
remote sensing  

Article

Calibration of a Polarimetric Microwave Radiometer Using a
Double Directional Coupler

Luisa de la Fuente 1,* , Beatriz Aja 1 , Enrique Villa 2 and Eduardo Artal 1

����������
�������

Citation: de la Fuente, L.; Aja, B.;

Villa, E.; Artal, E. Calibration of a

Polarimetric Microwave Radiometer

Using a Double Directional Coupler.

Remote Sens. 2021, 13, 2109.

https://doi.org/10.3390/rs13112109

Academic Editor: Isaac Ramos

Received: 19 April 2021

Accepted: 26 May 2021

Published: 27 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Ingeniería de Comunicaciones, Universidad de Cantabria, 39005 Santander, Spain;
ajab@unican.es (B.A.); artale@unican.es (E.A.)

2 IACTEC, Instituto de Astrofísica de Canarias, 38205 La Laguna, Spain; evilla@iac.es
* Correspondence: luisa.delafuente@unican.es

Abstract: This paper presents a built-in calibration procedure of a 10-to-20 GHz polarimeter aimed
at measuring the I, Q, U Stokes parameters of cosmic microwave background (CMB) radiation. A
full-band square waveguide double directional coupler, mounted in the antenna-feed system, is used
to inject differently polarized reference waves. A brief description of the polarimetric microwave
radiometer and the system calibration injector is also reported. A fully polarimetric calibration is also
possible using the designed double directional coupler, although the presented calibration method in
this paper is proposed to obtain three of the four Stokes parameters with the introduced microwave
receiver, since V parameter is expected to be zero for the CMB radiation. Experimental results are
presented for linearly polarized input waves in order to validate the built-in calibration system.

Keywords: radiometer; polarimeter calibration; microwave polarimeter; radiometer calibration;
radio astronomy receiver; cosmic microwave background receiver; Stokes parameters

1. Introduction

Remote sensing applications employ sensitive instruments to fulfill the scientific goals
of dedicated missions or projects, either space or terrestrial. The involved instruments can
be divided into two primary types: passive and active sensors [1]. They basically differ
in the manner of measuring the radiation from the object. In a passive sensor, the natural
radiation emitted from the object or scene being observed is detected. On the other hand,
active sensors illuminate the object under observation and the instrument measures the
reflected radiation from the object. Typical remote sensing applications cover a wide range
of the electromagnetic spectrum from 380 nm to 1 m wavelengths, including the visible
light up to 780 nm, infrared (from 780 nm to 0.1 mm), terahertz and microwave ranges [1].

Particularly, microwave technology emerged in the early 1960s providing a different
view and additional information from remote sensing [2]. Microwaves penetrate clouds
and more deeply into vegetation compared to optical waves, attributing improved sensing
capabilities independently of weather conditions to microwave systems. Microwave pas-
sive instruments are known as radiometers, whereas active ones as radars [1]. Among the
last ones, different classes are found, such as synthetic-aperture radar (SAR) systems [3–5],
side-looking airborne radar (SLAR), scatterometers [6], altimeters and meteorological
radars applied for diverse applications. Contrastingly, passive microwave radiometry
(PMR) has been involved in moisture measurements or meteorological applications [7,8]
among others. However, PMR in remote sensing can be applied not only to spaceborne ra-
diometers, but also to terrestrial experiments. These ones are based on radio telescopes and
focused on sky observation to characterize different cosmological parameters depending
on the application. Among these parameters, the measurement of the cosmic microwave
background (CMB) and the definition of its features, particularly its anisotropies and
polarization, are common scientific goals of recent instruments [9–12].
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Therefore, detecting the polarization of astronomical waves coming from the sky
provides valuable scientific information for a better knowledge of the universe, its origin
and its expected evolution. The CMB is a relic radiation which has attracted a sustained
interest in the cosmology science community for decades, and it is still under observation
both in terrestrial and space radio astronomy observatories, with a large number of big
experiments currently running and also with new ones under development to operate in
a near future. The CMB radiation pattern corresponds to linearly polarized waves, in a
small percentage [13,14]. A good knowledge of this polarization could demonstrate the
existence of gravitational waves in the early universe, through an accurate measurement of
primordial B-modes [15].

