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Abstract: With the rise of artificial intelligence, many advanced Synthetic Aperture Radar (SAR)
ship classifiers based on convolutional neural networks (CNNs) have achieved better accuracies
than traditional hand-crafted feature ones. However, most existing CNN-based models uncritically
abandon traditional hand-crafted features, and rely excessively on abstract ones of deep networks.
This may be controversial, potentially creating challenges to improve classification performance
further. Therefore, in view of this situation, this paper explores preliminarily the possibility of
injection of traditional hand-crafted features into modern CNN-based models to further improve
SAR ship classification accuracy. Specifically, we will—(1) illustrate what this injection technique
is, (2) explain why it is needed, (3) discuss where it should be applied, and (4) describe how
it is implemented. Experimental results on the two open three-category OpenSARShip-1.0 and
seven-category FUSAR-Ship datasets indicate that it is effective to perform injection of traditional
hand-crafted features into CNN-based models to improve classification accuracy. Notably, the
maximum accuracy improvement reaches 6.75%. Hence, we hold the view that it is not advisable to
abandon uncritically traditional hand-crafted features, because they can also play an important role
in CNN-based models.

Keywords: Synthetic Aperture Radar; ship classification; CNN; traditional hand-crafted features

1. Introduction

Synthetic Aperture Radar (SAR) is an active microwave sensor, which can work all-day
and all-weather, so it has been widely used in ocean surveillance. As a fundamental ocean
mission, ship monitoring plays an important role in marine transportation control, marine
fishery management, and maritime emergency rescue. Moreover, as an important step of
ship monitoring (i.e., an essential follow-up step of ship detection), ship classification can
provide more comprehensive marine traffic information, which is instrumental in more
effective marine decision-making deployment. Therefore, recently, it has received much
attention from a growing number of scholars.

Since the United States launched the first SAR satellite SEASAT, many SAR ship
classification methods have been proposed, such as k-nearest neighbor (KNN) models using
geometric features, Hu moment invariant features, and local radar cross-section (LRCS)
features, proposed by Huang et al. [1]; multiple kernel learning (MKL) models using naive
geometric features, proposed by Lang et al. [2]; joint feature and classifier selection models,
proposed by Lang et al. [3]; automatic identification system (AIS) knowledge transfer
models, proposed by Xu et al. [4]; support vector machine (SVM) models using statistical
and structural features, proposed by Wu et al. [5]; task-driven dictionary learning (TDDL)
models using histogram of oriented gradient (HOG) features, proposed by Lin et al. [6].
However, these traditional methods always have time-consuming and laborious manual
design procedures, complex theories, and weak migration capacity, so they have difficulties
in satisfying the needs of remote sensing with intelligent processing (RSIP).
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In recent years, with the rise of artificial intelligence, convolutional neural network
(CNN), a novel pattern of learning features spontaneously from data, has provided many
solutions for SAR ship classification. For example, Dong et al. [7] designed a deep residual
network to differentiate cargo ships, container ships, or tankers; Huang et al. [8] proposed
a group squeeze excitation sparsely connected convolutional network (GSESCNN) to
enhance SAR ship feature learning benefits; Hou et al. [9] built a SAR-AIS matchup dataset
from Gaofen-3 for ship classification, and then established a seven-category CNN model
to discriminate bulk carriers, general cargos, container ships, other cargos, fishing, tanker,
and other ships; He et al. [10] developed a densely connected triplet CNN with the fisher
discrimination regularized metric learning to extract more robust ship features for more
effective ship classification in medium-resolution SAR images; Zeng et al. [11] employed a
hybrid channel feature loss to achieve dual-polarized SAR ship grained classification. In
short, compared with traditional hand-crafted feature methods, these CNN-based ones
have many outstanding advantages, e.g., high-efficient, concise, and high-accurate. So far,
they have achieved state-of-the-art SAR ship classification performance.

Nevertheless, these CNN-based SAR ship models mostly uncritically abandon tra-
ditional hand-crafted features and rely excessively on abstract ones of deep networks. Is
this reasonable? Can the abstract features of deep networks fully represent real SAR ships?
Should the traditional hand-crafted features provided with mature theories and elaborate
techniques be abandoned completely? These questions worth pondering when one applies
various deep learning techniques to the SAR community.

Therefore, aiming at the above situation, this paper will explore preliminarily the
possibility of injection of traditional hand-crafted features into modern CNN-based models
to further improve SAR ship classification accuracy. The “inject” verb indicates vividly that
traditional hand-crafted features will be ambitious stimulants, and they can further push
the performance of CNN-based models.

Specifically, the following four studies will be covered in this paper.

• Illustrate what this technique is, including the definition of injection, and the introduc-
tions of traditional features and CNN-based models studied in this paper.

• Explain why this technique is needed, including the motivation of this paper, and the
meaningfulness of our work.

• Discuss where this technique should be applied, including where traditional features
should be injected into CNN-based models.

• Describe how this technique is implemented, including how to make it more effective.

To verify the effectiveness of this technique, we conduct experiments on the two public
three-category OpenSARShip-1.0 [1] and seven-category FUSAR-Ship [9] datasets. Experi-
mental results show that it is rather useful to conduct injection of traditional hand-crafted
features into CNN-based models to further enhance SAR ship classification performance.
Notably, the maximum accuracy improvement reaches 6.75%. Therefore, we believe that
it is unreasonable to abandon uncritically traditional hand-crafted features, because they
can really play a vital role in CNN-based models. The research results of our work will
be able to push a series of deep-seated thinking on the relationship between traditional
hand-crafted features and modern abstract ones for future scholars.

The main contributions of this paper are as follows:

1. The possibility of injection of traditional hand-crafted features into modern CNN-
based models to further improve SAR ship classification accuracy is explored.

2. What this technique is, why it is needed, where it should be applied, and how it is
implemented are introduced in this paper.

3. The proposed injection technique can improve SAR ship classification accuracy greatly,
and the maximum improvement can reach 6.75%.

The rest of this paper is arranged as follows: Section 2 introduces the methodology.
Section 3 introduces the experiments. Results are presented in Section 4. Discussions are
made in Section 5. Finally, Section 6 summarizes this paper.
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2. Methodology

In this section, we will introduce the methodology of the proposed injection tech-
nique, including what this technique is in Section 2.1, why it is needed in Section 2.2, where
it should be applied in Section 2.3, and how it is implemented in Section 2.4.

2.1. What

In this section, we will introduce what the injection technique is in Section 2.1.1. Then
we will roughly describe the four types of traditional hand-crafted features that will be
injected into CNN-based models in Section 2.1.2. Finally, we will present the four types of
CNN-based models that will receive traditional hand-crafted features in Section 2.1.3.

2.1.1. Injection

Figure 1 is the diagrammatic sketch of the proposed injection technique. From Figure 1,
first, SAR ship images are undergone hand-crafted feature extraction; then, the ambitious
stimulants are stored; finally, during the training and test processes, they are injected
directly into CNN-based models. Here, abstract features of deep networks will be decorated
with traditional hand-crafted ones. That is, the two are comprehensively integrated. As a
result, the SAR ship classification accuracy can be improved.

Figure 1. Diagrammatic sketch of the proposed injection technique.

Intuitively, the advanced CNN-based model is still regarded as the main body of the
classifier, because its classification performance is commonly better than the traditional
one. In other words, the traditional hand-crafted features will be essential condiments,
potentially pushing the classification accuracy to rise.

What needs special attention is that different from the traditional pre-processing
techniques, e.g., the speckle denoising in [12,13], and the OTSU segmentation in [14], and
the traditional post-processing tools, e.g., the Fisher discrimination in [10], as in Figure 2,
our proposed injection technique is straightforward.

Figure 2. Diagrammatic sketch of traditional pre-processing and post-processing.

It has the following four apparent advantages:

• The first is that the direct injection is easier to implement than the pipeline structure
that might involve some tedious interface designs.

• The second is that the direct injection does not lose the original input image infor-
mation. However, for the pipeline structure in Figure 2, although some interference
can be suppressed after images are pre-processed via traditional means, the amount
of information in the original image will be reduced. In other words, it is to obtain
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interference suppression at the expense of a certain amount of ship information. This
practice will potentially have a negative impact on the final classification of ships.

• The third is that the direct injection does not propagate error from the previous phase.
However, for the pipeline structure in Figure 2, if there are some deviations in the
traditional pre-processing techniques, then such deviations will be propagated to the
follow-up steps, and even become bigger and bigger, which seriously reduces the final
classification accuracy.

• The fourth is that the direct injection can ensure the end-to-end training-test as long as
the stimulants are prepared, more concisely, efficiently, and automatically. However,
for the pipeline structure in Figure 2, if the traditional post-processing tools are
adopted, e.g., the Fisher or support vector machine (SVM) discrimination, one has to
train both the CNN-based model and the post-processing discriminator, respectively,
which not only decreases the algorithm efficiency but also adds redundant interface
designs. Particularly, it is a common consensus that the end-to-end training-test is one
of CNN-based models’ advantages. If this advantage is lost, the design of classifiers
will become rather troublesome.

