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Abstract: Desert segmentation of remote sensing images is the basis of analysis of desert area. Desert
images are usually characterized by large image size, large-scale change, and irregular location
distribution of surface objects. The multi-scale fusion method is widely used in the existing deep
learning segmentation models to solve the above problems. Based on the idea of multi-scale feature
extraction, this paper took the segmentation results of each scale as an independent optimization
task and proposed a multi-resolution supervision network (MrsSeg) to further improve the desert
segmentation result. Due to the different optimization difficulty of each branch task, we also proposed
an auxiliary adaptive weighted loss function (AWL) to automatically optimize the training process.
MrsSeg first used a lightweight backbone to extract different-resolution features, then adopted a
multi-resolution fusion module to fuse the local information and global information, and finally, a
multi-level fusion decoder was used to aggregate and merge the features at different levels to get the
desert segmentation result. In this method, each branch loss was treated as an independent task, AWL
was proposed to calculate and adjust the weight of each branch. By giving priority to the easy tasks,
the improved loss function could effectively improve the convergence speed of the model and the
desert segmentation result. The experimental results showed that MrsSeg-AWL effectively improved
the learning ability of the model and has faster convergence speed, lower parameter complexity, and

more accurate segmentation results.

Keywords: multi-resolution supervision; adaptive weighted loss; multi-scale; fusion; deep learning

1. Introduction

Desertification is a land degradation phenomenon characterized by wind-sand ac-
tivities in arid and semi-arid areas due to the human—nature imbalance. It is a positive
feedback process of environmental instability [1]. A comprehensive, macroscopic, and
scientific grasp of the spatial distribution pattern and dynamic change information of desert
land types is the basis for preventing and/or controlling desertification [2]. The feature
types in desert areas are complex, manual field mapping statistics or visual interpretation
consumes time and energy, and the information of dynamic large-scale areas cannot be
reflected quickly and accurately [3]. In recent years, satellite remote sensing technology has
been developing rapidly, making it possible to obtain remote sensing images in desert areas
with low cost, fast speed, and high accuracy [4]. However, due to the complexity of remote
sensing image features, there is no universal method for image recognition [5]. Light,
water, and other external factors have different effects on the image features of different
desert land types, making it difficult to identify land types and distinguish boundaries [6].
Therefore, desert remote sensing image recognition is still a challenging task.

Most of the existing remote sensing image-recognition methods have used sliding
windows to extract spectral features and texture features [7,8]. Pi et al. [9] proposed the

Remote Sens. 2021, 13, 2054. https:/ /doi.org/10.3390/rs13112054

https:/ /www.mdpi.com/journal/remotesensing


https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4681-9129
https://www.mdpi.com/article/10.3390/rs13112054?type=check_update&version=1
https://doi.org/10.3390/rs13112054
https://doi.org/10.3390/rs13112054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13112054
https://www.mdpi.com/journal/remotesensing

Remote Sens. 2021, 13, 2054

20f18

desert grassland classification network (DGC) and three-dimensional convolutional neural
network (3D-CNN) models to identify desert and grassland. Moghaddam et al. [10] used
a multi-layer perceptron (MLP) to classify Isfahan desert images and obtained the land
cover map of the Sejzy area. Ge et al. [11] used the artificial intelligence method (ANN),
random forest (RF), support vector machine (SVM), and k-nearest neighbor method (KNN)
to analyze seven different land cover types in China’s dengkou oasis. These methods made
full use of the information contained in remote sensing images and effectively improved the
land classification accuracy of high-resolution images, but there were still some problems
such as time-consuming calculation and inaccurate edge segmentation results. Researches
showed that image segmentation methods could better avoid the above problems [5,12].

Traditional desert segmentation methods such as mathematical morphology and
threshold segmentation methods were mainly based on remote sensing technology (RS)
and geographic and information system (GIS) technologies. These methods’ performance
depended on many threshold parameters that should be elaborately given. The threshold
parameters usually vary in different images, so the traditional methods could only work in
a small range of data and cannot be validated in complex circumstances [13,14]. Remote
sensing image segmentation methods based on a single path encoder-decoder network to
solve pixel-to-pixel prediction have achieved good results [15,16]. Li et al. [17] proposed a
land-use segmentation model based on deep learning, which improved the performance
of the model by using residuals [18] and multi-scale module ASPP [19]. Ulmas et al. [20]
used a deep learning model based on U-Net to identify the land cover type. The features
record in desert images usually presents multi-scale characteristics. The extraction and
fusion of multi-scale features can help improve the learning ability and the segmentation
result [21,22]. The existing single-branch segmentation model did not fully consider the
feature information of different scales, and the existing multi-scale feature fusion model
requires a lot of computation [23,24]. In order to quickly and accurately segment desert
remote sensing images, it is still necessary to further strengthen the multi-scale information
fusion effect [25], reduce the number of parameters, and speed up model convergence.