CMB received signals are very weak, as typically occurs in radio astronomy appli-
cations, and the use of very high sensitivity receivers is mandatory. Noise equivalent
temperature of such receivers must be as low as possible to reduce observation time and to
provide accurate recorded data. Several topologies have been typically employed in the de-
sign of CMB experiments, such as a Dicke receiver adapted with polarization modulators or
correlation schemes [16]. Nevertheless, for the most recent CMB polarization experiments
a polarimetric radiometer scheme is the preferred choice [17–21]. The front-end in a polari-
metric receiver is necessarily composed of devices able to separate orthogonal components
of the incoming wave. Some kind of internal correlators provide output signals propor-
tional to combinations of the Stokes parameters, which are the most useful magnitudes to
determine the polarization degree of an electromagnetic wave [22]. Since CMB radiation
has a certain degree of linear polarization and it is free of circularly polarized components,
some CMB polarimetric receivers are designed to obtain three Stokes parameters: I, Q
and U, because V parameter is expected to be zero. Some ground-based experiments
have detected a weakly circularly polarized radiation from atmospheric molecular oxygen,
considered as a contaminant [23]. However, the polarized atmospheric O2 signal decreases
significantly below 20 GHz [23].

Calibration of polarimetric radiometers is a critical issue, since the observed polariza-
tion data depend on accurate measurements of polar components. Some polarimeter CMB
receivers use an external sky source for calibration [15,18,24]. However, the inaccuracy of
such polarization calibrators is then directly translated to the Stokes parameters. On the
other hand, several methods employing external calibrators are commonly used, enabling
the injection of several waves with different polarizations. The linearly polarized signals
can be obtained by means of a wire grid [25] or rotatable dielectric sheets [26], while a
dielectric retardation plate is added for a circular polarization signal for a fully polarimet-
ric calibration [27,28]. From a different perspective, other calibration methods apply the
injection of polarized test waves through components such as directional couplers [29–32],
or coaxial probes inserted in a circular waveguide [33]. On the other hand, polarimetric
active radar calibrators have been demonstrated for radar polarimeter calibration [34].

This paper presents a built-in calibrator system based on the injection of signals
through a broadband double directional coupler (DDC) [35,36] for a polarimetric radiome-
ter working in 10 to 14 GHz and 16 to 20 GHz bands. Any arbitrary polarized wave can be
synthesized by an adequate combination of the amplitude and the phase of the injected
signals in two separated input ports of the DDC. When calibration signals are off, the DDC
does not affect the sky signal received by the radiometer. The system can be calibrated
in short time periods selected by the user. Experimental tests in a laboratory test-bench
have demonstrated the proper operation of the proposed calibration system, for different
synthesized polarized waves.

2. Polarimeter Description

The polarimeter presented in this paper is aimed at measuring the Stokes parameters
of a polarized incident wave covering two frequency ranges from 10 to 14 GHz and from
16 to 20 GHz. The ground-based experiment is expected to operate at Teide Observatory
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(2390 m, a.s.l, Canary Islands, Spain). In the following subsections the architecture of the
polarimeter as well as the calibration injector are described.

2.1. Receiver Architecture

The block diagram of the full receiver is shown in Figure 1. The receiver provides
four output voltage signals for each band. Each output signal is proportional to a linear
combination of the three Stokes parameters (I, Q, U). In general, those parameters, in terms
of the two linear orthogonal electric field components, in a standard Cartesian basis (x, y),
are expressed as time averages of electric field components shown in the Stokes vector (1):


I
Q
U
V

 =



〈
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〉
+
〈
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y

〉
〈

E2
x
〉
−
〈

E2
y

〉
2 · Re

〈
ExE∗y

〉
−2 · Im

〈
ExE∗y

〉

 (1)

where the two linear orthogonal electric fields Ex and Ey, are the components of the total
electric field in rectangular (Cartesian) coordinates which is expressed as the combination
of horizontal (x) and vertical (y) field components, with unitary vectors x̂ and ŷ as:

E = Ex x̂ + Ey ŷ (2)
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Figure 1. Block diagram of the full receiver, with the front-end module (FEM) operating at cryogenic
temperature (in blue) and the back-end module (BEM) at ambient temperature (in green).