2.1.2. Traditional Hand-Crafted Features

Traditional hand-crafted features have the advantage of strong interpretability, com-
pared with the abstract ones of deep networks. One usually uses mature theories and
elaborate techniques to explicitly define features of different ship categories. For limited
pages, this paper will study the four classical, mature and widely-used SAR ship features,
including—(1) the HOG features, (2) naive geometric features (NGFs), (3) local radar cross
section features (LRCS), and (4) principal axis features (PAFs). They are all valuable features
designed by human, and suitable for SAR ship interpretation, because they are close to
experts’ experience. Other traditional hand-crafted features will be studied in the future.

(1). HOG Features

In 2016, Song et al. [15] designed HOG features for the SAR automatic target recognition
(ATR) (i.e., SAR-HOG). It can characterize targets’ shape information. Later, Lin et al. [6]
adopted this SAR ship HOG features to train both their classifier and dictionary jointly in
the TDDL framework. Their research results showed that SAR ship HOG features have a
better classification accuracy than the 2D comb features (2DC) [16], the selected features
(SF) [17], and the superstructure scattering features (SS) [18]. Therefore, HOG features will
be studied in this paper.

SAR ship HOG feature extraction involves three basic steps, i.e., gradient computation,
orientation binning, and block description.

Step 1: Gradient Computation.

First, the adaptive Gamma correction method [19] is used to normalize the input SAR
image into [0, 1] to weaken the interference of speckle noise and reduce the negative impact
of local violent steepness in SAR images.

Then, compute the gradient of each pixel, including the amplitude and direction, i.e.:

G(x, y) =
√

G2
x(x, y) + G2

y(x, y) (1)

α(x, y) = arctan
[

Gx(x, y)
Gy(x, y)

]
(2)

where G(x, y) denotes the gradient amplitude, and α(x, y) denotes the gradient direction,
ranging from 0◦ to 360◦ (i.e., from 0◦ to 180◦, and the opposite direction from −180◦ to
0◦). Gx(x, y) denotes the gradient amplitude in x-direction and Gy(x, y) denotes that in
y-direction; they are calculated by:

Gx(x, y) = H(x + 1, y)− H(x− 1, y) (3)
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Gy(x, y) = H(x, y + 1)− H(x, y− 1) (4)

where H(i, j) denotes the grey value at the i-th line and j-th column in image.

Step 2: Orientation Binning.

First, divide the image into many small cells, and each cell contains 64 pixels. Each cell
will be analyzed, and then used for a representation of one local features. Afterward, divide
the gradient direction of each cell into 12 bins, i.e., each bin is 30◦ (360◦/12), and then
compute the gradient histogram of each cell among each bin. Furthermore, the gradient
amplitude also needs to be weighted into the gradient histogram so as to maintain the
importance of different local regions [20].

Step 3: Block Description.

First, make each four cells form a block, and then normalize the gradient histogram of
each cell among each block, so as to weaken the interference of speckle noise and reduce
the negative impact of local violent steepness in SAR images [21]. Then, the gradient
histograms from each cell among each block are concatenated to construct the final feature
descriptor of a block. Finally, take the cell size as the block stride to slide windows in the
whole image to form different blocks. Feature descriptors of all blocks are concatenated
to obtain the final HOG feature descriptor of a SAR ship image. As a result, for a SAR
image with a 128 pixel × 128 pixel, the final SAR ship HOG features are described by a
32,884-dimension column vector (See reference [20] for detailed calculation.), i.e.:

FHOG = ( f1, f2, . . . , f32884)
T ∈ R32884×1 (5)

Figure 3 is a HOG feature visualization result of a SAR ship.

Figure 3. SAR ship HOG features. Here, two small regions are magnified for more intuitive visual
observation of HOG features.

(2). Naive Geometric Features (NGFs)

In 2018, Lang et al. [22] proposed the NGFs for SAR ship classification. Combining
with the AIS knowledge transfer, they inputted NGFs to an adaptive SVM, and then
classified carriers, container ships, and tankers, successfully. Later, Huang et al. [1] also
adopted NGFs to classify SAR ships. With a KNN classifier, different types of ships, e.g.,
tankers, container ships, and bulk carriers, can be distinguished smoothly in the NGFs
domain. Therefore, NGFs will be studied in this paper.

Following [22], we adopt 11-dimension NGFs for SAR ship classification, i.e.:

FNGFs = ( f1, f2, . . . f11)
T ∈ R11×1 (6)

where fi (i = 1, 2, . . . , 11) is defined in Table 1. From Table 1, there are two basic factors
in NGFs—ship length L denoted by f 1, and width W denoted by f 2 [1], which are the
simplest features to describe the size of a ship, so this kind of features is called “naive”.
The other features (f 3, f 4, . . . , f 11) are derived from these two basic factors. Compared



Remote Sens. 2021, 13, 2091 6 of 31

with the strictly defined geometric features, NGFs can minimize the complexity of image
processing [2].

Table 1. Definition of NGFs. The length (L) and width (W) are both measured by pixel numbers.

NGFs Definition Description

f1 L Length
f2 W Width
f3 2 × (L + W) Naive perimeter
f4 L ×W Naive area
f5 L/W Aspect ratio (a)
f6 W/L Aspect ratio (b)
f7 (L + W)2/(L ×W) Shape complex
f8 W2/(L2 + W2) /
f9 (L −W)/(L + W) /
f10 L/(L + W) /
f11 W/(L + W) /

To acquire the NGFs of a ship, we propose a rotation maximum projection method
(RMP) to extract automatically the minimum bounding rectangle of a ship, temporarily
and preliminarily. Other much simpler and faster ways to calculate ship length, width, and
orientation will be studied further in our future work. This paper does not focus overly
on this, because the injection technique (what, why, where and how) is really the core con-
tribution of this paper. RMP contains four basic steps, i.e., rotation, x-direction projection
calculation, maximum projection acquisition, and bidirectional projection. Figure 4 is the
diagrammatic sketch of RMP.

Figure 4. Rotation maximum projection (RMP). (a) An original SAR ship image; (b) an rotated SAR
ship image with a maximum projection in x-direction; (c) the minimum bounding rectangle.

Step 1: Rotation.

The SAR ship image is rotated by the counter-clockwise. The rotation interval is set to
5◦, an optimal value to alleviate the strong sidelobe interference. In the future, the above
process can be optimized further to preferably alleviate the sidelobe interference. However,
this paper does not focus overly on this, because the injection technique (what, why, where
and how) is really the core contribution of this paper. Additionally, different types of ships
have different types of sidelobes, so we will also check whether in some cases the CNN can
exploit the sidelobes for classifying large reflective ships, in the future.

Step 2: x-direction Projection Calculation.

Calculate the projection value in the x-direction of per rotation, and then record that
projection value. Figure 5 shows the projection in the x-direction per rotation. In Figure 5,
there are 72 sub-figures in total where 72 is from 360◦/5◦. In Figure 5, the pulse width of
each curve denotes the projection value in the x-direction.
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Figure 5. Projection in the x-direction per rotation. There are 72 sub-figures in total where 72 is from 360◦/5◦.

Step 3: Maximum Projection Acquisition.

Calculate the pulse width of per rotation projection in Figure 5 based on an empirical
threshold of a 100-pixel grey level (Y-axis). This empirical threshold can ease the interfer-
ence from some strong sidelobes, which are reflected in some clutters for the projection
pulses. The largest pulse width denotes the maximum projection. Finally, retrieve the
rotation angle according to the maximum projection. In Figure 5, the rotation angle to the
horizontal is 170◦ by the counter-clockwise direction.

Step 4: Bidirectional Projection.

Project the maximum projection rotated image in x-direction and y-direction, respec-
tively, to extract the final minimum bounding rectangle of a ship. Finally, based on this
minimum bounding rectangle, the length (L) and width (W) of a ship can be achieved.
Accordingly, NGFs can also be calculated on the basis of L and W.

(3). Local Radar Cross Section (LRCS)

In 2013, Xing et al. [23] designed the LRCS features for ship classification in TerraSAR-
X images. They thought that the radar cross section (RCS) of ships in SAR images consists of
numerous scatterers that come from the ship’s local physical structure, so the local physical
structures of different types of ships are distinct due to their different functionalities. To
verify the correctness of this idea, based on the LRCS features, they proposed a sparse
representation method to classify container ships, oil tankers, and bulk carriers, successfully.
Later, Huang et al. [1] also used the LRCS features to describe SAR ships of different
categories. With a KNN classifier, the LRCS features can improve ship classification
performance. Therefore, LRCS will be studied in this paper.

LRCS is defined by:

FLRCS = (sbow, µbow, σbow, smiddle, µmiddle, σmiddle, sstern, µstern, σstern)
T ∈ R9×1 (7)

where sbow, smiddle, and sstern denote the sum value from the ship bow, middle and stern
respectively. mbow, mmiddle, and mstern denote the mean value. sbow, smiddle, and sstern denote
the standard deviation value.
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Using RMP described previously, one can extract the minimum bounding rectangle
of a ship. Then, one can calculate the LRCS features of a ship by directly dividing the
minimum bounding rectangle into three sections—ship bow, middle, and stern. Here,
discrimination between the ship bow and the stern is based on expert experience.

