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Abstract: Wave energy resource assessment is crucial for the development of the marine renewable
industry. High-frequency radars (HF radars) have been demonstrated to be a useful wave measuring
tool. Therefore, in this work, we evaluated the accuracy of two CODAR Seasonde HF radars for
describing the wave energy resource of two offshore areas in the west Galician coast, Spain (Vilán and
Silleiro capes). The resulting wave characterization was used to estimate the electricity production
of two wave energy converters. Results were validated against wave data from two buoys and
two numerical models (SIMAR, (Marine Simulation) and WaveWatch III). The statistical validation
revealed that the radar of Silleiro cape significantly overestimates the wave power, mainly due to a
large overestimation of the wave energy period. The effect of the radars’ data loss during low wave
energy periods on the mean wave energy is partially compensated with the overestimation of wave
height and energy period. The theoretical electrical energy production of the wave energy converters
was also affected by these differences. Energy period estimation was found to be highly conditioned
to the unimodal interpretation of the wave spectrum, and it is expected that new releases of the radar
software will be able to characterize different sea states independently.

Keywords: HF radar; wave energy; wave modeling; remote sensing; wave energy converter; resource
characterization

1. Introduction

The development of renewable energies is one of the key factors in the fight against
greenhouse gas emissions, reduction in waste, and for promoting a diverse and distributed
energy mix. The least widespread, but with great potential, are the marine renewable
energies, among which offshore wind energy is the most developed technology, followed
by tidal and wave energy [1]. Wave energy offers the greatest potential for exploitation,
mainly due to its spatial availability and low needs of investment in infrastructure [1,2],
but it is also the most complicated to assess [3]. Theoretically, the global power potential
of waves is approximately 1000–10,000 GW, covering the global power demand which is
≈1800 GW/year (or 16,000 TWh/year energy consumption) [4,5]. The northwest coast
of Galicia (NW Spain) is considered one of the areas of the Iberian Peninsula with the
largest wave energy resource, e.g., offshore Costa da Morte wave energy is estimated to be
approximately 400 MWh/m per year [6], and slightly further South, offshore Cape Silleiro,
it is approximately 300 MWh/m [7].

Wave energy is harnessed by wave energy converters (WECs), which currently are
mostly engineering projects and prototypes [4,8,9], with a particular electricity production
rate depending on wave quantity and qualitative characteristics (height, period, and
direction) [10]. Therefore, a gross estimate of the available wave energy may not represent
the production of a WEC [11–14].

Hence, the wave energy resource assessment must imply an accurate description of
the wave regime characteristics in the areas of interest to select the most optimal location
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for the wave farms, and moreover, for managing the energy to be supplied to the power
grid [9,15].

The uncertainties in this assessment have two key elements: (i) on the one hand,
the method to estimate the wave spectral parameters (height, period and direction) can
consider that all sea states follow a unimodal wave spectrum, or, on the contrary, to consider
this as bi- or multimodal when simultaneous wave systems show up (e.g., swell or wind
sea) and to be decomposed into different spectra to represent each wave system [10,16,17].
Furthermore, the temporal scope must be chosen according to the temporal variability of
the wave resource in the area of study (annual, seasonal, monthly) [7,18–20]. (ii) The second
is how to collect the most accurate wave data. Buoys are the traditional method of wave
measurement and are considered the most reliable in situ wave gauges. However, they
have certain drawbacks such as installation and maintenance. Moreover, buoys are single-
point measuring devices and since they occupy a space that competes with other uses, it is
not possible to anchor them massively. Therefore, the current most widespread method to
obtain wave data with wide coverage and spatial resolution are numerical models. Among
them, WAM (Wave modeling) and WW3 (WaveWatch III) have been widely developed
for deep water wave assessment [5,15,21–24] and SWAN (Simulating waves nearshore)
for calculating wave propagation towards the coast, where bathymetry and shoreline
characteristics are more relevant and higher resolution is required [7,15,25–27].

Although these models are under continuous development and adjustment [28–30],
their outcomes are not direct measurements. Moreover, there is some complexity involved
in their application such as considering multiple factors and particularities of the area of in-
terest [31] and the hindcast data characteristics, such as the sampling frequency which deter-
mines the accuracy of the temporal variability described by the model [22,32,33]. Likewise,
the outcomes of SWAN depend on the wave patterns selected for its propagation [3,29].
As an alternative to models and buoys, new remote sensing technologies such as the
oceanographic high-frequency radars (HF radar) are currently being applied to obtain
current and wave data with high spatial resolution [34–39]. Radar technology is based
on the Doppler effect that the wave emitted by the radar experiences as it backscatters
from the ocean surface [40]. The radar software generates a spectrum with the backscatter
signal as a function of its frequency shift. This describes first- and second-order peaks,
from which the radial component of the currents and the directional spectra of the waves
are extracted [41,42].

Despite many works having shown the efficiency of these radars [36,43–47] some
limitations have also been described [39,48,49]. Firstly, the signal only returns to the radar
when it backscatters from waves (called Bragg waves) with a wavelength one-half that of
the radar and it propagates towards or away from the radar. Additionally, the second-order
peaks only rise at the Doppler spectra when the Bragg waves are modulated by waves with
greater periods [44]. The radar working frequency (or the wavelength) also determines the
minimum and maximum measurable wave height [50,51], as well as their sensitivity to
the current’s speed that could prevent the correct estimation of the wave parameters [50].
Secondly, although new radar software to separate the spectrum is under development
[52], in general, the adjustment of the wave spectrum is based on unimodal models of the
sea state [53–55]. Moreover, in the case of the Seasonde model radar, it is also assumed that
the measured area is in deep waters and the swell is uniform throughout [50]. Moreover,
according to many works, the centroid period estimated by these radars usually takes
values between the buoys-derived mean and peak period [56,57]. Finally, the radar data
can be modulated by tides [56], as it happens to the buoys [58].