The whole receiver comprises a front-end module (FEM) cooled down to 20 K and a
back-end module (BEM) at 300 K [37]. As the FEM operates at cryogenic temperature, the
equivalent noise temperature of the receiver is reduced to a few dozens of Kelvin.

In the FEM, the received radiation wave, after passing through the horn antenna, the
double directional coupler (DDC) and the polarizer, is split into two components through
an ortho-mode transducer (OMT). The (x, y) axis orientation of the incident field is defined
by the OMT, whereas the polarizer is rotated 45◦ with relation to the x axis of the OMT
(see Appendix A for details). The OMT outputs, through waveguide to coaxial adapters,
become the voltages vx and vy, which are complex magnitudes or phasors, with frequency
dependent amplitude and phase values. In terms of the two orthogonal electric fields Ex
and Ey, those voltages are given by:

vx =
1√
2

(
Ex − jEy

)
(3)

vy =
1√
2

(
−jEx + Ey

)
(4)
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Two cryogenic low-noise amplifiers (LNA) are placed just at the OMT outputs to
reduce the system noise temperature. Then, these voltages are amplified and filtered
through two branches in the BEM and correlated in a correlation module, in order to
obtain four outputs to calculate the Stokes parameters simultaneously. The amplifier stage
in the BEM adjusts the signal level required for the output detectors without increasing
the thermal load in the cryogenic stage and with a negligible contribution to the system
noise. The use of a phase-switching module in both branches enables a variable phase
modulation between the two polarization components. The small discrete phase step
(5.625◦) provided by the two 6-bit digital phase shifters (phase switches in the block
diagram), leads to redundant information, and a more accurate correction of systematic
errors is expected. The filtering stage splits the full frequency band into two sub-bands,
10–14 GHz and 16–20 GHz, thus avoiding the interfering signal at 15 GHz present at the
observatory location. The operation principle of the correlation module is described in
Appendix B. Microwave signals at correlation module outputs, prior to quadratic law
detection, considering ideal subsystems and amplifiers with unit gain, are:
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√

2
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(
1− ejφ

)
+ Ey

(
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)]
(5)
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1− j ejφ

)
+ Ey

(
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)]
(8)

where φ = φ2 − φ1 is the phase difference between branches.
In the next expressions, the orthogonal electric field values, Ex and Ey, are assumed to

be real magnitudes, and the quadratic diode detectors are supposed to be ideal microwave
to video converters, providing output voltages (DC Volt) according to:

Vok = |vk|2 with k = 1, 2, 3, 4 (9)

Correlation module output video voltages, Vok, expressed in terms of the electric field
components, are then given by:

Vo1
Vo2
Vo3
Vo4

 =
1
4
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
 E2

x
E2

y
2ExEy

 (10)

In terms of Stokes parameters, these output voltages, Vok, for each receiver frequency
band, can be expressed as:

Vo1
Vo2
Vo3
Vo4

 =
1
4


1 −cosφ sinφ
1 cosφ sinφ
1 −sinφ −cosφ
1 sinφ cosφ


 I

Q
U

 (11)

Since the final application of the instrument is to measure the polarization of the CMB,
which contents only linearly polarized waves, the Stokes parameter V is expected to be zero.
The type of correlation module used in the present receiver is not designed to measure the
Stokes parameter V, but its design is addressed to measure the three Stokes parameters I, Q
and U.
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2.2. Calibration Injector