(4). Principal Axis Features (PAFs)

In 2011, Margarit et al. [24] proposed the PAFs. Combining a fuzzy logic (FL) decision
rule, they classified oil tankers, container ships, bulk carriers, reefer ships, cruise ships,
coaster ships, car ferry ships, medium, and small ships, successfully. Later, Huang et al. [1]
also used PAFs to describe SAR ships of different categories, e.g., bulk carriers, container
ships, and tankers. Their experimental results showed that PAFs could offer a similar
classification accuracy to LRCS features. Therefore, PAFs will be studied in this paper.

PAFs are defined by:

FPAFs = ( f1, f2, . . . , f50)
T ∈ R50×1 (8)

where fi denotes the normalization value to 50-dimension from the bow-to-stern axis.

2.1.3. CNN-Based Models

CNN-based models can learn multi-level representations of ships from much training
data. These representations are usually abstract, which are often hard to understand.
Despite all this, they still receive much attention from a growing number of scholars due
to their outstanding advantages, e.g., more efficient, simpler, and more accurate. For
limited pages, this paper will study the four classical, mature, famous, and widely-used
CNN-based models, including—(1) AlexNet, (2) VGGNet, (3) ResNet, and (4) DenseNet.
So far, many scholars in the SAR community have applied them for SAR ship classification.
Therefore, they are selected to be studied in this paper.

Moreover, to reflect the universality of the proposed technique, the network structures
of the above CNN models are not redesigned exclusively for the SAR ship classification
task, except for necessary fine tuning to accommodate SAR ship classification tasks. E.g.,
the original RGB three-channel for optical images is changed to the grey one-channel for
SAR images. Certainly, the redesign techniques of network structures are also not the focus
of this paper. Additionally, other CNN-based models will be studied in the future.

(1). AlexNet

AlexNet is the first CNN-based model for image classification proposed by Alex et al. [25].
Since it achieved victory in the 2012 ImageNet image classification competition, CNN-based
models have completely dominated the deep learning image classification community,
whose accuracies have far surpassed those of traditional methods. Due to its representa-
tiveness, AlexNet will be studied in this paper.

Figure 6 shows the network architecture of AlexNet. From Figure 6, there are four
convolutional blocks being used to extract 2D features of ships. In the deep learning
community, these abstract features, marked by cuboids, are called the “feature maps”.
L denotes the inputted image size. In this paper, followed by [26], L is set as 128. With
the deepening of networks, the size of the feature maps becomes smaller and smaller
(L→L/2→L/4→L/8→L/16), and the channel width roughly becomes larger and larger
(1→96→256→384→256), where 1 denotes the channel number of SAR images, i.e., single-
channel grey images.

The feature maps of the terminal Conv block 4 are flattened to a column vector, i.e.,
2D features→1D features. Thus, the ship features extracted by AlexNet can be denoted by:

FAlexNet = ( f1, f2, . . . , f16384)
T ∈ R16384×1 (9)

where 16,384 is from L/16 × L/16 × 256 (L = 128). Then, they are inputted two fully
connected layers (FC1 and FC2) to refine features further. Finally, the refined features are
inputted a three-neuron layer with a soft-max activation for the final ship classification.
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Figure 6. Network architecture of AlexNet.

(2). VGGNet

VGGNet was proposed by Simonyan et al. [27] in 2015. Different from AlexNet, it
used several small 3 × 3 convolutional kernels to replace the raw big 7 × 7 ones. This
not only decreases the parameter amount but also increases the network learning ability.
So far, it has become a milestone design template for follow-up many networks. In the
SAR ship classification community, Zeng et al. [11] used it in 2021 to design a classifier to
differentiate bulk carriers, container ships, or tankers, in dual-polarized Sentinel-1 SAR
images. Therefore, VGGNet will be studied in this paper.

Figure 7 shows the network architecture of VGGNet. From Figure 7, there are 5 con-
volutional blocks being used to extract 2D features of ships. The added Conv block 5 can
extract more semantic features of ships. Moreover, the 7 × 7 adaptive average pooling
in the original VGGNet is deleted, because the size of the terminal Conv block 5 is 4 × 4,
which is smaller than the max-pooling stride. Other processing details are similar to that of
AlexNet. Finally, the ship features extracted by VGGNet can be denoted by:

FVGGNet = ( f1, f2, . . . , f8192)
T ∈ R8192×1 (10)

where 8192 is from L/32 × L/32 × 512 (L = 128).

Figure 7. Network architecture of VGGNet.

(3). ResNet

ResNet was proposed by He et al. [28] in 2016. It used multiple layers with parameters
to learn the residual representation between inputs and outputs, which addressed the
problem of network degradation when networks become deeper and deeper. So far, ResNet
has replaced VGGNet as the basic feature extraction network in the field of computer
vision, which are widely used for image classification, object detection and semantic
segmentation. In the SAR ship classification community, Wang et al. [26] adopted it to
study semi-supervised SAR ship classification topics; on the three-category OpenSARShip-
1.0 dataset, their model offered a ~72% classification accuracy. Therefore, ResNet will be
studied in this paper.

Figure 8 shows the network architecture of ResNet. The right part of Figure 8 is the
diagrammatic sketch of residual blocks. A residual block is described by:

y = F(x) + x (11)
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where x denotes the input, y denotes the output, and F (•) denotes the residual mapping to
be learned. Detailed introduction of the residual block can be found in reference [28].

Different from AlexNet and VGGNet, ResNet adopted the global average pooling
(GAP) [29] to realize transformation from 2D features to 1D features. The window size of
GAP is L/32 × L/32. Finally, the ship features extracted by ResNet can be denoted by:

FResNet = ( f1, f2, . . . , f2048)
T ∈ R2048×1 (12)

where 2048 is the channel number of the terminal Residual block 4 due to the GAP operation,
so it is not from L/32 × L/32 × 2048. Additionally, the features extracted by the ResNet are
not refined further by FC layers, which means that they are directly inputted a three-neuron
layer with a soft-max activation for the final ship classification. This can reduce the risk of
over-fitting due to less parameters.

Figure 8. Network architecture of ResNet. ReLU denotes the rectified linear unit activation function,
which will be defined by Equation (20).

(4). DenseNet

DenseNet was proposed by Huang et al. [30] in 2017. Its dense learning mechanism
ensures that each layer has the direct access to the gradients from the loss function and
the original input signal; finally, an implicit deep supervision can be achieved. Addi-
tionally, it realized the feature reuse by connecting features on channel, which had better
performance, less parameters, and lower computation cost than ResNet. In the SAR ship
classification community, Huang et al. [8] applied it to SAR ship classification in 2018. Com-
bining the squeeze excitation mechanism, their CNN-based model can achieve satisfactory
classification results. Therefore, DenseNet will be studied in this paper.

Figure 9 shows the network architecture of DenseNet. The right part of Figure 9 is the
diagrammatic sketch of dense blocks. Detailed introduction can be found in reference [30].
From Figure 9, the overall architecture of DenseNet is similar to that of ResNet, except that
the raw ResNet’s residual blocks are replaced by the dense ones. Finally, the ship features
extracted by DenseNet can be denoted by:

FDenseNet = ( f1, f2, . . . , f2048)
T ∈ R2048×1 (13)

Figure 9. Network architecture of DenseNet.
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2.2. Why

In this section, we will explain why this injection technique is needed, including
the motivation of this paper, and the meaningfulness of our work. The reasons can be
concluded as four aspects—(1) valuable traditional hand-crafted features, which will be
expounded in Section 2.2.1; (2) inexplicable CNN-based abstract features, which will
be expounded in Section 2.2.2; (3) limited labeled data, which will be expounded in
Section 2.2.3; (4) improve classification performance further, which will be expounded in
Section 2.2.4.

2.2.1. Valuable Traditional Hand-Crafted Features

Before the rise of deep learning, scholars in the SAR ship classification community
was keen on designing a series of ship features, for the sake of better characterizing the
attributes of different types of ships. After decades of development, so far, numerous ship
features have been proposed, e.g., normalization radar cross section features (NRCS) [1],
local radar cross section ones (LRCS) [23], 2D comb ones (2DC) [16], selected features
(SF) [17], superstructure scattering features (SS) [18], HOG ones [6,15], naive geometric
features (NGFs) [22], principal axis features (PAFs) [24], Hu moment ones [31], scattering
center ones [1], and so on.

These features are designed by experienced experts, and in the design process, some
mature theories are used, which can support their interpretability. Accordingly, they have
achieved satisfactory classification results on many occasions. For example, Huang et al. [1]
have used NGFs, Hu moment features, scattering center ones, PAFs, PAFs with three
sections, LRCS ones, and LRCS ones with three sections, respectively, to confirm their
effectiveness on medium-resolution Sentinel-1 SAR images. In their reports, combined
with a KNN classifier, the above various features can classify bulk carriers, container
ships, and tankers, successfully, with a ~70% average accuracy. This accuracy (i.e., the
classification success rate) is close to that of the CNN model used in Wang et al. [26].
Of course, this phenomenon may also be caused by limited label data, which will be
expounded in Section 2.2.3. Therefore, if such elegant features are abandoned without
thinking, it would be a waste. Although they may have somewhat limited migration
capabilities for multi-sensor satellites and multi-scenarios, a slight algorithmic fine tuning
might alleviate the negative impact of this defect.