The two radars which are the focus of this work are the Seasonde models of CODAR.
These have been proven to produce reliable wave data, especially regarding spectral
significant wave height [36,39,59,60], but also some disadvantages, such as the lack of
detection of most of the waves below 3 m [39], a significant disagreement with buoy data
regarding wave period and some deviations of the wave direction [36,39,59,60]. However,
some of these issues might be determined by the uncertainties that each location can bring
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to the validations, such as the heterogeneity of the sea state and the complexity of the
coverage area [36,39].

The use of HF radars for wave energy resource assessment has been scarce. With an
OSCR radar, the wave height was used to describe the wave energy in Miami [61]. With a
WERA radar, the wave power was obtained in the WaveHub area (Cornwall, UK) with a
spatial resolution of ≈600 m [55,62]. Moreover, with a WERA radar, in the central coast of
Chile, the wave power was evaluated using the significant wave height provided by the
radar but using the wave period as a constant value based on previous works [63]. With a
Seasonde radar, the inter and intra-annual variability of the energy resource in Galway Bay
(Ireland) was analyzed using only the radar-derived wave height [19].

HF radars are wave-measuring devices with wide spatial and temporal coverage.
Moreover, their installation on land allows easy access for data collection and instruments’
maintenance. Therefore, we consider that HF radars could be a useful tool for wave energy
resource assessment, as well as provide great support for numerical models’ validation.
In this work, we made a preliminary analysis of using two HF radars wave data for
wave energy resource assessment, at the offshore areas of Vilán and Silleiro capes (NW
of Galicia, Spain). To evaluate the results, most of the analyses were replicated using the
wave data from two nearby buoys and two numerical models, namely SIMAR (Simulación
Marina—Marine Simulation in Spanish) and WW3 (Figure 1). The wave power and energy
calculated with the radars’ data were statistically validated against the buoys and SIMAR
model. The wave energy resource was described through energy matrices, the annual and
seasonal mean energy and power roses. The key differences between the radars and the
other sources of data results were detailed. Likewise, the spatial distribution of the mean
wave energy calculated with the radars’ data was compared with the WW3 model. The
previous wave energy resource description was used to calculate the theoretical electrical
energy production of two WECs, and again the radar estimates were compared with the
ones from the buoys and SIMAR model. Finally, the viability of using data from Vilán cape
radar to complete the discontinuous Vilano-Sisargas buoy data series was analyzed.

Figure 1. Northwestern coast of Galicia (NW Spain) with Vilán (a) and Silleiro (b) areas of study. The
following data sources are indicated in the figure: VB: Vilano-Sisargas buoy; VILA: Vilán HF radar
and range cells of width of 5 km (RCs); S28: SIMAR (Marine Simulation) point 3004028; SB: Silleiro
buoy; SILL: Silleiro HF radar and range cells; and S68: SIMAR point 1044068.
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2. Materials and Methods

The HF radars used for this study were two CODAR Seasonde radars: the cape
Vilán radar (VILA) managed by Intecmar-Xunta de Galicia and the cape Silleiro radar
(SILL) managed by Puertos del Estado (PdE) (Figure 1). These are long-range wide beam
radars (emitting in all directions), whose working frequency is 4.86 MHz with a sweep of
≈29.41 kHz. Each one has two antennas, one to emit and the other to receive the backscatter
produced on the ocean surface. The latter antenna is made up of three antennas arranged
at 90◦ angles between each other so that the difference in the signal received by each of
them will be used in the process of identifying the direction of origin of the signal. The
accuracy of the ‘direction-finding’ method [53] ranges between 2◦ and 30◦ [64,65].

The scanning area was between 5 km and 30 km away from the radar. Since the
spatial resolution of these radars is 5 km, [66] the signal was processed independently
for five concentric rings, 5 km wide, around the radar called range cells (RCs) (Figure
1). Considering the radars emit and receive in all directions, the CODAR’s proprietary
software configuration sets the so-called coastal limits (CL) according to the characteristics
of the radar location, so that only the signal coming from the open sea is processed. In the
case of VILA, these are 221◦ and 41◦, and for SILL, these are 180◦ and 350◦ (see Figure 1).
The same limits are applied to waves direction (wave bearing limits, WB) [50,67].

The set of signals received during 180 min was processed to form the averaged
Doppler spectra [64]. Then, the wave frequency spectrum was calculated and fitted to
the Pierson–Moskowitz model to extract the spectral significant wave height (Hm0) and
centroid period (Tc). The mean wave direction (Dm) was calculated by applying a cardioid
direction factor to the equation of the wave spectrum [53]. Although the initial signal
processing time was 180 min, these parameters were calculated at every 30 min of the
swell.

Considering the previously discussed limitations of these radars [44] and the CODAR
recommendations [64], the software was configured to process waves with periods between
5 and 17 s. When the received signal was too low to calculate the wave parameters, the
radar software flags the corresponding samples [64], which we will refer to hereafter as
nulls. Filtering based on the quality control defined by the Copernicus Marine in situ
TAC (Thematic Assembly Centre) [39,68] was applied to the radar data series. In addition,
considering Basañez et al. [39], we flagged 2020 results as fails, corresponding to the
samples that met the following conditions. Although they were not very abundant, they
represented very high Hm0 and Dm errors:

• VILA: Dm North–Northwest (NNE) (330◦–90◦) and Hm0 ≥ 6 m;
• SILL: Dm South (S) (180◦–235◦) and Hm0 ≥ 5 m.