For calibration purposes, a broadband double directional coupler (DDC) [35,36] based
on a pair of rectangular waveguide directional couplers is mounted in the FEM of the
receiver, just behind the antenna. Its insertion loss can be considered constant since it is
thermally stabilized. This coupler allows injecting a set of calibration waves composed
of linearly polarized waves for a polarimetric calibration to measure I, Q and U Stokes
parameters. The DDC configuration also allows the synthesis of an arbitrary elliptically
polarized wave as incoming radiation for a fully polarimetric radiometer calibration with a
receiver suitable to measure the four Stokes parameters. Since during the normal operation
of the polarimeter the DDC is cooled down to cryogenic temperatures, its contribution to
the system noise temperature is negligible due to its very low insertion loss. A schematic
description of the assembly to apply the calibration signals is depicted in Figure 2. By
means of a power divider, the broadband noise source injects the noise calibration waves
to the single pole double throw (SPDT) switches, which connect either the noise source,
with a hot temperature (Th) or the cold reference load, with a cold temperature (Tc), to
the coupled ports of the DDC. With combinations of both SPDT positions, three linearly
polarized waves can be injected for a zero-phase shift, (i.e., ϕ1 = ϕ2), while a 90◦ phase
difference would be needed for a circularly polarized wave. A coupling factor in the DDC
of around 32 dB minimizes the noise power level coming from the reference loads when
the SPDT is connected to them. Moreover, it should be considered that the noise source
hot temperature during the calibration process, should be chosen high enough in order
to distinguish the calibration signals from the input one (the received signal coming from
the horn antenna). Figure 3. shows a detail of the antenna-feed system composed of the
feedhorn, the DDC, the polarizer and the OMT, whereas a detailed view of a BEM board,
including subsystems of both branches and the Correlation Modules for both frequency
bands, is shown in Figure 4.
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3. Calibration Method

Calibration procedure consists in determining the sensitivities and offset parameters
of the radiometer, which contain the imbalances caused by hardware differences between
branches and in the correlation modules. The four output voltages are linearly related
to the first three Stokes parameters of an incident wave. Using a matrix formulation to
simplify equations, the (4× 1) matrix composed by those four video output voltages can be
expressed as an output voltage vector vo. It is related to the Stokes parameters vector (3× 1)
Sin, the (4 × 3) radiometer sensitivity matrix C, and the offset voltage vector (4 × 1) o. All
elements in those matrixes and vectors are real numbers. Then the forward model of the
polarimetric radiometer can be written as:

vo = C · Sin + o =


Vo1
Vo2
Vo3
Vo4

 =


α11 α12 α13
α21 α22 α23
α31 α32 α33
α41 α42 α43


 I

Q
U


in

+


o1
o3
o3
o4

 (12)
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where vo is the video output voltage vector, C is the radiometer sensitivity matrix (V/W), o
is the offset voltage vector and Sin is the Stokes parameters vector of the input noise-like
wave. During the calibration process, the unknown parameters, that need to be determined,
are the radiometer sensitivity matrix and the offset voltage vector. Since this polarimetric
radiometer exhibits sensitivity to three of the four Stokes parameters (I, Q and U), three
input stimuli are required for its complete calibration.

The radiometer offset o is not related to the input calibration waves, but directly to
the receiver noise temperature. Then, the output voltages measured for the cold reference
loads (Tc) connected to the DDC inputs, correspond to the offset parameters, obtaining an
offset voltage vector for each frequency band. Moreover, through the DDC, noise powers
from the noise source hot temperature (Th) are injected, whereas a microwave absorber
is placed in front of the horn antenna for the laboratory measurements. The injected
noise powers are the calibration standards for three linear polarized signals, which Stokes
parameters are modelled as vectors of the input noise-like signal. The injected powers
through the DDC provide received waves according to the reference coordinate axis system
(x, y). Those noise powers are chosen to be above the noise of the receiver to get a high
enough noticeable video output voltages with relation to the offset voltages. Moreover,
the injected powers should be low enough to ensure the linear operation of the receiver,
without gain compression issues. The received power spectral densities (PSD) of horizontal
(x) or vertical (y) wave components at polarizer input ports are given by:

PSDx,y(W/Hz) =
kTh

LPwDLSPDTCx,y
(13)

where Th is the hot noise temperature of the noise source, LPwD is the insertion loss of
the power divider, LSPDT is the insertion loss of the SPDT and Cx,y is the coupling factor
for each input of the DDC. Moreover, the phase difference between injected noise powers
in each reference axis is considered during the calibration, ϕx,y = ϕ2 − ϕ1 (see Figure 2).
The effective bandwidth B, of each frequency band, defines the horizontal (x) or vertical
component (y) power expressed as:

Px,y(W) = PSDx,y · B (14)

The normalized spectral response for both frequency bands, 10–14 GHz and
16–20 GHz, is depicted in Figure 5, for each one of the four detected outputs. In both
bands the effective bandwidth is around 4.1 GHz.
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Therefore, the Stokes parameters of the injected signal can be expressed as a combina-
tion of horizontal and vertical power components as:

Sin =

 I
Q
U


in

=

 Px + Py
Px − Py

2
√

Px
√

Pycos
(

ϕx,y
)
 (15)

With the aim of calibrating the instrument, three types of linearly polarized waves are
injected: horizontal, vertical and 45◦. These waves are obtained by switching the SPDTs in
Figure 2. between the noise source (Th) and the cold reference load (Tc), with the settings
listed in Table 1.