Furthermore, more importantly, by this explainable way, the SAR target recognition
technology possessing both transparent decision-making and strong interpretability can
avoid decision-making risks in high-risk applications, such as military target reconnais-
sance, and precision strikes, thereby gaining the trust of users in the application. This also
confirms their value strongly.

To summarize, the traditional hand-crafted features are valuable, and they should
not be completely abandoned. This is one of this paper’s motivations to develop the
injection technique.

2.2.2. Inexplicable CNN-Based Abstract Features

Since the rise of deep learning, CNNs have achieved many practical successes during
the period when neural networks were out of favor, and they have recently been widely
adopted by the computer vision community. They have four advantage of the properties of
natural signals: local connections, shared weights, pooling, and the use of many layers [32],
to learn spontaneously the multi-level abstract representation of objects on big data. They
have achieved the most advanced performance in the fields of image classification, object
detection, and semantic segmentation. For this, scholars in the SAR community began to
explore their applications in both SAR ship detection [33–44] and classification. For SAR
ship classification, compared with traditional hand-crafted feature methods, CNN-based
models have offered state-of-the-art classification performance.

Yet, the internal working mechanism of CNN-based models is opaque, and also
lacks interpretability, which have become a bottleneck restricting the reliable and credible
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application of SAR image target recognition technology [45]. In other words, its internal
process is a “black-box” model. It is difficult for human to understand both the working
mechanism and decision-making logic behind it; it is also difficult to grasp the boundary
of the system’s decision-making behavior.

Furthermore, different from optical images, SAR images are reflections of the electro-
magnetic scattering characteristics of targets; it is usually difficult to recognize by common
human vision directly. Their interpretation often requires well-trained, special, and experi-
enced experts. Thereby, it may be unreasonable to rely entirely on CNN-based models in
the field of computer vision, because CNN-based models are mostly based on ordinary
human vision, rather than experienced experts. For the above, the interpretability of deep
learning has become a hot and difficult research topic in the SAR field when using artificial
intelligence, which is crucial to understand and trust model for decision-making.

Thence, we hold the view that one should better not rely excessively on abstract
features of deep networks. The decision-making of CNN-based models is opaque, and lack
of interpretability, which also potentially create some risks in high-risk applications such
as SAR military target reconnaissance and precision strike, hard to obtain users’ trust in
the application. Moreover, although these abstract features are strong in most cases, the
model would also become fragile if noise is mixed into the learned data [46]. Therefore, to
ensure the rationality of decision-makings, we believe that CNN-based models need to be
combined with extensive analysis and evaluation using the SAR technology.

To summarize, the unexplainability of abstract features in CNN-based models is also
one of this paper’s motivations to develop the injection technique. Injection of traditional
mature hand-crafted features into them can alleviate the negative impact of this defect, and
reduce the decision-making risk.

2.2.3. Limited Labeled Data

It is a common consensus that the premise to ensure the effectiveness of deep learning
is a large amount of labeled training data. Generally, the more data is, the better the
learning benefit is [43]. CNN-based models are good at discovering potential logical laws
from a large amount of data. These laws may contain new useful knowledge to improve
classification performance. For example, in the computer vision community, there are 15
million images in the ImageNet dataset [47]; this can ensure models to learn correct rules.

Nevertheless, if the data is limited, their performance is bound to degrade. They may
fall into over-fitting with a small amount of data. Although many small sample techniques
have been proposed to alleviate this defect, this problem has not been fundamentally
resolved. Different from the various massive datasets in the computer vision community,
the labeled sample number of SAR ship datasets is usually difficult to reach hundreds,
thousands, or millions of, considering limited SAR satellites.

So far, several famous datasets have been proposed for SAR ship detection, e.g.,
SAR ship detection dataset (SSDD) [48], SAR-Ship-Dataset [49], AIR-SARShip-1.0 [50],
high-resolution SAR images dataset (HRSID) [51], and large-scale SAR ship detection
dataset (LS-SSDD-v1.0) [52]. They have greatly promoted the development of CNN-based
SAR ship detection technology. Yet, the sample number of these datasets is only tens of
thousands, which is still far less than that of the ImageNet dataset.

Worse still, to make a dataset for SAR ship classification is much more difficult
than making a detection one, because judging the type of ship in SAR images is far more
challenging than judging whether the ship exists. The former is difficult to be accomplished
by merely relying on expert experience, where some prior AIS information is always needed.
However, the latter can be accomplished based on expert experience without too much
prior information, because the shape of ships is often different from sea clutter and shore
facilities obviously. Additionally, the limited AIS information also increases the difficulty of
making SAR ship classification datasets. The time-consuming and labor-intensive manual
matching process with AIS is also rather troublesome. The above factors have led to very
few sample data in the existing SAR ship classification datasets, e.g., OpenSARShip-1.0 [1],
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and FUSAR-Ship [9]. As a result, with such a small number of samples, it will be difficult
to guarantee the learning benefits of CNN-based models; even in extreme cases, the model
performance may be degraded due to over-fitting.

Therefore, we hold the view that in the condition of limited label data, to rely solely on
CNN-based models is not reliable enough. Thus, this is also one of this paper’s motivations
to come up with the injection technique.

2.2.4. Improve Classification Performance Further

Further improving the classification performance of SAR ships is an obvious goal of
this paper. Since traditional manual features are valuable, and the modern CNN-based
features are controversial in interpretability, can we combine the two? Perhaps, this can
further improve the classifier performance. This is a straightforward hypothesis to motivate
our work. We think that this hypothesis is not a sheer fabrication, and it is reasonable.

The following three factors might support our point of view, to some degree.

• If a kind of traditional hand-crafted features achieves a 70% classification accuracy,
and a CNN-based model also achieves a 70% classification accuracy, it will very likely
to produce a superposition effect to further improve accuracy, i.e., 70% + 70% > 70%,
although it must be unlikely to obtain an accuracy of 140%. At least, this phenomenon
has a higher probability to occur, from the intuitive understanding.

• In the computer vision community, the model ensemble can integrate the learning
ability of each model to improve the generalization ability of the final model. To some
extent, such injection process might be regarded as the model ensemble.

• When traditional hand-crafted features are injected into CNN-based models, it may
alleviate the adverse effects of over-fitting from limited data. The over-fitting usually
refers that the performance on training data is far better than on test data. When
the network is about to overfit during training, traditional features might correct the
original wrong optimization direction effectively.

• When traditional hand-crafted features are injected, the previous decision-making
results of the raw CNN-based models seem to be further screened by experienced
experts, which can effectively correct errors.

Finally, driven by the above motivations, we boldly decide to carry out this work. In
fact, our research results in Section 4 can indeed show that such a hypothesis is reasonable
and effective, in terms of further improving SAR ship classification accuracy.

2.3. Where

Based on the previous analysis, we have determined to conduct injection of traditional
hand-crafted features into CNN models. As is introduced in Section 2.1.1, the advanced
CNN-based model is still the main body of the classifier, because its classification perfor-
mance is often better than the traditional one. Correspondingly, the traditional hand-crafted
features are essential condiments, which are used to push the classification accuracy to
rise. So, where should we inject traditional features into the CNN model now? This is a
question worth thinking about. In this section, we will share our insights.

For the sake of explanation, let list the four types of traditional hand-crafted features
that will be injected into CNN-based models, i.e.:

FHOG = ( f1, f2, . . . , f32884)
T ∈ R32884×1

FNGFs = ( f1, f2, . . . f11)
T ∈ R11×1

FLRCS = (sbow, µbow, σbow, smiddle, µmiddle, σmiddle, sstern, µstern, σstern)
T ∈ R9×1

FPAFs = ( f1, f2, . . . , f50)
T ∈ R50×1

(14)

From Equation (14), they are all 1D column vectors; there are 32,884 feature elements
in HOG features, 11 ones in NGFs, 9 ones in LRCS features, and 50 ones in PAFs. In fact,
most of the traditional features of ships are described by a column vector.
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2.3.1. Location 1: Conv, Residual, or Dense Blocks

It is unrealistic to inject the 1D traditional features into 2D Conv, Residual, or Dense
blocks in Figure 10a, because their dimensions are inconsistent. First, the dimensions
of different traditional features are different. They cannot be converted directly into the
same-size 2D feature maps; although the zero-filling operation can be used to handle,
it will destroy the original feature attributes. Furthermore, the whole flow will become
rather troublesome, if one converts the 2D feature maps of CNN-based models into a 1D
feature vector, then, performs a fusion operation with traditional features, and finally,
recovers the 2D feature maps for follow-up convolutional operations, in Conv, Residual, or
Dense blocks.

Figure 10. Where to inject. (a) Location 1: Conv/Residual/Dense blocks; (b) location 2: 1D reshaped CNN-based features;
(c) location 3: the internal FC layer; (d) location 4: the final FC layer.