To validate the radar data, wave data from two buoys managed by PdE were used:
the Vilano-Sisargas buoy (VB), located at approximately 40 km Northwest of Cape Vilán;
and the Silleiro buoy (SB), approximately 60 km West of Cape Silleiro (Figure 1). Both
buoys are SeaWatch models that record their movements over the water surface (relative
accelerations and directions) for 26 min. The data were processed in situ, calculating the
net displacements of the buoys and a wave spectrum was generated. As a result, every
hour a sample was generated providing, among others, the wave spectral parameters
[69]. These were received in real-time by PdE and subjected to the Copernicus Marine In
Situ TAC quality control method [68], which assigns to each sample a code based on its
reliability. From the resulting files, Hm0, the peak period (Tp) and Dm, as well as the energy
period (Te), calculated from the raw spectral buoy data, were used.

The SIMAR points, provided by PdE, were part of the WANA subset (waves Analysis),
developed by PdE and the Agencia Estatal de Meteorología (AEMET). WANA produces
wave data using the WAM (Wave Modelling) and WaveWatch models, and these, in turn,
use the HIRLAM model (High Resolution Local Area Modelling) as wind forcing. It is
important to emphasize that SIMAR data are not forecasts but a reanalysis provided by
the models considering all locations as open and deep waters [70]. For this work, we used
wave data from SIMAR points 3004028 (S28) and 1044068 (S68), whose positions were
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within the RC between 10 and 15 km (RC 10 km) for both radars (Figure 1). The spectral
parameters were Hm0, Tp and Dm.

The other model was the WW3, whose data were provided by Meteogalicia. This
model provides a wide spatial coverage of the two study areas (Figure 1) and a spatial
resolution of 0.5◦ (≈5 km). WW3 uses the GFS (Global Forecast System) as meteorological
forcing. The outputs of this model contain hourly wave samples; the first 12 h correspond-
ing to a reanalysis and the following 96 h to the forecast period [22]. The wave spectral
parameters (Hm0 and Tp) used in this work correspond to the reanalysis period.

The data series from both models were subjected to a quality control process by the
operators (PdE, Meteogalicia), whereby unreliable samples were marked with specific
codes.

The data period used for this work spans from 1 January 2014 to 7 October 2020. Data
availability is a limitation factor on radars and buoys since the SIMAR data series are only
missing a few days and the WW3 data series is considered complete. For the radars, the
lack of data was due to problems in the operation or adjustments of their installation, and
in the case of the buoys, mainly due to maintenance periods. Although there are abundant
gaps during small periods of time (around hours or days), there are also others that span
from months to years, as is the case of VILA and SILL data series (Figure 2).

Figure 2. Timeline of the available raw samples of Silleiro radar (SILL), Silleiro buoy (SB), Vilán radar
(VILA) and Vilán buoy (VB). The relevant gaps are the following: SILL: 13 October–11 November
2017; 8–28 April 2019; 28 July–8 January 2020. SB: 28 June–23 July 2015; 26 August–6 September 2020.
VILA: 1–19 August 2014; 31 March–9 April 2015; May 2015–January 2018; 18–24 May 2018; 20 May–1
June 2019; 1 June 1–30 August 2019. VB: 17 January–20 February 2014; 21 April–22 July 2015; 23
December 2015–9 March 2016; 20 February–7 April 2019; 29 July 2019–1 August 2020.

The radars’ data availability was also affected by the large number of samples marked
as nulls, which on average, were 60% of the data (Table 1), but could be more as the
distance to the radar increases and the wave height diminishes [39]. In Basañez et al.
[39], we observed that VILA null data correspond to almost all the waves below 2 m, 50%
of which were between 2–3 m and around 20–40% were up to 5 m. In the case of SILL,
the largest data loss occurred for waves with Hm0 below 2 m, but above this value, the
percentage of nulls was much lower than for the VILA case.

Considering this interdependence between the wave conditions, the amount and even
the quality of the data [39], as well as the difference in the available periods of data for
the Vilán and Silleiro areas, we decided to analyze the wave energy resource of each area
independently. The study areas are those bounded by the boxes in Figure 1, and the time
periods used for each one are:

• Vilán area: 1 January 2014–30 April 2015 + 1 January 2018–7 October 2020.
• Silleiro area: 1 January 2014–28 July 2019 + 1 August 2020–7 October 2020.

Table 1 shows the ideal number of hourly samples that would correspond to each
period, as well as the number of raw samples available from each data source for the whole
period, and the sum for each season of the year for the whole period (spring: April–June;
summer: July–September; autumn: October–December; winter: January–March). For
the radars, the number corresponds to 30 min samples and the percentage of nulls is
also detailed.
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Table 1. Total and seasonal hourly raw samples of SIMAR points and buoys (S28; S68; VB; SB); the
ideal number of hourly samples for each period; 30 min raw samples of the 10 km RCs for the radars
(VILA, SILL) and their percentage of null data (Nulls). WW3 (WaveWatch III model) has the same
sample size as ideal samples.

(a) VILÁN SITE

Data
Sets S28 VB Hourly Ideal Samples VILA

10 km
Nulls

Total 35,666 33,637 35,879 63,839 51.05%
Spring 9420 9059 9456 15,742 55.72%

Summer 8737 8759 8832 13,858 71.40%
Autumn 6734 6768 6767 13,497 45.05%
Winter 10,775 9051 10,824 20,742 37.81%

(b) SILLEIRO SITE

Data
Sets S68 SB Hourly Ideal Samples SILL

10 km
Nulls

Total 50,377 49,596 50,471 95,202 39.38%
Spring 13,092 13,053 13,104 25,280 46.01%

Summer 13,188 12,377 13,199 25,891 57.01%
Autumn 11,173 11,183 11,184 19,770 29.41%
Winter 12,924 12,983 12,984 24,261 21.79%

For deep waters, wave power (W/m) was calculated as [2,3,71]

P =
ρg2

64π
H2

m0Te (1)

where ρ is the seawater density and g is the acceleration of gravity. Te = m−1/m0 is the
energy wave period, and m−1 and m0 are the spectral moments −1 and 0, respectively.
For those cases where the wave spectra of the other data sources were not available,
Te = 0.8572Tp [11,27,72].

