
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performance of the VCVP-based FVC estimation reduced the deviation from the ground
true value by 4.38% and 11.27% than the DP-based FVC estimation in high- and low-density
vegetation cover areas, respectively. Therefore, the VCVP-based FVC estimation decreased
the overestimation of high density and the underestimation of low density in DP-based
FVC estimation [35].

However, vegetation constitutes the fundamental part of the earth’s ecosystem and
provides diversified features with spatiotemporal change. The variable features bring a
few challenges to estimating FVC from remote sensing images. Remote sensing images
are derived from electromagnetic waves of ground object reflectance, and FVC presents
vegetation structure, constructing a relationship between the two is crucial for FVC esti-
mation [55]. The current FVC estimation models are limited by seasonal variation, solar
illumination, climate change, and territory from remote sensing images.

5.4. Influence of Urban Sprawl on FVC Change

The total FVC area decreased by 3265.52 km2 over the past 20 years (Figure 10). The
urban area of Hefei has been continuously expanding, and the urban impervious surface
area has increased by 504.88 km2 compiled from historical economic development data
(1999–2018). Urban sprawl reduced the vegetation cover area and changed the spatial
distribution of each FVC level [56]. The impact of urban sprawl on FVC changes in Hefei
can be summarized as follows:

(1) Urban development reduced the total area of FVC and increased the fragmentation of
vegetation cover areas. The urban area expanded annually, and the fragmentation
degree of vegetated areas started to increase as areas surrounding the downtown
region were developed, such as in 2010, 2013, and 2014. In addition to seasonal change
and weather influences, the increased fragmentation of vegetated areas occurred due
to the expansion of the city and human activities.

(2) Urban sprawl changed the spatial distribution of all FVC levels. Urban expansion
decreased vegetation cover and changed the area of FVC to different degrees. For
example, the area of ELF, LF, and MF decreased by 13.39%, 6.35%, and 1.61%, respec-
tively, in the southwest and southeast areas of Hefei from 2009 to 2013.

(3) Urban sprawl changed the area of all grades of FVC. Urban greening and afforestation
slowed down the rate of FVC change to a certain extent. The area increased in the
ELF and LF levels. The government deepened its understanding of environmental
changes caused by urban development and ensured the protection and conservation
of original forests and green spaces. The proportion of MF and HF increased. The
proportion of HF increased by 0.18% from 1999 to 2018, and that of MHF increased
by 3.4%.

(4) Urban sprawl accelerated urban water pollution and reduced the vegetation cover in
the surrounding areas. An increase in the proportion of urban impervious surfaces
caused a large amount of surface runoff. Sediment, rich nutrients, pesticides, and
garbage entered the water, increasing water pollution and killing vegetation.

Urban FVC dynamic mapping is a crucial contribution to urban ecological environ-
ment quality, which substantially impacts the production and living standards of urban
dwellers. Thus, the resulting FVC maps from the current analysis can act as a basis for
urban planning policy formulation, and urban biodiversity conservation action develop-
ment. Particularly, if we separate the urban forest change from the FVC change, we may
assess the carbon source and sink characteristics, which further contributes to the studies
on urban climate change and urban heat islands. In this paper, the ODRVI model and the
VCVP-based FVC estimation can meet the need for urban FVC dynamic mapping from
multi-temporal Landsat images.

6. Conclusions

In this paper, we developed an improved VI model and enhanced the accuracy of
FVC estimation. The proposed ODRVI model and improved FVC estimation were used
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to map the annual dynamics of FVC in Hefei from multi-temporal Landsat images. Our
contributions were as follows:

(1) The ODRVI model was proposed to improve the sensitivity to the water content,
roughness degree, and soil type by minimizing the influence of bare soil in areas of
sparse vegetation cover. It improved the overall accuracy of vegetation extraction and
the ability to distinguish vegetation from non-vegetation.

(2) The ODRVI enhanced the stability of FVC estimation in the near-infrared (NIR) band
in areas of dense and sparse vegetation cover. The ODRVI model was verified to have
better performance in multi-temporal Landsat images, and obtain higher accuracy
than the typical VI models by dynamic threshold adjusting.

(3) An improved FVC estimation method based on the ODRVI model and VCVP-based
model was proposed. The VCVP-based FVC estimation had a more stable perfor-
mance than the DP-based FVC estimation in both high and low density vegetation
cover areas, and the classification error was relatively low.

(4) Annual dynamic change mapping of FVC using the VCVP-based FVC estimation
model was applied in Hefei over 20 years. The total FVC area had an overall decreas-
ing trend, and the fluctuation change of all FVC grades was observed. The process
of the fluctuation FVC change was divided into four stages: Continuous rapid de-
cay (1999–2004), rapid decline with fluctuations (2005–2008), fluctuation attenuation
(2009–2013), and fluctuated increase (2014–2018). Urban sprawl played a crucial role
in the change of all FVC grades.
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