2.3.2. Location 2: 1D Reshaped CNN-Based Features

Immediately, we consider the location 2 (Figure 10b) behind location 1. In location 2,
the circles denote the 1D reshaped CNN-based features after the flatten or GAP operations, i.e.:

FAlexNet = ( f1, f2, . . . , f16384)
T ∈ R16384×1

FVGGNet = ( f1, f2, . . . , f8192)
T ∈ R8192×1

FResNet = ( f1, f2, . . . , f2048)
T ∈ R2048×1

FDenseNet = ( f1, f2, . . . , f2048)
T ∈ R2048×1

(15)

From Equation (15), these reshaped CNN-based features are all 1D column vectors;
there are 16,384 feature elements in FAlexNet, 8192 ones in FVGGNet, 2048 ones in FResNet, and
2048 ones in FDenseNet.

Therefore, the location 2 might be selected to inject, because traditional features and
CNN-based ones are both 1D. Simple splicing of vector elements seems to be able to achieve
their feature fusion. We think that it is suitable for ResNet and DenseNet, but not suitable
for AlexNet and VGGNet. Because, from Figures 6–9, behind the location 2, the combined
features will be refined by another two FC layers in AlexNet and VGGNet. The learned
weight parameters of FC layers may weaken the representation ability of the raw traditional
features. In other words, rich expert experience may be diluted. Our experimental results
in Section 5.1 can confirm this insight.
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2.3.3. Location 3: Internal FC Layer

The location 3 (Figure 10c) of the internal FC layers is also not recommended, because
the learned weight parameters of the follow-up FC layers may also weaken the representa-
tion ability of the raw traditional features. This is similar to the location 2, so we will not
descript it in detail any more.

2.3.4. Location 4: Terminal FC Layer

Finally, the location 4 (Figure 10d) of the terminal FC layer is recommended. In
this way, the traditional hand-crafted features and CNN-based abstract ones are directly
involved in the final decision, i.e., the three-neuron soft-max activation marked in green
for three-category SAR ship classification. As a result, the process of CNNs’ extracting ship
abstract features is supervised effectively by traditional hand-crafted features; meanwhile
traditional features also maintain the raw attributes with rich expert experience.

2.4. How

How to implement this injection technique is the core of this paper. How to realize
the maximum potential of this technology more effectively is also very important. First,
we think that since the traditional hand-crafted feature is a kind of auxiliary material to be
injected into the CNN model, in our implementation process, we should better keep the
original CNN main body unchanged as much as possible. This can reduce the difficulty of
interface designs. With this rule, in this section, we will provide several possible modes,
including—(1) the concatenation (Cat) in Section 2.4.1, (2) the weighted concatenation
(W-Cat) in Section 2.4.2, (3) the dimension unification adding (DU-Add) in Section 2.4.3, (4)
the dimension unification weighted adding (DUW-Add) in Section 2.4.4, (5) the dimension
unification concatenation (DU-Cat) in Section 2.4.5, (6) the dimension unification weighted
concatenation (DUW-Cat) in Section 2.4.6, and (7) the dimension unification weighted
concatenation with feature normalization (DUW-Cat-FN) in Section 2.4.7. Among them,
DUW-Cat-FN is recommended preferentially by this paper. Other more modes can be
studied further in the future.

2.4.1. Mode 1: Cat

A simple direct feature concatenation is straightforward. It is also inspired by
DenseNet. From Equation (14) and Equation (15), the reshaped CNN-based features are
1D column vectors, and the traditional hand-crafted features are also 1D column vectors,
so the direct feature concatenation can be achieved. This process can be described by:

Finjection = FCNN©Fhand-cra f ted (16)

where FCNN denotes the reshaped 1D CNN-based features, Fhand-crafted denotes the tradi-
tional hand-crafted features, and Finjection denotes the final features with the traditional
hand-crafted injection. The symbol “©” denotes the concatenation operation. Here, if the
dimension of FCNN is x and that of Fhand-crafted is y, then that of Finjection is x + y.

Figure 11 is the diagrammatic sketch of the concatenation. From Figure 11, the raw
CNN-based features and traditional hand-crafted ones are both directly responsible for the
final classification decision-making, without bells and whistles.

Figure 11. Diagrammatic sketch of the concatenation (Cat).
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2.4.2. Mode 2: W-Cat

We can also adopt the weighted concatenation mode to reflect the importance of
different types of features, i.e.:

Finjection = (α · FCNN)©(β · Fhand-cra f ted) (17)

where α denotes the weight coefficient of the CNN-based features and β denotes that of
the traditional hand-crafted ones. They both range from 0 to 1, and their sum equals 1.

Figure 12 is the diagrammatic sketch of the weighted concatenation (W-Cat). From
Figure 12, in experiments, we can add another two neurons to adaptively learn α and β,
marked in the blue and purple circles. Moreover, a soft-max function can also be used to
make their sum equal 1.

Figure 12. Diagrammatic sketch of the weighted concatenation (W-Cat).

2.4.3. Mode 3: DU-Add

Vector adding can also achieve the feature fusion. It is inspired by ResNet. However,
the raw CNN-based features cannot be added directly with the traditional hand-crafted
ones, because their dimensions are inconsistent, as in Equation (14) and Equation (15).
Therefore, the dimension unification is required, i.e.:

Finjection = FCNN + fDU

(
Fhand-cra f ted

)
(18)

where fDU denotes the dimension unification operation. In this paper, we use a multi-layer
perceptron (MLP) to achieve the embedding of the traditional hand-crafted feature space
into the CNN-based feature space, which is defined by:

fDU(X) = ReLU(W · X + b) (19)

where X denotes the input of MLP, fDU(X) denotes the output, W is the learned weight
matrix, and b is the learned bias. ReLU denotes the rectified linear unit activation function,
defined by:

f (x) = max{0, x} (20)

Moreover, in the MLP, the terminal neuron number is set to the dimension of the
CNN-based features for the effective embedding.

Figure 13 is the diagrammatic sketch of the dimension unification adding (DU-Add).
In Figure 13, the feature embedding can achieve both the feature dimension reduction for
FHOG and the feature dimension increasement for FNGFs, FLRCS, and FPAFs. Additionally,
we do not process the CNN features for embedding, because our basic design principle is
to try to keep the original main body CNN unchanged.
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Figure 13. Diagrammatic sketch of the dimension unification adding (DU-Add).

To be clear, although we provide this idea of DU-Add, we do not recommend it. Even
we feel that it does not improve the accuracy, because the direct adding of two different
types of features may make the learning generate confusion during training. Essentially, the
physical meanings to which they belong are completely inconsistent. It seems unreasonable
to blindly add the abstract and the concrete directly. Our experimental discussions in
Section 5.2 can confirm this insight.

2.4.4. Mode 4: DUW-Add

Similar to the relationship between Cat and W-Cat mentioned previously, the DUW-
Add can be regarded as an improvement of DU-Add. It can be described by:

Finjection = γ · FCNN + µ · fDU

(
Fhand-cra f ted

)
(21)

where γ denotes the weight coefficient of the CNN-based features, and µ denotes that of
the traditional hand-crafted features. They both range from 0 to 1, and their sum equals 1.

Figure 14 is the diagrammatic sketch of the DUW-Add. Similarly, in experiments, we
can add another two neurons to adaptively learn γ and µ marked in the blue and purple
circles. Moreover, a soft-max function can also be used to make their sum equal 1. In the
likewise, DUW-Add is also not recommended, and the specific reasons are the same as
DU-Add. Perhaps, to add two adaptive learning weight parameters may outperforms
the raw DU-Add; however, it is still unreasonable to blindly add the abstract and the
concrete, directly.

Figure 14. Diagrammatic sketch of the dimension unification weighted adding (DUW-Add).

2.4.5. Mode 5: DU-Cat

The DU-Cat is an improved version of the Cat. We find that there is still an apparent
shortcoming in the direct concatenation; that is, the huge feature dimension imbalance
between the traditional hand-crafted features and the CNN-based ones potentially reduces
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the benefits of network learning. Figure 15a,b is the diagrammatic sketch of this short-
coming. For the sake of explanation, here, we take the ResNet as an example to describe
this shortcoming.

Case 1: If we inject HOG features into the ResNet model, a learning imbalance will
appear in Figure 15a. Specifically, the dimension of FHOG is 32,884 from Equation (5); while
that of FResNet is 2048 from Equation (11). 32,884 is far bigger than 2048. This obviously
will cause the entire model to fall into the optimization of the traditional features during
training. As a result, the over-fitting on FHOG will occur potentially.

Case 2: If we inject NGFs into the ResNet model, an opposite learning imbalance will
also appear in Figure 15b. Specifically, the dimension of FNGFs is 11 from Equation (6);
while that of FResNet is 2048 from Equation (11). 11 is far smaller than 2048. This obviously
will also cause the entire model to fall into the optimization of the CNN-based features
during training. As a result, the over-fitting on FResNet will occur potentially.

Case 3: Therefore, the balanced feature dimension in Figure 15c is needed, so we
propose the DU-Cat for better feature learning.

Figure 15. Diagrammatic sketch of the huge feature dimension imbalance. (a) the feature dimension of Fhand-crafted is far
larger than that of FCNN, i.e., Case 1; (b) the feature dimension of FCNN is far larger than that of Fhand-crafted, i.e., Case 2; (c) a
balanced feature dimension, i.e., Case 3 of the DU-Cat. Here, the x-axis represents the optimization direction, and the y-axis
represents the feature dimension.