For the validation of the total wave power and energy, paired clean data from radars,
buoys and SIMAR points were used. The objective of this method was, in combination
with previous results [39], to statistically compare the differences between the variables,
without interference from radar nulls or any gaps in the data series. Unfortunately, the
data set size drops considerably (Table 2).

Table 2. Paired clean samples for each area and period.

(a) VILÁN SITE (b) SILLEIRO SITE

Paired Clean Samples Paired Clean Samples

Data Sets All Sources Data Sets All Sources

Total 13,724 Total 27,486
Spring 3210 Spring 4656

Summer 1849 Summer 6618
Autumn 3650 Autumn 6891
Winter 5015 Winter 9321

To describe the wave energy resource, energy matrices, annual and seasonal mean
energy and power roses were used. Paired raw samples of radars, buoys and SIMAR points
were used. Therefore, raw samples were the same for all data sources of each site (29,578
for Vilán site and 46,475 for Silleiro site). These, unlike the previous case, include the radar
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nulls and samples marked by quality filters. Since the calculations were made only with
the valid samples, the size of each data source used were different as it is shown in Table 3.
With this method, in addition to other differences, the aim was to detect the incidence of
the data loss, especially from the radars, to calculate the wave energy resource.

Table 3. Paired raw data of each area and the total and seasonal valid samples (not nulls or fails) of
each data source. The size of WW3 model data set is the same as the SIMAR model.

(a) VILÁN SITE (b) SILLEIRO SITE

Paired Raw Data: 29,578 Samples. Paired Raw Data: 46,475 samples.

Valid Samples Valid Samples

Data
Sets S28 VILA

RC
10 km

VB Data
Sets S68 SILL

RC
10 km

SB

Total 29,578 13,770 29,537 Total 46,475 27,856 45,768
Spring 7439 3224 7425 Spring 12,501 6627 12,488

Summer 6,819 1,859 6,814 Summer 12,076 4997 11,412
Autumn 6723 3657 6,718 Autumn 9848 6898 9835
Winter 8597 5030 8580 Winter 12,050 9334 12,033

Energy matrices are grids representing the percentage of occurrence (OPht) of the
number of hourly ideal samples (I) of each combination of Te vs. Hm0 (cell resolution
1 s × 1 m). On top of these graphs, five lines were superimposed, representing the power
(kW/m) of the cell they crossed and also corresponding to the 25th, 50th, 75th, 90th, and
99th percentiles of each power data set [19]:

OPht = Oht × 100

Oht = Mht/I (2)

where Mht is the number of samples corresponding to each cell. I is the same for all data
sources, which allows to compare between the energy matrices and detect the effect of
radar nulls. The mean energy Em (Wh/m) was calculated by multiplying the annual
or seasonal hours, corresponding to each cell (hours occurrence, OHht) of a matrix of
resolution 0.5 s × 0.5 m, by the mean power (Pht) of the samples corresponding to each cell
(Pj) [3,27]:

Em =
C

∑
ht=1

Pht × OHht

Pht =

(
Mht

∑
j=1

Pj

)
/Mht (3)

OHht = Oht × H

where C is the total number of cells and H is the ideal number of hours of the period for
which the average power is to be calculated (8760 h/year and 2190 h/season).

The method used to estimate the electrical output from a WEC device consisted
of summing the result of multiplying the WEC power matrix by an hour’s occurrence
matrix, like those described above [32]. The power matrix represents the electrical power
(W) that the WEC can generate for each cell (Hm0 vs. Tp or Te). These usually have
significant restrictions regarding minimum and maximum Hm0 and T values, considering
their technology or their own safety [3]. For this work, power matrices were generated for
Pelamis and Aquabuoy engines, based on data previously published [13,73].
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3. Results
3.1. Statistical Validation of Wave Power and Energy

Te, wave power and wave energy were validated with the paired clean data for each
data source (see Table 2). A detailed validation of Hm0 and T samples calculated for the
two radars and buoys was previously developed [39], which revealed a significant linear
correlation of Hm0 (larger for VILA case ≈ 0.88), but also that it is slightly overestimated by
the radars, except for the smallest and highest waves which are underestimated compared
to the buoy-derived parameters [39]. The Tp linear correlation was smaller than for Hm0,
and in general, the radars overestimate Tp except for the largest values that are clearly
underestimated. Hence, in this work, we focused only on carrying out the validation of
the Te data series. Thus, the agreement of VILA Te data with the VB ones is larger than
for Tp. However, there is a VILA overestimation trend except for some range of buoy Te
samples which are underestimated by the radar (Figure 3a). For SILL, the underestimation
of the extreme values of Te was lower than that of Tp, but still relevant, and the SILL
overestimation of the bulk of the samples was very noticeable (Figure 3c). The SIMAR
points seem to underestimate the lowest buoy Te data, but as Te increases, SIMARs data
overestimate Te (Figures 3b,d).

(d)(c)

(b)(a)

Figure 3. Te scatter plots of Vilano-Sisargas buoy (VB) vs. Vilán radar (VILA) (a), and SIMAR S28 (b);
and Silleiro buoy (SB) vs. Silleiro radar (SILL) (c) and SIMAR S68 (d). Blue lines correspond to the
best data linear fitting.

Total energy values for each data source were calculated (Figures 4–7) and the mean
power for each period and data set, as well as the RMSE between them, are shown in
Tables 4 and 5.

VILA shows a slight overestimation of the annual wave energy compared to VB data
(Figure 4). However, this does not seem to follow a clear trend when seasonal data are
compared, as shown in Figure 5. The average seasonal wave power (Table 4) confirms
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this overestimation in all cases, which seems to be a percentage-wise larger in spring and
summer. Something similar occurs when comparing results from S28 and VB. On the other
hand, although the mean power from VILA and S28 is quite similar, RMSEs between both
data series are larger than when compared to VB data.