In the field of person re-identification and object detection, the use of deep supervision
can effectively improve the network performance [26,27]. When applying this idea with
multi-resolution learning to the segmentation task, it is important to achieve balanced loss
by considering different contribution of each resolution tasks [28]. Reducing the weight for
difficult tasks and increasing the weight for easy tasks can effectively accelerate the conver-
gence speed of training and prevent the model from falling into the local minimum [16].
However, the existing balance loss methods mostly adopted fixed balance parameters or
adjust the balance parameters only according to the difficulty of a single task [29].

In view of the above problems, we consider the application of desert remote sensing
with the characteristics of large image size, large-scale change, and irregular location
distribution of surface objects [30]. This paper regarded the outputs of different branches
as different optimization tasks and proposed a multi-resolution supervision network
(MrsSeg) with an adaptive weighted loss function (AWL) to automatically segment desert
remote sensing images. First, a lightweight backbone was used to extract different-scale
features, then a multi-resolution fusion module was adopted to fuse the local and global
informations, and finally, a multi-level fusion decoder was used to aggregate and merge
the object features at different levels to get the desert segmentation result. An improved
adaptive weighted loss function was also designed to automatically optimize the training
process. The main contributions of this work are as follows: (1) This paper took the
segmentation results of each resolution as an independent optimization task and proposed
a multi-resolution supervision network (MrsSeg) to better promote the feature fusion
process. (2) According to the characteristics of desert images, a specialized multi-resolution
aggregation module was proposed to better recover the detailed information of desert
segmentation results by aggregating features from low to high resolution. (3) In order to
improve the efficiency of the multi-resolution supervision network, an adaptive weighted
loss function (AWL) was designed. By giving priority to the easy tasks, the improved
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loss function could effectively improve the convergence speed of tranining and the desert
segmentation result. (4) A new desert image dataset was collected, including desert, gobi,
oasis, and river. The experimental results on the self-constructed dataset showed that the
proposed model obtained better performance in the desert segmentation task compared
with existing approaches.

2. Materials and Methods

Desert remote sensing images are usually characterized by large image size, large
scale change, and irregular location distribution of surface objects [30]. In order to quickly
and accurately segment desert images, this paper proposes a multi-resolution supervision
network to effectively fuse local information and global information, so as to improve the
desert segmentation effect. According to the characteristics of multi-resolution outputs
of the network, an adaptive weighted loss function was proposed to further improve the
segmentation performance of the network.

2.1. Multi-Resolution Supervision Network

In the existing remote sensing image segmentation methods, the feature fusion model
is often used to extract multi-scale features and preserve spatial details [31]. However, it
can be seen from Figure 1 that the mutil-branch model (Figure 1a) was short of dealing with
high-level features combination of parallel branches, the lack of feature communication
between parallel branches led to insufficient learning ability, and the additional branches
on high-resolution images limited the acceleration of training speed. Commonly used
pyramid feature map fusion methods include image pyramid [32], feature pyramid [33],
and spatial pyramid pool (SPP) [34] module (Figure 1b).The SPP module uses shallow
semantic information to enhance high-level features by extracting high-resolution context
semantics and enhancing receptive fields. However, the segmentation results of this
method are limited to the feature layer where the spatial pooling pyramid is located, and
implementing the SPP module is usually time-consuming. The feature pyramid (Figure 1c)
fuses the deep semantic information into the shallow network layer by layer through the
top-down path. This feature fusion method of aggregating context information not only
increases the local information extraction ability of the deep neural network but also makes
the shallow network have certain deep-level semantic information.

: | e
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I | =N
S
(a) (b) (c)

Figure 1. Segmentation model structure comparison: (a) multi-branch network; (b) spatial pyramid
pooling network; (c) feature reuse network.

Inspired by the above ideas, the structure of the improved multi-resolution segmenta-
tion network in this paper was shown in Figure 2. The structure aimed to better extract and
fuse local and global information through supervised training among multiple branches so
as to improve the segmentation ability.