Figure 16 is the diagrammatic sketch of the DU-Cat. In Figure 16, the embedding
process of the traditional hand-crafted features is similar to that of the DU-Add, where
one MLP is used to achieve this goal, except that the adding operation is replaced by a
concatenation one. In this way, the traditional hand-crafted features can also supervise the
entire training process, more stably. Finally, DU-Cat can be described by:

Finjection = FCNN© fDU(Fhand-cra f ted) (22)

Figure 16. Diagrammatic sketch of the dimension unification concatenation (DU-Cat).

2.4.6. Mode 6: DUW-Cat

The DUW-Cat is an improved version of the DU-Cat. It can be described by:

Finjection = (η · FCNN)©
(

λ · fDU(Fhand-cra f ted)
)

(23)

where η denotes the weight coefficient of the CNN-based features and λ denotes that of
the traditional hand-crafted ones. They both range from 0 to 1, and their sum equals 1.
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This weighted concatenation mode can reflect the importance of different types of features
through learning adaptively.

Figure 17 is the diagrammatic sketch of the DUW-Cat. The acquisition of the weight
coefficients η and λ is similar to that of α and β, so we will not repeat the description.

Figure 17. Diagrammatic sketch of the dimension unification weighted concatenation (DUW-Cat).

2.4.7. Mode 7: DUW-Cat-FN

We also find that DUW-Cat still has a shortcoming. That is, there is a big gap in the
value of different types of features. Although their feature dimensions have been unified
via DU, their feature values have not been done. It is obviously that big features will
dominate small ones during training. This defect will cause the network training to be
unstable, and it will also produce a certain degree of over-fitting.

Therefore, we also propose a dimension unification weighted concatenation with
feature normalization (DUW-Cat-FN) to handle this problem. Inspired by Kang et al. [53],
we adopt the l2 normalization (l2-norm) to constrain the range of values of the traditional
hand-crafted features to the same level before injection.

l2-norm for a d-dimension vector x is defined by:

||x ||2 = (∑d
i=1|xi|2)

1
2 (24)

Then, x is normalized as:
x̂ =

x
||x ||2

(25)

where x̂ is the d-dimension normalized vector.
Finally, DUW-Cat-FN can be described by:

Finjection = (η · FCNN)© fl2-norm

(
λ · fDU(Fhand-cra f ted)

)
(26)

where fl2-norm denotes the l2 normalization.
Figure 18 is the diagrammatic sketch of the DUW-Cat-FN. To be clear, the CNN-based

features are not normalized by l2-norm; because in their original networks, the popular
batch normalization (BN) technique [54] has been added by us, which can produce similar
effects to l2-norm.
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Figure 18. Diagrammatic sketch of the dimension unification weighted concatenation with feature
normalization (DUW-Cat-FN).

To summarize, DUW-Cat-FN is finally recommended by this paper. When adopting
DUW-Cat-FN, the final execution flow chart of the proposed injection technique is shown
in Figure 19. First, extract traditional hand-crafted features of an inputted SAR ship image;
then, normalize traditional features by l2; next, embed traditional features into CNN-based
feature space by MLP. To here, the ambitious stimulants are prepared. Extract CNN-based
abstract features; perform weighted feature concatenation, i.e., injection of traditional
hand-crafted features into CNN-based models; finally, output the classification results.

Figure 19. Execution flow chart of the proposed injection technique with DUW-Cat-FN.

3. Experiments

Our experiments are run on a personal computer (PC) with the Intel i9-9900K CPU,
NVIDIA RTX2080Ti GPU, and 32G memory using the Python language based on the
Pytorch framework. Additionally, CUDA10.1 and CUDNN7.4 are used to call GPU for
training acceleration.

3.1. Datasets

Two open datasets are used to verify the effectiveness of the proposed injection
technique, i.e., OpenSARShip-1.0 and FUSAR-Ship.
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3.1.1. Dataset 1: OpenSARShip-1.0

OpenSARShip-1.0 was release by Huang et al. [1] in 2018. It is established for Sentinel-
1 ship interpretation. There are three main ship categories in the OpenSARShip-1.0 dataset,
i.e., bulk carriers, container ships, and tankers. These three ship types cover around 80%
of the international shipping market [1,55,56]. OpenSARShip-1.0 was labeled correctly by
experts, semi-automatically, drawing support from the AIS information. Each ship inte-
grated with the AIS messages was also verified in the Marine-Traffic Website [57] to ensure
its reliability. There are two product types in the OpenSARShip-1.0 dataset– single look
complex (SLC) and ground range detected (GRD). SAR ship images of SLC and GRD are
both dual-polarized (VV, VH). The resolution of SLC is from 2.7 m × 22 m to 3.5 m × 22 m
in range and azimuth, that of GRD is 20 m× 22 m. The SLC products with VV- and VH- po-
larization are used in this paper due to their higher resolutions, following Wang et al. [26].
The GRD products can be studied in the future.

It should be noted that the OpenSARShip-2.0 dataset [58] is not employed in this work,
because the background noise interferences [58] among it create great challenges for the
automatic extraction of a ship’s the minimum bounding rectangle, which further increases
the difficulty of traditional hand-crafted feature extraction. Therefore, the OpenSARShip-
1.0 dataset that offers clean ship chips is employed. The OpenSARShip-2.0 dataset can be
studied in the future.

Furthermore, the sample numbers of the three ship categories are imbalanced in the
OpenSARShip-1.0 dataset. Therefore, to prevent the adverse effects of the class-imbalance,
we set the number of training samples to be equal for each class (338), according to the
least number of samples in all three categories with the training–testing ratio as 7:3, as
in [26]. The remaining samples are regarded as testing samples. Table 2 shows the sample
numbers of the training and test set of the OpenSARShip-1.0 dataset. Figure 20 shows the
three-category SAR ship images in the OpenSARShip-1.0 dataset.

Table 2. Training and test set of the OpenSARShip-1.0 dataset.

Category Training Test All

Bulk carrier 338 328 666
Container ship 338 808 1146

Tanker 338 146 484

Figure 20. Three-category SAR ship images in the OpenSARShip-1.0 dataset. (a) Bulk carrier;
(b) container ship; (c) tanker.

3.1.2. Dataset 2: FUSAR-Ship

FUSAR-Ship was released by Hou et al. [9] in 2020. Its SAR images are from the quad-
polarization Gaofen-3 satellite. SAR image size in FUSAR-Ship is 512 pixel × 512 pixel. Its
SAR ship resolution is ~1.5m in range and azimuth. There are eight main ship categories in
the FUSAR-Ship dataset, i.e., bulk carriers, container ships, fishing, tankers, general cargos,
other cargos, others, and false alarms. In this paper, the former seven categories are used,
and the false alarm category is abandoned, because this paper focuses on identifying ship
types, rather than discriminating between false alarms and real ships.
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We divide the FUSAR-Ship dataset into a training set and a test set with the ratio of 7:3.
Table 3 shows the sample numbers of the training and test set of the FUSAR-Ship dataset.
Figure 21 shows the seven-category SAR ship images in the FUSAR-Ship dataset.

Table 3. Training and test set of the FUSAR-Ship dataset.

Category Training Test All

Bulk carrier 1150 494 1644
Container ship 1219 523 1742

Fishing 1101 473 1574
Tanker 1215 521 1736

General cargo 1205 517 1722
Other cargo 1214 521 1735

Other 1211 520 1731

Figure 21. Seven-category SAR ship images in the FUSAR-Ship dataset. (a) Bulk carrier; (b) container
ship; (c) fishing; (d) tanker; (e) general cargo; (f) other cargo; (g) other.

3.2. Training Details

Following [26], SAR images are resized to 128 pixel × 128 pixel by image resampling
using the bidirectional interpolation to facilitate the network training, due to limited GPU
memory. Adam [59] is used as the training optimizer, with a learning rate of 0.0001 on the
OpenSARShip-1.0 dataset, and 0.001 on the FUSAR-Ship dataset. The decay rate beda-1
and beda-2 of Adam are set to 0.9 and 0.999, respectively. The total training epoch is 100.
Due to limited GPU memory, the training batch size is set to 32. After traditional hand-
crafted features are stored, CNN-based models would be triggered to start training from
scratch. Moreover, the network parameters are initialized by the Kaiming’s method [60].

3.3. Loss Function

The cross entropy (CE) is used as the loss function, defined by:

Ls = −
1
N ∑N

i=1 y′i log(yi) (27)

where yi denotes the predicted label, yi
′ denotes the ground truth label, and N denotes the

number of the training samples.
To be clear, the CNN-based models with traditional hand-crafted feature injection have

the same loss function as their original models, because the proposed injection technique
does not change the input interface. The final training CE loss is back-propagated to all
depths of networks, including both the original CNN-based models and the added MLP
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feature embedding network. The training will be triggered after the traditional hand-
crafted features are prepared. To be clear, the loss is not back-propagated to the traditional
feature extraction process.