Table 4. Mean wave power and wave power root mean square error (RMSE).

VILÁN SITE

Wave Power Statistics (kW/m)

Data Sets MEAN RMSE vs. VB RMSE vs. S28

Total
VB 67.00 — —
S28 69.48 29.37 —

VILA 71.76 41.73 44.17

Spring
VB 32.47 — —
S28 37.34 15.88 —

VILA 39.18 23.75 23.20

Summer
VB 22.47 — —
S28 22.95 8.74 —

VILA 24.83 19.54 20.63

Autumn
VB 84.06 — —
S28 87.92 33.18 —

VILA 93.70 47.93 52.14

Winter
VB 92.91 — —
S28 93.79 37.00 —

VILA 93.95 49.93 52.58

Figure 4. Superimposed bars of total wave energy calculated for VILA (red); S28 (green); and VB
(blue) per year.
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2014 2015 2016 2017 2018 2019 2020

Figure 5. Superimposed bars of total wave energy calculated with VILA (red); S28 (green); and VB
(blue) per season of the year.

The wave energy calculated with the SILL radar is always larger than that estimated
with its corresponding buoy and SIMAR point (Figure 6) and the highest overestimation
seems to occur in winter (Figure 7). However, the wave power validation (Table 5) shows
that the largest SILL overestimation occurs in spring and summer. Except in spring 2018,
the energy estimated with the S68 point data is always lower than that estimated with SILL
and SB. This is also confirmed by the mean wave power comparison (Table 5).

Table 5. Mean wave power and wave power root mean square error (RMSE).

SILLEIRO SITE

Wave Power Statistics (kW/m)

Data Sets MEAN RMSE vs. SB RMSE vs. S68

Total
SB 54.39 — —
S68 45.14 28.87 —

SILL 66.00 40.02 46.57

Spring
SB 29.97 — —
S68 27.33 14.59 —

SILL 40.36 27.94 30.76

Summer
SB 19.22 — —
S68 15.36 9.37 —

SILL 29.40 24.69 27.54

Autumn
SB 60.74 — —
S68 49.44 27.92 —

SILL 76.76 44.23 53.13

Winter
SB 84.61 — —
S68 69.48 41.07 —

SILL 94.51 49.17 57.07
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Figure 6. Superimposed bars of total wave energy estimated with SILL (red), S68 (green) and SB
(blue) per year.

Figure 7. Superimposed bars of total wave energy estimated with SILL (red); S68 (green); and SB
(blue) by season of the year.

3.2. Wave Energy Resource

Figures 8 and 9 show the energy matrices describing the wave energy resource in
terms of Te and Hm0 available at the Vilán and Silleiro sites, respectively. Matrices were
calculated with the paired raw data from the radars, buoys and SIMAR points (Table 3). To
compare the matrices, the percentage of occurrences were calculated with the same ideal
number of samples for each area (Table 1).

The most relevant differences are related to the large radars’ data loss (the smallest
waves), such as low percentages of occurrence and higher values of percentile power lines
(Figures 8b and 9b). In addition, the limitation of the radars to estimate waves with periods
between 5 and 17 s (see Section 2) determines that Te is limited to the range of 3.43–14.57 s.

In addition, the matrices of the Vilán area (Figures 8a–c) revealed that while the Hm0
values of VB increase progressively until their maximum value at Te = 17 s, for the VILA
matrix (b), the maximum of Hm0 is obtained for Te = 11s and a slightly higher percentage
of occurrence for Hm0 values between 5 and 8 m. On the other hand, S28 matrix (a) shows
relevant differences compared to VILA and VB matrices, such as the extension of the Te
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distribution 3–19 s and the significant bias of the percentage of occurrence towards larger
periods but with a smaller Hm0.

(b)

(c)

(a)

Figure 8. Wave energy matrices estimated with S28 (a); VILA RC 10 km (b); and VB (c). Numbers and colors correspond to
percentage of occurrence (%), and lines are wave power (kW/m) for percentiles 25, 50, 75, 90 and 99%.

The analysis of the Silleiro area (Figure 9a–c) shows that the SILL matrix has higher
percentages of occurrence between 11 and 13 s and for Hm0 > 8m compared to the SB
matrix. The S68 matrix distribution of the percentages of occurrence also shifted towards
higher values of Te, but they are lower for Hm0 > 4 m and do not reach the maximum Hm0
of SB and SILL (12 m). This is clearly reflected in the lower values of S68 percentile power
lines.
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(b)

(c)

(a)

Figure 9. Wave energy matrices estimated with S68 (a); SILL RC 10 km (b); and SB (c). Numbers and colors correspond to
percentage of occurrence (%), and lines are wave power (kW/m) for percentiles 25, 50, 75, 90 and 99%.

As it might be expected, given the small number of samples of VILA compared to the
VB data set (13.770 vs. 29.537, Table 3), the mean wave energy (Em) calculated with VILA
data is the smallest, both for the annual (−26%) and the seasonal periods, especially in
summer (≈−50%). On the contrary, the Em estimated with S28 data is the largest, especially
in spring and summer (19 and 14%, respectively) (Table 6a). In contrast, even with lesser
samples than SB (27, 856 vs. 45, 768 samples Table 3), the Em obtained with SILL data is the
largest, especially in autumn (15.2%). This reveals the importance of the overestimation
detected in the previous validation (Figure 6). The Em calculated with S68 data is smaller
than the one estimated with SB data, especially for the most high-energy periods (autumn
and winter, −18.10% and −17.39%, respectively) (Table 6b)).

