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Abstract: Slope failures pose a substantial threat to mining activity due to their destructive potential
and high probability of occurrence on steep slopes close to limit equilibrium conditions, which
are often found both in open pits and in waste and tailing disposal facilities. The development
of slope monitoring and modeling programs usually entails the exploitation of in situ and remote
sensing data, together with the application of numerical modeling, and it plays an important role
in the definition of prevention and mitigation measures aimed at minimizing the impact of slope
failures in mining areas. In this paper, a new methodology is presented; one that combines satellite
radar interferometry and 2D finite element modeling for slope stability analysis at a regional scale,
and applied within slope unit polygons. Although the literature includes many studies applying
radar interferometry and modeling for slope stability analysis, the addition of slope units as input
data for radar interferometry and modeling purposes has, to our knowledge, not previously been
reported. A former mining area in southeast Spain was studied, and the method proved useful for
detecting and characterizing a large number of unstable slopes. Out of the 1959 slope units used for
the spatial analysis of the radar interferometry data, 43 were unstable, with varying values of safety
factor and landslide size. Out of the 43 active slope units, 21 exhibited line of sight velocities greater
than the maximum error obtained through validation analysis (2.5 cm/year). Finally, this work
discusses the possibility of using the results of the proposed approach to devise a proxy for landslide
hazard. The proposed methodology can help to provide non-expert final users with intelligible, clear,
and easily comparable information to analyze slope instabilities in different settings, and not limited
to mining areas.

Keywords: satellite radar interferometry (InSAR); slope units; active deformation slope units; finite
element method (FEM); shear strength reduction (SSR); slope stability; abandoned mining areas

Remote Sens. 2021, 13, 2008. https://doi.org/10.3390/rs13102008 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0663-3805
https://orcid.org/0000-0001-8667-5030
https://orcid.org/0000-0002-0516-1626
https://orcid.org/0000-0002-2083-1931
https://orcid.org/0000-0002-8325-4350
https://orcid.org/0000-0001-6254-7931
https://orcid.org/0000-0001-7877-1516
https://orcid.org/0000-0002-8147-4608
https://orcid.org/0000-0002-6633-9184
https://www.mdpi.com/article/10.3390/rs13102008?type=check_update&version=1
https://doi.org/10.3390/rs13102008
https://doi.org/10.3390/rs13102008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13102008
https://www.mdpi.com/journal/remotesensing


Remote Sens. 2021, 13, 2008 2 of 24

1. Introduction

Mining activities frequently induce ground movements, for different reasons. In un-
derground mining, instability normally develops as a consequence of adverse structural
geology, substantial stress, weathering and/or softening of rocks, and excessive groundwa-
ter pressure or flow [1]. Such conditions may lead to the collapse of underground openings.
All of these factors can give rise, in turn, to ground subsidence. In surface mining, instabil-
ity is generally the result of the exposure of dominant weakness planes, although failure
within intact rock is also possible in very weak rocks and formations. Instability mainly
affects excavated slopes and may result in catastrophic events if appropriate measures to
prevent slope failure are not undertaken. Slope instability often affects waste and tailing
disposal facilities as well; which are essential in both surface and underground mining
operations. These facilities consist of unconsolidated debris material arranged in waste
dumps and tailing dams.

Slope failures and subsidence can cause serious problems, such as environmental
impacts, damage to property, harm to the health and safety of both employees and residents
of nearby communities, and economic outcomes that can either result in the premature
closure of the mine [2] or compromise the reclamation and decommissioning of the mining
operation. Both phenomena may occur long after the mine operations have been aban-
doned [3]. Moreover, unlike civil engineering projects, where the useful and expected life
of the structures is very long (typically more than 10 years), mining projects only require
certain facilities to have long lives (e.g., shafts, main haulage drifts, etc.).

For this reason, the safety factor (SF) used in the design of mining structures is much
lower than that used in civil structures, and, in many situations, a SF ≈ 1 is used [2].
Low SFs do not imply, however, that safety is less important in mining. Rather, that profit
margins are narrow and total costs must be kept to a minimum. In all mining operations,
it is always a major challenge for the designers to ensure the integrity and stability of all
openings and excavations, while keeping the costs low. However, in most mining projects,
investing in specific ground monitoring programs early can produce major cost savings in
the future. A clear example would be the case of large open-pit mines, where the slopes are
designed so that they are allowed to move in order to reduce the amount of waste to be
mined, while also monitoring the movements very carefully.

In order to ensure safe and stable conditions, ground monitoring in mining has been
traditionally undertaken through the application of surface and subsurface techniques [4].
Recently, the development of modern monitoring systems, such as time domain reflectome-
ters [5], terrestrial laser scanners [6], radars [7–9], and unmanned aerial vehicles [10,11],
has spurred a rise in the use of remote sensing technologies. However, all of the methods
mentioned above require in situ measurements for calibration and validation, and in some
cases they represent a costly solution.