Table 1. Injected polarized waves for calibration.

Wave Position SPDT
(vcx)

Position SPDT
(vcy)

Injected Wave Phase
ϕx,y = ϕ2 −ϕ1

Stokes Power Vector
Sinp

Linearly Horizontal polarized
(0◦); p = H

Noise source (Th) Reference load (Tc) 0o

 Px
Px
0


Linearly Vertical polarized
(90◦); p = V

Reference load (Tc)
Noise source (Th) 0o

 Py
−Py

0


Linearly 45◦ polarized
(45◦); p = 45

Noise source (Th) Noise source (Th) 0o

 Px + Py
Px − Py

2
√

Px
√

Pycos
(

ϕx,y
)


The offset is subtracted from the receiver output voltages for each one of the linearly
polarized coupled waves. Expressing the Stokes parameters of the injected signal in terms
of input power, the detected voltages can be defined as:

vp = vop − o = C · Sinp (16)

with p = H, V, 45◦.
The twelve elements of the radiometer sensitivity matrix can be obtained as:

αk1 =
1
2

(
vH(k)

Px
+

vV(k)
Py

)
(17)

αk2 =
1
2

(
vH(k)

Px
− vV(k)

Py

)
(18)

αk3 =
v45(k)− αk1

(
Px + Py

)
− αk2

(
Px − Py

)
2
√

Px
√

Pycos
(

ϕx,y
) (19)

where k = 1, 2, 3, 4 correspond to each one of the four BEM output voltages. Equations (16)
to (19) are solved for each frequency band, obtaining a radiometer sensitivity matrix for
each one.

After calibrating the radiometer, the Stokes parameters vector of any unknown input
wave can be computed numerically using a pseudo-inverse matrix according to:

Su = (C
T
· C)

−1
· C

T
· (vo − o) (20)

where vo is the measured output voltages vector for any arbitrary unknown input
wave [18,27,29].
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4. Experimental Results

In this section the presented instrument has been calibrated following the proposed
method, in order to measure the Stokes parameters of an unknown wave. The measure-
ments are made indoor, with the polarimeter working at ambient temperature (300 K) as a
proof of concept.

4.1. Polarimetric Radiometer Calibration

The hot temperature of the noise source, for applying the calibration standards, has
been adjusted considering the actual system noise temperature, the receiver dynamic range
and the coupling factor of the DDC. The receiver noise temperature is around 225 K. The
linearly polarized waves required for the calibration have been obtained by switching the
SPDTs between the reference cold load and the noise source (see Figure 2.). The detected
voltages are measured with a data acquisition system with 0.5 s integration time. The
radiometer sensitivity matrix C (V/W) and the offset voltage vector o (V) are obtained for
an 11.25◦ phase step of the BEM phase switches module. The twelve sensitivity matrix
coefficients αkj (k = 1, 2, 3, 4; j = 1, 2, 3) and the offset voltage vectors for the 10–14 GHz and
16–20 GHz bands versus the phase difference between branches in the BEM φ = φ2 − φ1
are shown in Figure 6. The offset voltage vector elements, Ok, due to the receiver noise
temperature and to the 300 K background input noise, are of the order of millivolts. The
coefficients αk1 show an almost constant behavior with the phase modulation, since it
represents the sensitivity to the intensity of the input wave. The coefficients αk2 and αk3
are the sensitivity of the radiometer to the Q and U Stokes parameters, and they show a
dependence on the applied modulating phase as described in Equation (11) and shown in
Figure 6.