The analysis of the wave power direction was also carried out with the paired raw data
sets (Table 3). Previous works for the same areas [36,39] show that main wave directions
are West–Northwest (WNW) for the Vilán and Silleiro capes. The analysis of wave power
by seasons revealed that only in summer in the Vilán area is there a drastic variation in
the dominant direction, which VB describes as from NW to almost East (E) (Figures 10a,c).
In contrast, the VILA wave rose (Figure 10b) displays the predominant directions as W
and NW. Finally, S28 describes similar directions as VB. Note that most of the buoys and
SIMAR data correspond to radar nulls, since it is in summer that the percentage of nulls is
larger.
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Table 6. Mean wave energy per year and season for Vilán (a) and Silleiro (b) sites.

(a) VILÁN SITE (b) SILLEIRO SITE

Mean Wave Energy (MWh/m) Mean Wave Energy (MWh/m)

Data
Sets S28 VILA RC

10 km
VB Data

Sets S68 SILL RC
10 km

SB

Annual 343.28 240.80 325.75 Annual 246.52 316.83 292.75
Spring 45.54 29.24 38.39 Spring 37.94 44.70 41.97

Summer 25.93 11.42 22.70 Summer 20.28 24.23 22.39
Autumn 145.47 110.81 138.27 Autumn 73.72 103.69 90.01
Winter 132.58 95.42 131.44 Winter 117.18 148.84 141.84

(a)

Figure 10. Summer wave power roses for S28 (a); VILA RC 10 km (b); and VB (c).

In the Silleiro area, although the predominance of the NW swell is also maintained
during summer, both the buoy and the radar describe an increase in the percentage of
North wave directions (330◦–0◦), while the SIMAR point does not show significant values
with that direction (Figure 11).

(a)

Figure 11. Summer wave power roses for S68 (a); SILL RC 10 km (b); and SB (c).

The spatial distribution of Em in the areas of study was described with data from the
radars’ 5 RCs and the WW3 model, as shown in Figures 12 and 13. In both areas, Em values
obtained with the WW3 are larger than for the rest of the data sources except for the SILL
RCs, which show similar values, except in summer when the radar data loss is especially
noticeable (Figure 13h). As expected, the WW3 data show a positive gradient of energy
with increasing distance from the coast and perpendicular to it. The latter highlights the
handicap of the radars since measurements are obtained along arcs spanning areas with a
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different distance to the shore and hence with different bathymetry and positions relative
to the coastline. Despite this, note that along the bisector of the RCs, the positive gradient
of Em, with some exceptions as in the case of VILA, the last RC in autumn (Figure 12i) and
the last two for the annual data (Figure 12f) and in the case of SILL, in spring (Figure 13g).
Likely, this energy loss of the farthest RCs is due to the larger percentage of nulls samples
of their data series [39].

(j)(i)(h)(g)(f)

(e)(d)(c)(b)(a)

Figure 12. Mean annual and seasonal wave energy for the Vilán site. From left to right, the annual (a); spring (b); summer
(c); autumn (d); and winter (e) seasonal wave energy is shown for the WW3 model. S28 and VB values are shown within
small circles, and radar range cells values are only shown for comparison in the lower row (f–j).

(j)(i)(h)(g)(f)

(e)(d)(c)(b)(a)

Figure 13. Mean annual and seasonal wave energy for the Silleiro site. From left to right, the annual (a); spring (b); summer
(c); autumn (d); and winter (e) seasonal wave energy is shown for the WW3 model. S68 and SB values are shown within
small circles, and radar range cells values are only shown for comparison in the lower row (f–j).

The wave power and mean energy spatial variability for the radar and WW3 model
data is shown in Table 7 in terms of a ’coefficient of variation’ CoV [45]:

CoV =

(
N

∑
i=1

sdi/meani

)
/N (4)

where N is the data set size, sd and mean are the standard deviation and the mean of
simultaneous samples at different locations, respectively. For the radar case, these locations
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are the RCs, and for the WW3 model, these are the grid cells which coincide with the RCs’
bisector of the radar.

What first stands out is that the radars describe a significant difference between the
mean energy and power CoV, which reveals the large dispersion in the radar power
samples that are smooth when averaged over time. The highest CoV value of Em described
by all the data sets occurs in summer and spring. Such CoV value means variations around
1 MWh/m, that cannot be observed in Figures 12c and 13c due to their color scale. The
Em variability between the VILA RCs data (Table 7a) exceeds that described by WW3
by approximately +70% and in summer by ≈+180%. On the contrary, the variability of
Em described between the SILL RCs is lower than that described between the WW3 cells
(≈-14%, Table 7b) except in spring and summer (≈+16% and +27%, respectively). Sea state
along the SILL RCs might be more uniform because the straightness of the Silleiro coast
and the lower data loss with the distance.

Table 7. Coefficient of variation (CoV) of the mean wave energy and wave power for Vilán (a) and Silleiro (b) sites.

(a) VILÁN SITE (b) SILLEIRO SITE

Coefficient of Variation (CoV ) (%) Coefficient of Variation (CoV ) (%)

Em Power Em Power

Data
Sets

VILA
RCs

WW3
Cells

Bisector

VILA
RCs

WW3
Cells

Bisector

Data
Sets

SILL
RCs

WW3
Cells

Bisector

SILL
RCs

WW3
Cells

Bisector

Annual/
Total

7.12 4.04 22.97 5.30 Annual/
Total

4.34 5.02 23.36 6.81

Spring 9.66 3.78 24.66 5.28 Spring 5.20 4.46 25.21 6.69
Summer 12.11 4.32 19.30 6.16 Summer 7.67 6.03 26.56 8.08
Autumn 7.40 3.92 22.21 4.80 Autumn 3.94 4.96 18.58 6.45
Winter 5.88 4.16 21.82 5.03 Winter 4.20 5.06 20.43 5.93

3.3. WEC Electricity Energy Production

The annual and seasonal mean electricity production (MWh) of two WECs (Pelamis
and Aquabuoy) were estimated using energy matrices calculated with radar, buoys and
SIMAR model paired raw data (Figure 14). Both Pelamis and Aquabuoy power matrices
describe the ranges of Hm0 as much more restrictive than the energy matrices used to
describe the wave energy resource (Figures 8 and 9). Due to this, the electricity production
using the three data sources was quite different to the previously calculated Em (Table 6).