The MrsSeg was a lightweight desert image segmentation method that combined
multi-resolution semantics to encode features. The whole network could be divided into
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three parts, among which the encoder module consisted of a lightweight backbone network
and multi-resolution fusion modules and the decoder module was designed as a simple
and effective up-sampling module that combined low-level and high-level features.

The overall structure of the MrsSeg-AWL was illustrated in Figure 2. First, we used
the pre-trained MobilenetV2 [35] as a lightweight backbone network to obtain different
levels features of desert image. Then, we used the multi-resolution fusion module to fuse
the multi-level semantic information to improve the feature representation ability of the
network, and then adopted the multi-resolution supervised training to improve the feature
extraction ability of each branch to promote feature fusion ability. Finally, the segmentation
result with the same size as the input image was obtained by up-sampling the feature map
of the multi-level fusion decoder.

/
F— N

loss summation
! 1

- Backbone - ‘

daptive weighted:
loss function _ |

Multi-resolution fusion module

Figure 2. The overall structure of MrsSeg-AWL.

2.1.1. Backbone

Desert images usually have a large image size. In order to improve the model seg-
mentation efficiency, a pre-trained Mobilenetv2 was used in this paper as the lightweight
backbone. Inverted residual with a linear bottleneck was adopted in Mobilenetv2, this
structure not only ensured the efficiency of feature extraction, but also effectively reduced
the number of parameters.

The inverted residual with a linear bottleneck is shown in Figure 3. The inverted
structure was designed according to the idea of “expansion—convolution-compression”.
First, 1 x 1 point-wise convolution (PW) was used to expand the input F to a high-
dimensional embedding space, and then a 3 x 3 depth-wise separable convolution (DW)
was used for filtering. Subsequently, the features were projected back to a low-dimensional
representation with a 1 x 1 linear convolution. Finally, the low-dimensional outputs were
added to the inputs by the skip connection to obtain the final output. The inverted residual
with a linear bottleneck Bott could be computed as follows:

Bott(F) = F + PW(DW(PW(F))), 1)

where F is the input feature map, PW is 1 x 1 point-wise convolution layer, DW is 3 x 3
depth-wise separable convolution layer.
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Figure 3. Inverted residual with linear bottleneck: PW represents point-wise convolution, DW
represent depth-wise convolution.

2.1.2. Multi-Resolution Fusion Model

The feature map output from the backbone upper layer had a smaller size and higher
semantic information [35]. This kind of high-level information has been experimentally
proven to play a key role in the subsequent segmentation task. However, the greater the
stride of the downsampling of the network was, the more the spatial details of the image
were lost. This led to deep encoder blocks’ lack of low-level features and made it difficult
for decoders to recover local details. This problem motivated us to propose an aggregation
strategy to fuse local detail and global information in different depth positions of feature
extraction networks to achieve better performance.

The high-level features of desert images contained more global information, while
the low-level features contained more local information such as color, texture, and edge.
Effective fusion of high-level and low-level features could improve the segmentation effect.
Based on this, the multi-resolution fusion module with a top-down fusion mechanism
was designed (Figure 2). The module was composed of aggregation blocks (Figure 4).
Each aggregation block had two inputs. The low-level feature was from the previous
aggregation block at the same branch, and the high-level feature was from aggregation
block at low-resolution branch. When the input feature map came from the backbone
network, the number of channel (C1) would be adjusted by the 1 x 1 convolution to
C2 to match the dimension of high-level feature. At the same time, the skip connection
was used to connect input and output, which could effectively avoid the problems of
information loss and gradient disappearance and improve the model’s optimization ability.
The multi-resolution fusion model made each feature representation from low-resolution
to high-resolution continuously receive information from other parallel branches, so as to
obtain richer high-resolution representation. This made the final output feature map more
accurate.The aggregation block Agg could be computed as follows:

Agg(LF, HF) = CBR(CBR(LF) + Up(HF)) + CBR(LF) + Up(HF). 2)

where HF is a high-level feature, LF is a low-level feature, CBR represents 3 x 3 convolution
layer followed by one batch normalization layer and relu activation function, and Up
represents the bilinear interpolation upsampling layer.

The architectures of MrsSeg are shown in Table 1. The encoder of MrsSeg contained
two parts, including the lightweight backbone network and multi-resolution fusion mod-
ules. A pre-trained Mobilenetv2 was used in this paper as the lightweight backbone to
down-sample the 512 x 512 training image to 1/16 of itself. A multi-resolution fusion
module took the multi-scale output of backbone as input. Each branch of multi-resolution
fusion module had four aggregation blocks. The first aggregation block was used to unify
the channel of feature map to 64, and the rest of the aggregation blocks were used to
multi-scale information fusion.
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Figure 4. Structure of aggregation block in multi-resolution fusion module.