3.4. Evaluation Indices

Following most scholars [1–11], the classification accuracy (Acc) is used as the evalua-
tion indices, defined by:

Acc =
tp + tn

tp + tn + f p + f n
× 100% (28)

where tp denotes the true positives, tn denotes the false positives, fn denotes the false
negatives and tn denotes the true negatives. Briefly speaking, the number of correct ship
classifications (Ncorrect) is the numerator, and the total number of all ships (Nall) is the
denominator. Additionally, the confusion matrix is also used to show the classification
accuracy of each ship category.

4. Results

In this section, we will present the SAR ship classification results with and without
the proposed injection technique in Section 4.1. Moreover, we also make an accuracy
comparison with pure traditional hand-crafted feature methods in Section 4.2, which
is used to confirm the true value of pure traditional hand-crafted features. Finally, the
classification confusion matrices are shown in Section 4.3, where we take the HOG feature
injection into VGGNet as an example to show them.

To be clear, in this section, we merely show the best results of the proposed injection
technique. Namely, the location 4 (where) in Section 2.3.4 and the mode 7 (how) in
Section 2.4.7 are selected, which are both recommended preferentially by this paper. More
discussions on where and how will be introduced in Section 5.

4.1. Accuracy

Table 4 shows the SAR ship classification results on the OpenSARShip-1.0 dataset
with and without injection. In Table 4, 8 denotes without injection; others in the “Feature
Type” item represent that different types of traditional hand-crafted features are injected
into the corresponding CNN model.

From Table 4, the following conclusions can be drawn:

1. Injection of any type of traditional hand-crafted features into any type of CNN-
based models all can improve the classification accuracy, effectively. The smallest
accuracy improvement reaches 1.41% from DenseNet + PAFs. Notably, the largest
accuracy improvement reaches 6.25% from VGGNet + HOG. The above confirm
powerfully the effectiveness of our proposed injection technique. Therefore, our
proposed injection technique can improve the accuracy without using gorgeous
network structure designs, easily and significantly. Certainly, it is obvious that our
hypothesis in Section 2.2.4 is also reasonable. The motivation of our research has been
well verified, experimentally.

2. Different CNN-based models have different sensitivities to different traditional fea-
tures. Specifically, when AlexNet receives LRCS, the accuracy reaches the best
(75.51%). For VGGNet, the best injection feature is HOG (76.76%); for ResNet, that is
PAFs (76.52%); for DenseNet, that is LRCS (78.00%). The internal mechanism of this
phenomenon may need to be further researched in the future. In other words, how to
select the most suitable traditional hand-crafted features for injection into the most
suitable CNN-based model is a meaningful work, which is worthy of further study in
the future.

3. The sensitivity differences of different models to different traditional features are all
different, but seem to be not rather significant, universally around or even lower than
2%. Specifically, for AlexNet, the optimal LRCS injection is better than the worst
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NGFs one by 2.11%; for VGGNet, the optimal HOG injection is better than the worst
NGFs one by 1.56%; for ResNet, the optimal PAFs injection is better than the worst
HOG one by 1.09%; for DenseNet, the optimal LRCS injection is better than the worst
PAFs one by 1.63%. The internal mechanism of this phenomenon needs to be further
researched in the future.

4. For the original model with relatively poor performance, the accuracy improvement is
more significant. For example, the original AlexNet model has a 70.05% classification
accuracy, and its improvement with injection is 4.29% on average; but, the original
DenseNet model has a 74.96% classification accuracy, and its improvement with
injection is only 2.09% on average. The internal mechanism of this phenomenon may
also need further research in the future.

Table 5 shows the SAR ship classification results on the FUSAR-Ship dataset with and
without injection. Similar conclusions can also be obtained from Table 5, which shows the
effectiveness of our proposed injection technique.

Furthermore, from Tables 4 and 5, the classification accuracies on the OpenSARShip-
1.0 dataset are greatly lower than those on the FUSAR-Ship dataset, i.e., ~75% of the former
< < ~85% of the latter. This is because ships’ sizes in the OpenSARShip-1.0 dataset are
very small, leading to the poor performance. Generally, CNN-based models often tend
to fail more for small ships. In the future, the classification of small SAR ships will be
studied emphatically.

Table 4. SAR ship classification results on the OpenSARShip-1.0 dataset with and without injection.

CNN Model Injection Feature Type Acc (%) Improvement (%) Improvement
Remarks

AlexNet

8 70.05 - -
HOG 74.02 3.97

Avg = 4.29%
Max −Min = 2.11%

NGFs 73.40 3.35
LRCS 75.51 5.46
PAFs 74.41 4.36

VGGNet

8 70.51 - -
HOG 76.76 6.25 1

Avg = 5.55%
Max −Min = 1.56%

NGFs 75.20 4.69
LRCS 76.44 5.93
PAFs 75.83 5.32

ResNet

8 72.54 - -
HOG 75.43 2.89

Avg = 3.46%
Max −Min = 1.09%

NGFs 76.13 3.59
LRCS 75.90 3.36
PAFs 76.52 3.98

DenseNet

8 74.96 - -
HOG 76.83 1.87

Avg = 2.09%
Max −Min = 1.63%

NGFs 76.99 2.03
LRCS 78.00 3.04
PAFs 76.37 1.41

1 The maximum accuracy improvement on the OpenSARShip-1.0 dataset is 6.25% (VGGNet + HOG), where only
the proposed injection technique is used, without extra processing means.
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Table 5. SAR ship classification results on the FUSAR-Ship dataset with and without injection.

CNN Model Injection Feature Type Acc (%) Improvement (%) Improvement
Remarks

AlexNet

8 77.42 - -
HOG 82.38 4.96

Avg = 5.44%
Max −Min = 1.79%

NGFs 82.46 5.04
LRCS 84.17 6.75 1

PAFs 82.43 5.01

VGGNet

8 80.75 - -
HOG 84.79 4.04

Avg = 3.95%
Max −Min = 2.53%

NGFs 84.70 3.95
LRCS 83.38 2.63
PAFs 85.91 5.16

ResNet

8 81.20 - -
HOG 85.57 4.37

Avg = 4.20%
Max −Min = 1.76%

NGFs 86.21 5.01
LRCS 85.35 4.15
PAFs 84.45 3.25

DenseNet

8 84.14 - -
HOG 86.21 2.07

Avg = 1.87%
Max −Min = 1.54%

NGFs 85.32 1.18
LRCS 86.86 2.72
PAFs 85.65 1.51

1 The maximum accuracy improvement on the FUSAR-Ship dataset is 6.75% (AlexNet + LRCS), where only the
proposed injection technique is used, without extra processing means.

4.2. Accuracy Comparison with Pure Traditional Hand-Crafted Features

To reveal the true importance of traditional hand-crafted features, we also made an
experimental analysis of them, where modern abstract CNN-based features are not consid-
ered. We input the above four types of traditional hand-crafted features, i.e., HOG, NGFs,
LRCS, and PAFs, into a classic and commonly-used SVM for classification. Table 6 shows
the SAR ship classification results on the OpenSARShip-1.0 and FUSAR-Ship datasets with
pure traditional hand-crafted features based on SVM.

Table 6. SAR ship classification results on the OpenSARShip-1.0 and FUSAR-Ship datasets with pure
traditional hand-crafted features based on SVM.

Dataset Feature Type Acc (%)

OpenSARShip-1.0

HOG 66.07
NGFs 69.81
LRCS 67.47
PAFs 59.91

FUSAR-Ship

HOG 73.05
NGFs 78.62
LRCS 71.36
PAFs 69.74

From Table 6, the following conclusions can be drawn:

1. On the OpenSARShip-1.0 dataset, NGFs offers the best classification accuracy, i.e.,
69.81%. This accuracy value is very close to that of the CNN-based model AlexNet
in Table 4, i.e., 69.81% vs 70.05%. Therefore, traditional hand-crafted features can
offer comparative accuracies with modern CNN-based models. This reveals the true
importance of traditional hand-crafted features, which should not be abandoned
completely.

2. On the FUSAR-Ship dataset, NGFs also offers the best classification accuracy, i.e.,
78.62%. Even, this accuracy value is slightly better than that of the CNN-based
model AlexNet in Table 5, i.e., 78.62% vs 77.42%. One possible reason for this may be
that the performance of CNN-based models is really constrained by limited training
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data, which hinders them to play their maximum advantages. Therefore, under the
condition of limited training data, traditional hand-crafted features will become more
valuable if they are injected into CNN-based models. The above also reveals the
true importance of traditional hand-crafted features, which should not be abandoned
completely.

Given the above, from Tables 4–6, one can clearly find that if the traditional hand-
crafted features are injected into CNN models, it will produce a satisfactory effect of
1 + 1 > 1. For example, on the OpenSARShip-1.0 dataset, the pure NGFs offers a classifica-
tion accuracy of 69.81%, meanwhile the pure AlexNet offers a classification accuracy of
70.05%; finally, AlexNet + NGFs offers a classification accuracy of 73.40%. This confirms
our conjecture in Section 2.2.4 effectively.