(a) (b)

Figure 14. Power matrix of the wave energy converter (WEC) (based on [13]): electrical power
production (kW) for the waves’ parameters (Te (or Tp) and Hm0): (a) Pelamis: electric power capacity
for each combination of Te and Hm0 (0.5 s × 0.5 m resolution); (b) Aquabuoy: electric power capacity
for each combination of Tp and Hm0 (1 s × 0.5 m resolution).
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Hence, the electricity production calculated with VB was the largest and that calculated
with VILA is the lowest (Table 8). The energy matrix of VILA describes a high percentage
of occurrence at the cells between 10 and 12 s and between 3 and 6 m, which, however, are
not the cells with the highest production at the Pelamis matrix power (red cells, Figure 14a).
Furthermore, Aquabuoy does not produce energy with waves higher than 5.5 m (Figure
14b), so the low amount of small waves samples of VILA has a significant impact in the
electricity production, especially in summer.

Likewise, the electricity production calculated with SB data is the largest and the large
concentration of SILL samples at cells between 10 and 13 s and between 3 and 6 m are not
used to produce too much electricity by Pelamis and Aquaboy (Table 8b,d).

Table 8. Mean annual and seasonal electricity production of Pelamis and Aquabuoy calculated with
the radar, SIMAR, and buoy for the Vilán (a,c) and Silleiro (b,d) sites.

VILAN SITE SILLEIRO SITE

(a)
Pelamis

Mean Electricity
Production (MWh)

(b)
Pelamis

Mean Electricity
Production (MWh)

Data Sets S28 VILA
RC

10 km

VB Data Sets S68 SILL
RC

10 km

SB

Annual 1107.59 996.00 1612.53 Annual 773.39 1198.51 1421.46
Spring 200.00 146.86 250.16 Spring 149.98 199.30 258.66

Summer 135.43 69.94 158.12 Summer 99.95 128.74 145.63
Autumn 431.36 443.70 654.90 Autumn 223.79 394.71 442.19
Winter 362.94 362.62 579.31 Winter 305.86 492.73 591.41

(c)
Aquabuoy

Mean Electricity
Production (MWh)

(d)
Aquabuoy

Mean Electricity
Production (MWh)

Data Sets S28 VILA
RC

10 km

VB Data Sets S68 SILL
RC

10 km

SB

Annual 362.88 267.22 442.93 Annual 260.83 350.55 415.74
Spring 63.90 43.84 70.39 Spring 48.86 62.29 76.81

Summer 41.24 22.03 45.36 Summer 30.94 42.28 44.79
Autumn 142.84 115.10 183.52 Autumn 79.71 120.13 134.78
Winter 121.95 93.21 153.82 Winter 104.05 131.34 164.88

3.4. Filling Out Buoy Data Series

To analyze the impact of the gaps in the VB data series and to use data from VILA
to complete the former, new values of mean wave energy were calculated. This analysis
was not carried out for SB as it does not have as many gaps as VB and because of the high
overestimation of the wave energy described for SILL. All data from VB and S28 were used
(Table 1), and a new data series was built combining VB and VILA samples.

Note that while the S28 data series has almost the same size (35,666) as the ideal
one (35,879), VB has much less samples (33,637) (Table 1), due to the data gaps during
two springs (April 2015 and April 2019) and two winters (January–February 2014 and
February–March 2019), Figure 2).

Thus, the differences between the data of VB and S28 are larger (Table 9), approxi-
mately −16% for the annual Em set and ≈21% in winter. However, when the VB data
series is filled out with VILA samples, the relative differences with S28 estimates become
like those computed with paired data (Table 6).
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Table 9. Mean annual and seasonal wave energy calculated for S28, VB and a data set resulting of
filling VB data series with VILA samples (VB + VILA).

VILÁN SITE

Mean Wave Energy (MWh/m)

Data Sets S28 VB VB + VILA

Annual 417.28 350.75 404.00
Spring 54.63 44.05 47.05

Summer 31.78 28.18 28.29
Autumn 145.99 139.43 139.52
Winter 180.87 142.02 183.37

4. Discussion

Part of both radars’ overestimation of Hm0 and Te (and so wave power) can be con-
sidered linked to the limitations inherent to these radars’ work frequency (4.5 MHz) to
detect small waves [44,50,51], due to the low-energy sea states not generating second-order
peaks in the Doppler spectrum. Thus, for periods of low-energy sea states (either for
small periods or height), when multimodality is usually more apparent [17], the spectrum
estimated by the radars is biased towards the higher-energy part of the wave spectrum [39].
Furthermore, for a calm sea, the result will be a null sample due to a lack of sufficient signal
to perform any wave parameter calculation. However, radars calculate more accurately
the highest-energy waves since the second-order peaks of the Doppler spectrum emerge
clearly above the signal noise, avoiding saturation until waves reach approximately 20 m
wave height [50].

The slight wave power overestimation described by VILA (Table 4) in the statistical
validation is due to the overestimation of Hm0 and Te. This was also shown by the larger
percentage of occurrences of waves with Te between 9 and 12 s (Figure 8). However, when
the mean wave energy was calculated with paired raw data, VILA parameters were lower
than VB and S28 ones, due to the high number of nulls, especially in summer when these
are most abundant (Table 6a). This also has a relevant impact on the summer predominant
wave direction, (VILA data displayed as WNW and VB data as W to NEE, Figure 10).
However, regarding these wave direction differences, other factors should be added, such
as the radar operation limits (coastal and wave bearing) and the location, which restrict its
capacity to detect the NNE waves [39]. Likewise, S28 samples do not describe directions
further East than 30◦, which could be explained by sheltering from coastal terrain [74].