Table 1. The architectures of MrsSeg Each aggregation branch contains one or more operators. Each
operation has output channels ¢, stride s, repeated n times. The expansion factor is t applied to
expand the channel number of the operation. Conv2d means the convolutional layer, followed by
one batch normalization layer and relu activation function. Bottleneck indicates inverted residual
block. Aggblock represents aggregation block.

Backbone Multi-Resolution Fusion

Branch Operator t ¢ n s Outputs Size Operator ¢ n Outputs Size
Conv2d - 32 1 2 2562 ’
Branch 4 bottleneck 1 16 1 1 9562 aggblock 64 4 256
Branch 3 bottleneck 6 24 2 2 1282 aggblock 64 4 1282
Branch2 bottleneck 6 32 3 2 642 aggblock 64 4 642
bottleneck 6 64 4 2 322 )
Branch 1 bottleneck 6 96 3 1 32 aggblock 64 4 32

2.1.3. Multi-Level Fusion Decoder

According to the research of [25], not all the features of the stages were necessary
to contribute to the decoder module. This motivated us to find a lightweight method
to incorporate multi-level context into encoded features. The decoder in this paper was
designed as a simple and effective upsampling module that integrated low-level and high-
level features. First, the first feature map of each row (left to right in the multi-resolution
module) was upsampled to the original image size through bilinear interpolation and
added together, as shown in the black dotted line in Figure 2. Then, the result was
followed by convolution operation and added with the output feature maps of the multi-
resolution fusion module (upper right feature map in multi-resolution module) so that
high-level features and low-level details were further fused. Finally, the fused feature map
was subjected to a convolution operation followed by a softmax function to obtain the
segmentation result.

2.2. Adaptive Weighted Loss Function

In this paper, the output of different resolution branches of multi-resolution structure
(MrsSeg) was regarded as different optimization tasks, and the supervised training method
was used to promote multi-resolution fusion. In a multi-output structure, it is usually
important to achieve the loss balance by integrating the multi-branches loss. However, the
existing loss balancing parameter was determined uniformly or only determined by single
task difficulties. In the case that balancing parameters were calculated without considering
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task difficulty for each branch, losses that did not match task difficulties of each branch
were propagated (Figure 5a), and it seemed to reduce the effect of multitask learning.

In order to solve the above problem, an adaptive weighted loss function (AWL)
was proposed to adjust the balancing parameters according to task difficulties for each
branch. By reducing the weight of difficult tasks and increasing the weight of easy tasks,
it could effectively accelerate the convergence speed of training and help to improve the
segmentation result. The improved adaptive weighted loss function is shown in Figure 5b.

T T T T T _
ow, = Ly L+ L+ L LLWL = )\T7L§ + )\TZL; + )\;L; + )\LLZ

MrsSeg MrsSeg

,,,,,,,,,,,,,,,,,

(a) (b)
Figure 5. Concept of adaptive loss function: (a) Uniform weighted loss function; (b) Adaptive
weighted loss function. Rectangles of different sizes represent MrsSeg’s four branches prediction
results. Gray arrows represent the loss expression of each branch. The sizes of the circles on the
arrows indicate the balancing weight for multi-branch structure: the larger the radius of the circle,
the greater the weight.

In this paper, the method of quantifying branch task difficulty and adjusting balancing
parameters was used to achieve the purpose of adaptive loss balance. The branch task
difficulty was calculated by loss reduction, so first we calculated the moving average k ; of
the current loss L ; of each branch, as follows:

kit - LT
kP = b ki ty b T
b LT+k; 170 +Lg+k;’1 b 3)
=(1—a)k} ' +aLf,
where « € [0, 1] is a discount factor and & = —_Lb__ b e Nis the number of each branch

LT+k,"
b b
task, 7 is the current training iteration, k ; is the current moving average, and k Z‘l is the
previous moving average.
Using k |, we defined the current task difficulty rlf of each branch as follows:

kp
7’;:7,1- 4)
ky

A large r | means that the current optimization step did not reduce the loss much;
that is, optimization for the current branch task was difficult. In particular, if » > 1, it
seemed that the task stepped into a local minimum. Therefore, we introduced the balancing
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parameter A | to reduce the weight of the branch task with large r ; and increase the weight
of the branch task with small 7| . The formula for balancing parameters is:

T _ 7T
i =Ty

Ap="—f— (5)
ri
=1

Tt=

1

The overall loss function L %,,; was defined as the sum of each adjusted branch loss:

1N
ZWLZNZ)‘ZLZ' (6)
=1

Algorithm 1 shows the application of the adaptive weighted loss algorithm in the
training process. First, the cross-entropy loss function was used to calculate the loss of each
branch. Then, the moving average of each branch (k ;) could be obtained by Equation (3).
The smaller the moving average changed, the more difficult the branch was to optimize, so
Equation (4) was used to calculate the optimizing difficulty of each branch (r ;). According
to the principle of giving priority to the easy task, the balance parameter of each branch
(A ;) was allocated by Equation (5). Finally, the weight of each branch loss was adjusted by
balance parameters to obtain the overall loss, and the network parameters were updated
through back-propagation.

Algorithm 1 Application of Adaptive Weighted Loss in the Training Process

Input: batch images I

Output: network parameters W
1: Initialize network parameters W;
2: for T = 1 to max_iter do
3:  Getbatch images I;

Update moving average k ; for each branch with Equation (3);
Calculate task difficulty r ; with Equation (4);

10:  Calculate balancing parameters A | with Equation (5);

11:  Get final Loss L %y, with Equation (6);

122 Using L%, backpropagation and update network parameters W
13: end for

14: return W

4. Calculate CrossEntropyLoss L ; for each branch;
5. if T =1 then

6: Initialize k Z_l with L };

7. end if

8:

9:

Desert imagery has the characteristics of large-scale change and irregular location
distribution of surface objects. In view of the above characteristics, MrsSeg adopted
multi-resolution feature aggregation modules in order to extract and fuse multi-resolution
features of desert image. Aiming at the structural features of multi-resolution outputs
of the model, this work designed auxiliary loss function on multiple resolution branches
to improve the feature extraction. Because the training difficulty of different branch
tasks is different, and the optimization difficulty of each branch is different in different
training stages, an adaptive weighted loss function was designed, which could improve
the convergence speed of the model and the desert segmentation result by giving priority
to the easy tasks.
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3. Results
3.1. Data and Pre-Processing

Xinjiang is the region with the largest desertification area, the widest desertification
distribution, and the most serious desertification damage in China. The region is deep
inland, forming a distinct temperate continental climate. Desert (sandy desert) and gobi
(Gobi desert) are the main land types in this area. Unlike desert, gobi is mainly covered
with bare gravel and stones. Based on the above reasons, Xinjiang was selected as the
sampling object of the desert area segmentation data set.

The images collected in this paper were all from Environment and Disaster Monitoring
and Forecasting Small Satellite Constellations A, B (HJ-1A/B). The satellite has unique
advantages of autonomous control, medium and high resolution, wide coverage, etc. It can
stably obtain the medium resolution remote sensing data covering the whole country every
half a year and is the preferred remote sensing data source for carrying out high-dynamic
national desert and desertification land monitoring.

The data set contained desert, gobi, oasis, and river categories (Figure 6) and was
divided into training set, verification set, and test set by the ratio of 6:2:2. In order to
make the model more robust, the data were expanded from 1665 to 6660 pieces by random
flipping, rotating, and other image enhancement methods, described in Figure 7.

(a) (b) (d)

(2) (®) © (d ©

Figure 7. Different data augmentation methods: (a) Original image; (b) Horizontal flip; (¢) Random
scale; (d) Vertical flip; (e) Random rotation.
3.2. Experimental Results

The experimental environment was Intel Core i7-8700k (Intel Corporation is an Ameri-
can multinational corporation and technology company headquartered in Santa Clara, CA,
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USA, in Silicon Valley) eight-core processor, RTX2070 8G independent graphics card, 32G
memory, and 1T hard disk; the software that we used was PyTorch framework (PyTorch is
an open source machine learning library based on the Torch library, primarily developed by
Facebook. Facebook, Inc., is an American technology conglomerate based in Menlo Park,
CA, USA). For a fair comparison, all runs were trained with stochastic gradient descent
method. The hyper-parameters were set as follows: batchsize = 4, momentum = 0.9, weight
decay = 0.00005. We used cosine decay as learning rate decay strategy. To obtain a quanti-
tative evaluation result, we adopted Frame Per Second (FPS) and mean Intersection over
Union (mloU) as metrics. FPS is the number of images that can be processed per second.
The larger its value, the faster the prediction speed of the model. The mloU calculates the
intersection ratio of all classes. This index can better reflect the accuracy and completeness
of model segmentation in different terrain type areas in the experiment, as defined below:

1 ¢ pii

mlol = ) ,
k+ 1 opi+Xiopji—pi

@)

where k + 1 is the number of classes (including background); p ;; is the number of pixels
that belong to class i and were classifified correctly, p ;; is the number of pixels that belong
to class i and were classifified as class j.