Additionally, a calibration was performed switching the phase state in the BEM be-
tween φ = 0◦ and φ = 180◦, with φ = φ2 − φ1. In this case, a single radiometer sensitivity
matrix C (V/W) is obtained using the amplitude of the squared detected output voltages
after removing the offset voltage vector o (V). This radiometer performance removes sys-
tematic errors and avoids gain or noise temperature fluctuations slower than the switching
time (1 s). The sensitivity matrix coefficients for the 10–14 GHz and 16–20 GHz bands are:

C0,180;10−14 GHz =


2.331 50.329 −6.343

0.5423 −47.169 6.191
1.374 4.418 47.57

1.4521 −47.169 −52.463

 (V/µW) (21)

C0,180;16−20 GHz =


0.1339 42.825 −4.192
1.074 −5.272 3.688
1.513 2.325 24.296
−0.458 −4.316 −28.66

 (V/µW) (22)

An error analysis has been performed, where a matrix of estimated uncertainties
has been obtained due to imperfect knowledge of the calibrator injector components.
These errors can be classified into systematic or random uncertainties. There are many
sources of potential systematic error. These include the uncertainties of the noise hot
temperature used to calibrate, the phase switches (loss and phase), the SPDT loss and
effects of radiometer passband averaging. In addition, random uncertainties include
physical temperature errors.
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The uncertainty sensitivity matrix δC (V/W) is derived considering the estimated
systematic and random uncertainties of the calibration standard parameters listed in
Table 2.

Table 2. Estimated uncertainties for various parameters of the calibration injector.

Calibration Standard Parameter Noise Source ENR (dB) Loss (dB) Phase (deg)

Random Uncertainty 0.001 0.001 0.1
Systematic Uncertainty 0.22 0.02 1

An uncertainty sensitivity matrix is calculated for each calibration standard parameter
uncertainty. The resulting total uncertainty, estimated using standard propagation of errors
for each frequency band, is dominated by the ENR (excess noise ratio) uncertainty of the
noise source, and δC, at each frequency band, are:

δC10−14 GHz =


2.03 1.93 2.09
2.03 2.09 2.11
2.09 2.07 2.12
2.07 2.74 2.09

% (23)
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δC16−20 GHz =


1.74 4.77 1.84
1.72 1.84 1.84
1.84 1.79 1.85
1.79 2.63 1.84

% (24)

The uncertainty due to low-frequency noise from thermal fluctuations and readout
electronics is expected to be mitigated by the phase-switch modulation.

4.2. Measurement of a Broadband Polarized Noise Wave

A broadband polarized noise wave was measured to demonstrate the radiometer
calibration method. The experiment consisted of a noise diode connected to a transmitting
antenna with linear vertical polarization, i.e., polar angle of 90◦. The transmitting antenna
is a broadband log-periodic antenna with a gain of 8.5 dB, R&S s can be modified rotating
the transmitting antenna, by using a coaxial rotary joint. Figure 7 shows the measurement
test-bench in the laboratory. The polar angle of the source can be modified rotating the
transmitting antenna, by using a coaxial rotary joint. Since the radiometer is working at
ambient temperature, the transmitted power is chosen for a linear operation of the receiver
and sufficiently above its equivalent noise temperature. The operation of the receiver is
demonstrated as a total power radiometer, for a fixed phase switches state.
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Figure 7. Radiometer measurement experimental set-up.

First, the four detected voltages of both frequency bands are acquired for a fixed
phase state φ = 0◦. The corresponding offset voltages, obtained during the calibration
process, are subtracted in order to obtain the Stokes parameters of the received wave Su,
applying Equation (20), with the calibration sensitivity matrix of the radiometer obtained
for the phase state 0◦. The measured Stokes parameters (I, Q and U), in terms of power
and normalized to the intensity for both frequency bands, are:

Su
∣∣
10−14 GHz =

 44.813
−43.204

0.445

 (nW); Su
∣∣
10−14 GHz = Iin

 1.0000
−0.9641
0.0099

 (25)

Su
∣∣
16−20 GHz =

 30.986
−28.812
−1.286

 (nW); Su
∣∣
16−20 GHz = Iin

 1.0000
−0.9299
−0.0415

 (26)

The obtained results show a polar angle of 87.85◦ for the 10–14 GHz frequency band
and 96.47◦ for the 16–20 GHz frequency band, for a theoretical 90◦ polar angle. Although
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the obtained results demonstrate the calibration method, there is a small deviation in the
measured polar angle with respect to the transmitted one. A source of uncertainty in the
measurement is caused by the coordinate axis alignment between the transmitting and
receiving antennas, since they are placed on different base holders. Systematic errors are
another source of uncertainty. Moreover, the results for the 16–20 GHz frequency band
show higher systematic errors since the polarizer and the DDC operating bandwidth is
limited to 19.5 GHz, but frequencies above this value are not rejected by the diplexer (see
Figure 5).