The high spatial variability between VILA RCs (Table 7a) may be due to the radar data
loss (nulls and fails), since they increase with the distance to the radar [39]. However, other
contributions for such spatial variability could be both the heterogeneity of the wave regime
around Cape Vilán, which spans from SW to NE directions [6,36,39], and the roughness of
the shore, which could induce some irregularity in the sea states within the RCs, especially
for the farthest. Hence, the resulting wave parameters of each RC can be altered [39,56]
and increase the variability.

The total and mean energy (Figure 4, Table 6a) calculated with S28 are slightly higher
than the VB estimates. This seems to be due to the relevant overestimation of Te but on the
other hand, this is compensated by a slight underestimation of Hm0, (Figure 8a).

The use of VILA samples to fill the gaps in the VB data series (Table 9) can be very
useful due to buoy maintenance (high waves), as it is easier to obtain reliable radar data.
However, the differences detected in the description of the wave energy resource could
influence the calculation of the electricity produced by the WECs.

The large SILL overestimation of wave power and energy described during the statis-
tical validation (Table 5) was due to the overestimation of Hm0 and Te (Figure 3c), which
is not fully compensated by the data loss, since the percentage of SILL nulls is very low
for Hm0 > 3 m. In addition, the SILL energy matrix described a larger abundance of
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high-energy combinations of Te and Hm0 (Figure 9). As a consequence, the mean energy
estimated with SILL data was still larger than that estimated with SB data, especially in
autumn (Table 6b).

The agreement of SILL values with the spatial variability calculated with the WW3
model (Table 7b), compared to VILA data, could be related to the straightness of the Silleiro
shoreline and the predominance of homogeneous sea states, which favour the uniformity
observed for all the RCs.

S68 data describe a large dispersion of periods but also a significant underestimation
of the largest Hm0 values compared to SB (Figure 9), which results in lower mean wave
energy in autumn and winter (Table 6b). This is related to the SIMAR model trend to
underestimate the most extreme wave heights [70].

Despite the differences between the wave data of both study areas, the discussion
of the results of the electricity produced by the WECs is quite similar (Table 8). The
WECs’ production rates described in terms of their power matrices (Figure 14) limit the
exploitation of the wave resource described by each data source [12–14].

Therefore, in the case of the radars, the swell responsible for the overestimation of
the mean wave energy, especially in the case of SILL, does not correspond to the highest
production rates of the WECs. Data loss due to nulls, especially in the case of VILA, is
very meaningful for the electricity production of WECs such as Aquabuoy, which has a
low Hm0 limit (5.5 m). In the case of the SIMAR points, the number of samples that do not
contribute to the WECs electricity production is even larger (Figures 8, 9 and 14).

5. Conclusions

High-frequency radars, although not in situ, are considered as direct wave measure-
ment devices, with high resolution and coverage according to the characteristics of each
model. The objective of this work was to evaluate their use for wave energy resource
assessment. The results shown here must be considered as a preliminary study due to the
discontinuous time series.

Wave data from two CODAR Seasonde model radars were used to evaluate the wave
resource offshore Vilán and Silleiro capes (NW Galician coast, Spain). In summary, the
wave resource was described in terms of the annual and seasonal wave power and mean
energy. The electricity production of two wave energy converters was shown. To validate
the results, the wave resource was also described using wave data from two buoys, namely
the two SIMAR points and the WW3 model.

The limitation of these radars to estimate small waves [39,51] seems to condition to
some extent the resource estimation, especially in summer. In contrast, these radars offer
greater reliability during periods of high-energy swell and may be useful to fill out the
buoys data series when they are not operational.

HF radars and the SIMAR model have shown significant bias to larger values of Te
that influence the estimation of the resource, and to a greater extent, the estimation of the
electrical energy produced by the WECs.

Regarding this, we consider that a partitioned analysis of the wave spectra might be
necessary. On the one hand, this would allow to elaborate a more complete description of
the wave period, which could be useful to use and validate the data from buoys and HF
radars [16,39]. On the other hand, this method might help to make accurate estimations of
the WECs’ production, since they are highly dependent on wave characteristics [10,11,17].
For the Seasonde radars model, it is expected that a new software will allow to estimate
the multimodality of the wave spectrum [52] and thus this sort of analysis.

Finally, the radar developers recommend the design of a switch frequency radar to
diminish data loss, which could measure both the smallest and the largest waves [50].
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The following abbreviations are used in this manuscript:

CoV Coefficient of variation
Dm Mean wave direction
Em Mean wave energy
Hm0 Spectral significant wave height
Tc Radar centroid period
Te Energy period
Tp Peak period
AEMET Agencia Estatal de Meteorología (Governmental Meteorological Agency in Spanish)
CL Coastline limits
GFS Global Forecast System
HF High frequency
HIRLAM High Resolution Local Area Modeling
P Wave power
PdE Puertos del Estado (Ports of the State in Spanish)
R Lineal correlation index
RC Radar range cell
RMSE Root mean square error
S28 SIMAR point 3004028
S68 SIMAR point 1044068
SB Silleiro buoy
SILL Radar of Silleiro cape
SIMAR Simulación Marina (Marine Simulation in Spanish)
SWAN Simulating waves nearshore
VB Vilano-Sisargas buoy
VILA Radar of Vilán cape
WAM Wave modeling
WANA Waves analysis
WB Wave bearing
WEC Wave energy converter
WERA Wellen radar
WW3 WaveWatch III model
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