Due to the large number of data in the desert data set, the mini-batch training method
was adopted for model training. In the verification process, the model result will inevitably
be biased towards the final iteration of the batch data. When mini-batch randomly extracts
batch data from desert data set, batch data samples imbalance may occur. When such a
situation occurs in the last iteration, the verification curve will be jittered. However, this
does not affect the overall training trend of the model. Hence, average value of mloU every
20 epochs was used in Figures 8 and 9 as the points of the curve so as to better reflect the
overall trend and performance of the model.

In this section, we first analyze the results of ablation experiments and then demon-
strate the effect and role of the adaptive weighted loss function. Finally, we compare
the results of MrsSeg-AWL and the existing segmentation network in desert land type
segmentation task.

In the first section, a detailed ablation experiment was performed on MrsSeg-AWL
to better understand the gain effect of each improved component. The ablation exper-
iments results are shown in Figure 8 and Table 2. Backbone network and the number
of branches remain unchanged (Netl), the introduction of skip-connection into the ag-
gregation blocks(Net2) could effectively avoid the network degradation caused by the
increase of network layers. By changing the convolution before the upsampling mode
to the upsampling before convolution mode in multi-level fusion decoder’s final stage
(Net3), the decoding capability of the decoder was enhanced to better recover the detailed
features of desert images. Compared with the model that only used the cross-entropy loss
function, the MrsSeg-AWL using the adaptive weighted loss function improved mloU
by 3.8%. It could be clearly seen from Figure 8 that the mIoU of MrsSeg-AWL rapidly
improved between 0 and 40 epochs, and the mIoU curve did not oscillate after 140 epochs,
indicating that adaptive weighted loss function effectively improved the convergence
speed of the model.

The training curves of MrsSeg with different loss strategies compared with the single-
branch(Baseline) are shown in Figure 9 and Table 3. It can be seen from Table 3 that
when fixed balancing parameters were used, increasing the number of integrated branches
could effectively increase the mloU value of the model, which shows that the use of
additional branch loss has a positive effect on the final result. Compared with the model
only trained with cross-entropy loss, the model trained with four-branch loss improved
the mloU by 2.2%, and the model that used adaptive weighted loss function improved
the mloU by 3.9%. It can be seen from Figure 9d that the training curve of MrsSeg with
adaptive weighted loss was steeper between 0 and 40 epochs, and the curve did not oscillate
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after 140 epochs. Compared with other loss strategies, MrsSeg-AWL training curves also
achieved the highest mIoU. The experimental result shows that adaptive weighted loss
function effectively improved the convergence speed and the mloU of the model.

Table 2. Ablation study of MrsSeg-AWL.

Extra Upsampling Adaptive

o,
Method Skip-Connection Before Convolution Weighted Loss mloU(%)
Netl 444
Net2 v 47.3
Net3 v v 54.2
MrsSeg-AWL v v v 58.0
0.6
051 ,
0.4 1
2
So3r ,
E
—MrsSeg-AWL
02r —Net3 ]
Net2
— Net1
011 ,
0 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Epoch

Figure 8. Training curve of ablation experience. The curves represent the mIoU change of the
validation dataset during the training process. Each point of the curves was the average value of
mloU every 20 epochs.

Table 3. Different loss strategies results.

Loss Strategies Branch1l  Branch2  Branch3  Branch4  mlIoU(%)
Single-branch v 54.2

Two-branches v v 55.3
Three-branches v v v 56.1
Four-branches v v v v 56.3
Adaptive weighted v v v v 58.0
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Figure 9. Training curves comparison for different loss strategies: Single-branch loss strategy was
used as the baseline for the experiment.The curves represent the mIoU change of the validation
dataset during the training process. Each point of the curves was the average value of mloU every
20 epochs. (a) Two-branches losss strategy, (b) Three-branches loss strategy, (c) Four-branches loss
strategy, (d) Adaptive weighted loss strategy.