4.3. Confusion Matrix

Table 7 shows the classification confusion matrix without injection on the OpenSARShip-
1.0 dataset, where we take ResNet as an example to present. Table 8 shows the classification
confusion matrix with injection on the OpenSARShip-1.0 dataset, where we take ResNet +
HOG as an example to present. From Tables 7 and 8, the classification accuracy of each
type of ship has been improved, i.e., from 61.59% to 62.20% for bulk carriers, from 75.87%
to 79.58% for container ships, and from 78.77% to 82.19% for tankers. This shows the
effectiveness of our proposed injection technique.

Table 7. Classification confusion matrix of ResNet on the OpenSARShip-1.0 dataset.

True
Predicte

Bulk Carrier Container Ship Tanker Acc (%)

Bulk carrier 202 93 33 61.59
Container ship 150 613 45 75.87

Tanker 17 14 115 78.77

Table 8. Classification confusion matrix of ResNet + HOG on the OpenSARShip-1.0 dataset.

True
Predicte

Bulk Carrier Container Ship Tanker Acc (%)

Bulk carrier 204 88 36 62.20
Container ship 122 643 43 79.58

Tanker 12 14 120 82.19

The confusion matrix without and with injection on the FUSAR-Ship dataset are
shown in Tables 9 and 10. From Tables 9 and 10, with injection, the classification accuracies
of most ships are improved greatly. Although the classification accuracies of the “fishing”
and “other” category decrease slightly, the accuracies of other types of ships are increased
largely. Finally, the overall accuracy is still improved. Particularly, the classification
accuracy improvement of general cargos reaches 12%. Without doubt, it is really a huge
and encouraging result.

Table 9. Classification confusion matrix of ResNet on the FUSAR-Ship dataset.

True
Predicte Bulk

Carrier
Container

Ship Fishing General
Cargo Other

Other
Cargo Tanker Acc (%)

Bulk carrier 451 19 0 10 10 4 0 91.30
Container ship 16 463 6 14 8 3 13 88.53

Fishing 8 2 391 0 32 34 6 82.66
General cargo 28 21 0 437 4 3 24 84.53

Other 14 3 69 1 331 78 25 63.53
Other cargo 5 3 44 0 50 382 36 73.46

Tanker 2 11 9 8 14 34 443 85.03
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Table 10. Classification confusion matrix of ResNet + HOG on the FUSAR-Ship dataset.

True
Predicte Bulk

Carrier
Container

Ship Fishing General
Cargo Other

Other
Cargo Tanker Acc (%)

Bulk carrier 453 8 5 7 2 1 18 91.70
Container ship 9 501 4 1 2 5 1 95.79

Fishing 2 3 358 0 61 35 14 75.69
General cargo 6 0 0 499 8 1 3 96.52

Other 19 0 81 0 314 66 41 60.27
Other cargo 3 0 36 0 21 452 8 86.92

Tanker 19 6 4 4 9 2 477 91.55

5. Discussion

In this section, first, we will discuss the impact of different injection locations on
classification performance to verify our point of view in Section 2.3. Then, we will discuss
the impact of different injection modes on classification performance to verify our point of
view in Section 2.4. Here, we will take VGGNet + HOG on the OpenSARShip-1.0 dataset
as an example to present the experimental results.

5.1. Discussion on Where

Table 11 shows the results of VGGNet + HOG at different injection locations on
the OpenSARShip-1.0 dataset. In Table 11, we have not yet implemented the location 1
experiment considering the huge complexity and difficulty.

Table 11. Results of VGGNet + HOG at different injection locations on the OpenSARShip-1.0 dataset.

Where Name Acc (%) Improve?

Baseline - 70.51 -
Location 1 Conv, Residual, or Dense Blocks - -
Location 2 1D Reshaped CNN-based Features 69.19 8

Location 3 Internal FC layer 68.56 8

Location 4 Terminal FC layer 76.76 4

From Table 11, the location 4 of the terminal FC layer can improve classification
performance, from 70.51% to 76.76%. However, the location 2 and 3 both reduce the
classification accuracy. Thus, the traditional hand-crafted features should be directly
involved in the final decision, i.e., the three-neuron soft-max activation. They should not
be further refined by the internal FC layer combining CNN-based features; otherwise,
their feature representation may become poor, and the rich expert experience may also be
diluted potentially.

Finally, the location 4 is recommended by this paper. In this way, the process of
CNN extracting abstract features of ships is supervised effectively by traditional hand-
crafted features; meanwhile traditional features also maintain the raw attributes with rich
expert experience.

5.2. Discussion on How

Table 12 shows the results of VGGNet + HOG when different types of injection modes
are used on the OpenSARShip-1.0 dataset.

From Table 12, the following conclusions can be drawn:

1. Most modes can improve the classification accuracy, except the mode 3 and 4. There-
fore, the five concatenation modes (i.e., Cat, W-Cat, DU-Cat, DUW-Cat, and DUW-Cat-
FN) can achieve the approving combination of traditional features and CNN-based
features, effectively. However, the two adding modes (i.e., DU-Add and DUW-Add)
might make learning confusing during training, leading to the poor classification
performance. We think that it seems unreasonable to blindly add the abstract and the
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concrete directly; because, essentially, the physical meanings to which they belong
are completely inconsistent.

2. The weighted (W) modes outperform the non-weighted ones, e.g., 74.65% of W-
Cat > 74.18% of Cat, and 75.90% of DUW-Cat > 75.12% of DU-Cat. In this way,
the weighted coefficients via learning adaptively in training can better reflect the
importance of different types of features. This reasonable allocation of decision-
makings can potentially further improve accuracy.

3. The dimension-unification (DU) modes outperform the non-dimension-unification
ones, e.g., 75.12% of DU-Cat > 74.18% of Cat. In this way, the feature dimension
between the traditional hand-crafted features and the CNN-based ones is balanced,
which potentially not only reduces the benefits of network learning, but also reduces
the risk of the network falling into the over-fitting of a certain type of features, as
shown in Figure 15.

4. The feature normalization (FN) can further improve classification performance, i.e.,
76.76% of DUW-Cat-FN > 75.90% of DUW-Cat. In this way, the range of values of
traditional hand-crafted features is constrained to the same level as the CNN-based
ones, bringing more stable training and enhancing learning benefits.

Table 12. Results of VGGNet + HOG with different injection modes on the OpenSARShip-1.0 dataset.

How Name Acc (%) Improve?

Baseline - 70.51 -
Mode 1 Cat 74.18 4

Mode 2 W-Cat 74.65 4

Mode 3 DU-Add 69.66 8

Mode 4 DUW-Add 70.44 8

Mode 5 DU-Cat 75.12 4

Mode 6 DUW-Cat 75.90 4

Mode 7 DUW-Cat-FN 76.76 4

In short, the mode 7 of DUW-Cat-FN is recommended preferentially when the pro-
posed injection technique is used, because it offers a more notable accuracy improvement.

6. Conclusions

Aiming at the circumstance that most existing CNN-based SAR ship classifiers rely
excessively on abstract features while uncritically abandoning traditional hand-crafted
ones, in this paper, we preliminarily explored the possibility of injection of traditional
hand-crafted features into modern CNN-based models to improve SAR ship classification
accuracy further. First, we illustrated—(1) what this injection technique is, including the
definition of injection, the introductions of traditional features and CNN-based models
studied in this paper. (2) Then, we explained why this injection technique is needed, and
analyze carefully the motivation of this paper and the meaningfulness of our work. (3)
Afterwards, we discussed where this injection technique should be applied, i.e., where
traditional features should be injected into CNN-based models, shallow or deep layers.
(4) Finally, we introduced how to implement this injection technique more effectively, and
recommend the DUW-Cat-FN mode as a first choice.

We performed extensive experiments on the two open three-category OpenSARShip-
1.0 and seven-category FUSAR-Ship datasets to confirm the effectiveness of the proposed
injection technique. Finally, our experimental results indicate that it is rather useful to inject
traditional hand-crafted features into CNN-based models, which can dramatically improve
SAR ship classification accuracy. Notably, the maximum absolute accuracy improvement
can reach 6.75%, i.e., a relative improvement rate of 6.75%/77.42% = 8.72%. Therefore, we
hold the view that it is not recommended to abandon uncritically traditional hand-crafted
features, because they can also play an important role in CNN-based models.
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Our research results will—(1) trigger future scholars to think divergently about the
deep-seated relationship between traditional mature hand-crafted features and modern
CNN-based abstract ones, and (2) promote the development of SAR intelligent interpreta-
tion technology in a better direction, rather than falling into the single cycle of network
structure modifications, training trick optimizations, loss function improvements, etc.

Our future work is as follows:

1. Study how to select the most suitable traditional hand-crafted features for injection.
2. Rethink and analyze the deep-seated internal mechanisms of this injection technique.
3. Study hybrid/multi feature injection forms, which may improve classification accu-

racy further.
4. Strive to improve the accuracy of each category, e.g., the “fishing” and “other” cate-

gories in the FUSAR-Ship.
5. Apply this injection technique to classify more types of ships, e.g., war ships.
6. Optimize the extraction process of the minimum bounding rectangle of a ship. More-

over, study simpler and faster ways to calculate ship length, width and orientation.
7. Explore CNNs’ potentials of exploiting sidelobes for classifying large reflective ships.
8. Perform experiments on the OpenSARShip-2.0 dataset.
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