5. Discussion

The calibration technique presented herein demonstrates the capacity to retrieve the
I, Q and U Stokes parameters of an incoming radiation wave, when the polarimeter is
working at ambient temperature (300 K). The instrument with the Front-End Module (FEM)
cooled down to a cryogenic temperature of 20 K will have an equivalent noise temperature
of around 16 K [37], which will reduce observation time and provide accurate data from the
CMB. For the laboratory measurements, the receiver is working as a total power radiometer
and the transmitted signal power is set according to the receiver dynamic range, although
the phase switches in the BEM can be used to modulate the incoming signal in a coherent
detection in order to detect weaker signals. The switching speed should be fast enough to
overcome the 1/f noise when pairs of detected correlated outputs are subtracted. Because
the available phase step is as low as 5.625◦, a nearly continuous modulation is possible,
entailing the cancelation of time-variant systematic errors in the receiver.

The calibration procedure using the DDC has both similar advantages and limitations
when compared to other methods for calibrating polarimetric radiometers. One limitation
is that the effect of the radiometer antenna is not calibrated such as cross-polarization
leakage, which is not included in the terms of the polarimetric sensitivity matrix. This sen-
sitivity matrix characterizes the receiver performance including the polarizer, orthomode
transducer, cryogenic low-noise amplifiers and the BEM components. On the other hand,
both the DDC and the polarizer make use of square waveguides, which limit the opera-
tional frequency bands, due to the existence of higher propagation modes. However, the
advantages of the presented calibrator injector are not only the possibility to calibrate the
radiometer periodically in the operating mode, but also its simple and static structure that
can be cryogenically cooled. Moreover, the DDC exhibits an inherent low cross-polarization
and, therefore, a modification of the incoming polar wave is prevented.

6. Conclusions

In this work, a built-in injector system in applied to a polarimetric radiometer calibra-
tion. The described calibration injector uses a broadband double directional coupler (DDC),
which is a rectangular waveguide coupler integrated behind the feedhorn antenna. This
calibration system can be used to inject linearly, circularly or elliptically polarized waves
in order to achieve a fully polarimetric calibration. The proposed calibration method is
applied to a polarimetric radiometer intended for measuring I, Q and U Stokes parameters
of the cosmic microwave background, switching periodically a noise source to synthesize
linearly polarized waves. The calibration method has been demonstrated determining
the sensitivity matrix and the offset voltage vector of a polarimetric radiometer using a
set of three linearly polarized waves. The calibration procedure has been validated by
experimental tests with several polarized waves transmitted from a far field broadband
antenna having low cross-polarization properties.
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Appendix A

First components in the FEM of the receiver are passive waveguide devices which sep-
arate the electromagnetic field components of a received wave. The feedhorn antenna with
a circular waveguide output does not modify the polarization of the input electromagnetic
field. Moreover, the double directional coupler also preserves the input wave polarization,
because it internally has a square waveguide. Separation of orthogonal field components is
performed with the combination of a 90◦ polarizer and an ortho-mode transducer.

The polarizer connected to the OMT, is a differential 90◦ phase shifter for the two
orthogonal propagation modes (TE10 and TE01) in the square waveguide. The polarizer is
rotated 45◦ in relation to the x-axis of the OMT. The constant phase difference between the
two modes is achieved by internal stepped ridges in the square waveguide, placed in its
four internal walls. When the electric field at the polarizer input has a linear horizontal
or vertical orientation (see Figure A1), each orthogonal component propagates along the
ridged square waveguide with a different insertion phase. At the polarizer output the two
components have a 90◦ phase difference between them.
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Appendix A 
First components in the FEM of the receiver are passive waveguide devices which 

separate the electromagnetic field components of a received wave. The feedhorn antenna 
with a circular waveguide output does not modify the polarization of the input 
electromagnetic field. Moreover, the double directional coupler also preserves the input 
wave polarization, because it internally has a square waveguide. Separation of orthogonal 
field components is performed with the combination of a 90° polarizer and an ortho-mode 
transducer.  