Figure 10 shows the balancing parameters curve of MrsSeg-AWL in different training
stages. The balancing parameters represent the optimization degree of each branch. The
larger the balance parameter was, the easier the branch was to be optimized. Each line
in Figure 10 corresponds to the four branch outputs in the same color as in Figure 2.
On the one hand, the top-down comparison of Figure 10a—d shows that the branch task
with higher resolution has larger balance parameter values in the whole training process,
indicating that the integration of global information and local information could better
optimize the training process. On the other hand, by observing the curve, it could be
found that in different training stages, the optimization difficulty of each branch loss in
the multi-resolution supervision network is different. If fixed balancing parameters were
adopted, the proportion of each branch loss cannot be dynamically adjusted, such that the
model cannot be further optimized. The experimental results further demonstrated that the
adaptive weighted loss function was helpful to adjust the influence of each branch loss on
the total loss in different training stages, and gave priority to training the branch with large
optimization space, so as to accelerate the convergence speed and improve the accuracy.

Table 4 shows the desert segmentation result by four mainstream lightweight back-
bones, which were all pre-trained on Imagenet classification inn the case that the feature
fusion module and the adaptive loss function did not change. The experimental results
show that MobilenetV2 achieved the best desert segmentation result. Although its seg-
mentation time was a little bit slower than ResNet-18, its mloU was 2.2% higher than
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ResNet-18. Therefore, in the next comparative experiment, we used MobileV2 as the
backbone network.
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Figure 10. Balancing parameters curve of MrsSeg-AWL.: (a) Task4; (b) Task3; (c) Task2; (d) Task1.

Table 4. Comparsion of different backbones.

Backbone mloU(%) FPS Paramteter (M)
MobilenetV2 58.0 77.0 3.3
ResNet-34 57.0 69.0 22.4
ResNet-18 55.8 82.0 12.23
SuffleNet 54.6 70.0 2.3

The performances of different models in the desert segmentation task are shown in
Table 5. It can be seen from the table that the improved MrsSeg-AWL achieved the highest
mloU, and adaptive weighted loss function improved the mIoU by 1.7% without increasing
the prediction time of MrsSeg. In the experiment, we found that FCN based on Vgg was
prone to the problem of hard convergence. FPN achieved the fastest prediction speed, but
its accuracy was unsatisfactory. DeepLabV3+ was better than MrsSeg-AWL with respect to
speed and comparable to MrsSeg-AWL with respect to accuracy. However, the last one
requires less parameter tuning. Experimental results showed that the proposed MrsSeg-
AWL with multi-resolution fusion network and adaptive weighted loss function has better
performance in desert segmentation task than the existing segmentation network.

Table 6 shows he land type segmentation results of each model. It can be seen that the
IoU of desert and oasis categories was generally high, indicating that that land type was
easier to identify when the sample was sufficient. The IoU of MrsSeg-AWL segmentation
result reached 84% and 86%, respectively. Due to the small number size and the large-scale
change in river samples, the IoU of this category was generally low. The MrsSeg-AWL's
IoU of the river category reached 23.1%, which is 3.4% higher than DeepLabV3+. It showed
that the multi-resolution supervision network could better learn the characteristics of river
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samples and obtain more accurate segmentation results when the number of samples was
small and the sample scale changed greatly.

Table 5. Segmentation performance of different models.

Method Backbone mloU (%) FPS Parameters (M)
MrsSeg-AWL MobilenetV2 58.0 77.0 3.3
DeepLabV3+ MobilenetV2 56.6 93.0 58

MrsSeg MobilenetV2 56.3 77.0 3.3

DenseASPP MobilenetV2 54.3 85.0 248

UNet - 52.6 33.0 13.3

ENet - 49.4 69.0 -

FPN MobilenetV2 48.0 128.0 44
DFANet - 45.7 69.0 1.97
FCN32s Vgg 20.1 27.1 134.4

Table 6. Land types segmentation IoU of different models.

Method Desert Oasis Gobi River Background
MrsSeg-AWL 84.0 86.0 39.6 23.1 46.4
DeepLabV3+ 83.9 82.0 411 19.7 46.8

DenseASPP 81.5 81.9 38.9 15.1 44.7
UNet 75.2 86.3 35.1 14.1 43.0

ENet 78.5 80.2 37.3 11.8 419

FPN 76.1 78.1 27.3 10.9 39.6
DFANet 71.1 76.6 14.6 20.8 25.1

3.3. Desert Segmentation Results

The segmentation results of desert remote sensing images are shown in Figure 11.
It can be seen that the images segmented by FPN have a large area of mis-segmentation,
indicating that the feature fusion network with a single branch cannot make full use of local
and global semantic information, leading to pixel-level classification errors. Compared
with FPN, Unet significantly reduces he false detection area in desert and gobi land
types, but the classification result of river samples was still not accurate enough, and the
segmentation edge was rough. MrsSeg-AWL and the state-of-art segmentation network
Deeplabv3+ performed well on desert and oasis segmentation task. While extracting the
multi-resolution features of desert images, MrsSeg-AWL used adaptive weighted loss
function to promote multi-resolution feature fusion through supervised training. This
enabled MrsSeg-AWL to better learn the characteristics of river samples for river types
with a small number of samples and large-scale change and obtained more accurate and
clear desert segmentation maps.

In order to test the desert segmentation ability in the non-sampling region, we ran-
domly selected some desert images in the Nile valley and carried out the segmention test
on these images using the model trained on the desert dataset. The segmentation results
are shown in Figure 12. It can be seen from the figure that FPN and Unet’s segmentation
results showed large areas of desert and gobi false detection areas, indicating that these
methods’ feature extraction ability needed to be improve. MrsSeg-AWL and the state-of-art
segmentation network Deeplabv3+ had a better overall classification results. MrsSeg-AWL
using multi-resolution supervising network had more accurate segmentation edges of the
river category. The test result shows that MrsSeg-AWL had good desert segmentation
application potential.
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Figure 11. Comparison of different models segmentation results on desert dataset: (a) Original image, (b) Ground truth, (c)
FPN, (d) Unet,(e) DenseASPP, (f) Deeplab v3+, (g) MrsSeg-AWL.

Desert Oasis Gobi River Background

Figure 12. Comparison of different models segmentation results on the Nile valley: (a) Original image, (b) Ground truth, (c)
FPN, (d) Unet, (e) Deeplab v3+, (f) MrsSeg-AWL.
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4. Discussion

Desert remote sensing images are usually characterized by large image size, large-scale
change, and irregular location distribution of surface objects. In the desert data, the gobi
and river samples accounted for only 15% and 1% of the total number, respectively. It
can be seen from Table 6 that MrsSeg-AWL achieved the highest IoU value in the river
category and also reached comparable gobi segmentation result as that of Deeplab V3+. It
can be also seen from Figures 11 and 12 that MrsSeg-AWL achieved good segmentation
results, especially for complex images such as the small area of the oasis and rivers. MrsSeg-
AWL used adaptive weighted loss function to promote multi-resolution feature fusion
through supervised training. This enabled MrsSeg-AWL to better learn the characteristics
of samples with a small number and large-scale changes and obtained more accurate and
clear desert segmentation maps.

In the experiment, we found that there was excessive exposure in some areas, and
sthe narrow rivers in the desert area had seasonal flow interruption, which had an impact
on the accuracy of desert segmentation. Therefore, in future research, we will focus on the
problem of bad effects of image noise, so as to further improve the segmentation results.

5. Conclusions

Accurate desert segmentation results could provide a basis for the timely under-
standing of the status, extent, and evolution of desert areas. Desert images are usually
characterized by large image size, large-scale change, and irregular location distribution of
surface objects. The multi-scale fusion method is widely used in the existing deep learning
segmentation models to solve the above problems. Based on the idea of multi-scale feature
extraction, this paper took the segmentation results of each scale as an independent opti-
mization task and proposed a multi-resolution supervision network (MrsSeg) to further
improve the desert segmentation result. Due to the different optimization difficulties
of different scale tasks, we also proposed an adaptive weighted loss function (AWL) to
automatically optimize the training process. First, we collected remote sensing images
of the Xinjiang region from the Environment and Disaster Monitoring and Forecasting
Small Satellite Constellations A and B satellites (HJ-1A/B) and used these images to create
a desert segmentation data set. Then, a multi-resolution segmentation method based
on the adaptive weighted loss function was proposed. Finally, the image segmentation
experiments and results analysis were carried out on remote sensing images of the Xinjiang
and Nile valleys. The experimental results showed that the proposed multi-resolution
supervision network could effectively improve the desert segmentation accuracy under the
condition of low parameter complexity. The adaptive weighted loss function accelerated
the convergence of the model and further improved the segmentation results. MrsSeg-AWL
also showed a certain improvement in the gobi and river categories with few samples and
was difficult to segment. To sum up, the improved network is an effective automatic desert
remote sensing image segmentation method.
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