The polarizer connected to the OMT, is a differential 90° phase shifter for the two 
orthogonal propagation modes (TE10 and TE01) in the square waveguide. The polarizer is 
rotated 45° in relation to the x-axis of the OMT. The constant phase difference between the 
two modes is achieved by internal stepped ridges in the square waveguide, placed in its 
four internal walls. When the electric field at the polarizer input has a linear horizontal or 
vertical orientation (see Figure A1), each orthogonal component propagates along the 
ridged square waveguide with a different insertion phase. At the polarizer output the two 
components have a 90° phase difference between them. 

(a) (b)  
Figure A1. Polarizer input. (a) Horizontal (𝐸௫) and (b) vertical (𝐸௬) electric field (blue). With 
orthogonal TE10 and TE01 components (red). 
Figure A1. Polarizer input. (a) Horizontal (Ex) and (b) vertical (Ey) electric field (blue). With
orthogonal TE10 and TE01 components (red).

The OMT is based on a turnstile junction with an inserted scatterer [38]. It is designed
with a circular waveguide input and two rectangular waveguide in-phase outputs. The
assembly polarizer-OMT (see Figure A2) has three physical ports and four electrical ports,
since at the polarizer input there are two orthogonal modes (TE10 and TE01).
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Appendix B 
The correlator module in the BEM combines signals from both branches to obtain 

additions or subtractions of microwave signals with, or without, a fixed 90° phase shift. 
Correlator circuits are implemented in microstrip technology in two sub-bands (10–

Figure A2. Assembly polarizer-OMT: (a) polarizer square waveguide input view; (b) OMT rectangu-
lar waveguide outputs view.

The four electrical ports for the S-parameters matrix of the polarizer-OMT assembly
are: port #1: OMT output vx; port #2: OMT output vy; port #3: polarizer input Ex; and port
#4: polarizer input Ey, as it is shown in Figure A3. Scheme with the four electrical ports of
the polarizer-OMT assembly.
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The ideal S-parameters matrix of the polarizer-OMT assembly is:

[S] =
1√
2


0 0 1 −j
0 0 −j 1
1 −j 0 0
−j 1 0 0

 (A1)

A reference phase (0◦) is taken for the transmission parameter relating the polarizer
input Ex with the OMT output vx. According to Equation (A1), with an input horizontal
electric field Ex coming into port #3, the two OMT output signals have the same amplitude
but are 90◦ phase shifted between them. Besides, the same happens when an input vertical
electric field Ey comes into port #4, providing the OMT output signals with same amplitude
and a 90◦ phase difference.

In general, for a total electric field, received by the feedhorn antenna, with horizontal
and vertical components, as it is expressed in Equation (2) the output voltages from the
OMT can be calculated using the above S-parameter matrix. The results are in Equations (3)
and (4).

Appendix B

The correlator module in the BEM combines signals from both branches to obtain
additions or subtractions of microwave signals with, or without, a fixed 90◦ phase shift.
Correlator circuits are implemented in microstrip technology in two sub-bands (10–14 GHz
and 16–20 GHz). Each correlation module is a six-port network, and its schematic is
outlined in Figure A4. The correlator inputs vinx and viny are the OMT outputs vx and vy
amplified, phase shifted and split into sub-bands through the two different branches. The
input voltages are combined in the correlator providing four output voltages proportional
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to a combination of the three Stokes parameters (I, Q and U) of an incoming wave. The
combination is carried out using two power splitters, two 3 dB/90◦ hybrid couplers and a
broadband 90◦ phase shifter in one branch. Scattering matrix of an ideal correlator without
unbalances is given by:

Scorr =
−1
2


j 1
1 j
j −j
1 1

 (A2)

For ideal subsystems and unity gain amplifiers, the correlator inputs are vinx = vx
and viny = vyejφ, where φ is the phase shift between branches in the BEM. Subsequently,
the output voltages are computed as

v1
v2
v3
v4

 = Scorr

[
vx

vyejφ

]
(A3)
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