The application of satellite synthetic aperture radar interferometry (InSAR) [12] has
been adopted as a supplementary technique to study mining-induced ground movements.
As in the case of other remote sensing techniques, InSAR results require the validation
of the measured ground movements, typically carried out using in situ monitoring data.
In addition, they can be used in conjunction with numerical models reproducing the
measured movements after ground truth verification [13–15].

In particular, case studies on the use of satellite InSAR to analyze mining-induced slope
instabilities are scarce, as most of them focus on ground subsidence (e.g., [16–18]). Never-
theless, the application of such technique has been documented in a few mining sites in Aus-
tralia [19,20], Brazil [21,22], Spain [23,24], South Africa [15], Turkey [7], and U.S.A. [14,25].
However, in most cases these works present analyses of the InSAR data at the slope scale,
or include no complementary stability analyses taking into account geotechnical data
through geo-mechanical modeling.

In this paper, a topography-driven methodology is proposed, aimed at analyzing
slope instabilities at a regional scale, and using satellite InSAR in conjunction with 2D finite
element (FE) modeling. The method is topography-driven because it makes use of slope
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units (SUs) as mapping units, instead of the widely used grid cells. SUs are portions of
geomorphologically homogeneous terrain. The proposed approach aims to simplify the
InSAR- and FE-modeling-derived results in order to provide non-expert final users with
intelligible, clear, and easily comparable information.

The methodology has been implemented for the region of Sierra de Cartagena-La
Unión (Murcia), hereinafter referred to as Sierra Minera, a former mining area in southeast
Spain (Figure 1). A few case studies conducted in Sierra Minera through satellite InSAR
are known in the literature. However, most of these focus on mapping and monitoring
ground subsidence within the urban area of La Unión [26,27]; which is no longer occurring
in the area, according to our InSAR data.

Figure 1. Study area and geological map of Sierra de Cartagena-La Unión (adapted with permission from ref. [28]).

One of the existing studies mapped ground movements in Sierra Minera using satellite
InSAR [23]. Yet, the data used in that study were obtained by processing ERS and ENVISAT
satellite data. Hence, the spatial resolution of the results (80 by 80 m) and the density of
measuring points (MPs) were rather low.

In contrast, our results were obtained by processing Sentinel-1 satellite data. Thus,
in this work, line-of-sight (LOS) ground velocity maps over Sierra Minera were derived at a
higher resolution (30 by 30 m) and with a much higher density of MPs. This improvement
is not only due to the higher spatial resolution of the Sentinel-1 constellation, but also to its
short revisit time (6 days). In addition, stability analyses were performed through 2D FE
modeling in order to cross-reference the InSAR data.

The proposed approach builds upon previously published works aimed at detecting
active deformation areas [29–32]. In those studies, however, the topography was only taken
into account to discern flat areas from hill slopes; the concept of SU was not considered,
and no stability analyses were performed. Moreover, whereas those studies were conceived
to analyze ground deformation phenomena in general, our approach focuses exclusively
on analyzing slope instability.
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This paper is organized as follows. Section 2 provides an overview of the geographical,
geological, and geotechnical characteristics of Sierra Minera, as well as a summary of the
data used for this study, some of which were collected through fieldwork. Section 3
includes a detailed explanation of the different steps of the proposed approach. Sections 4
and 5, respectively, describe and discuss the obtained results. Finally, Section 6 summarizes
the main findings and details the conclusions of this study.

2. Study Area and Data
2.1. Geological, Lithological, and Geotechnical Setting

The study area is located in Sierra Minera, at a distance of approximately 50 km
south-southeast from the city of Murcia, in the south-easternmost part of Spain (Figure 1).
The region extends over an area of 50 km2, with a maximum elevation of 389 m a.s.l.
at Peña del Águila. It is limited by the Mediterranean Sea to the south and by the Campo
de Cartagena basin to the north.

Sierra Minera contains one of the largest Pb and Zn ore deposits in the south of
Europe [33], which was exploited from the Iberian period until 1991 [34]. It is a coastal
mountain range with an approximate east-west trend, and which belongs to the Internal
Zones of the Betic Cordillera.

The Betic Cordillera, an Alpine chain that acquired its present configuration during
the Neogene, was developed from the late Mesozoic to the Cenozoic with the convergence
between the African and Iberian plates [35]. The Internal Zones comprise three complex
nappes with decreasing metamorphism grade, from the lower complex to the upper one.
These are, from bottom to top, the Nevado–Filábride, the Alpujárride, and the Maláguide
complexes [35].

The Nevado–Filábride mainly comprises graphite schists, quartzitic schists, micas-
chists, marbles, and quartzites of Paleozoic to Permo-Triassic age. Discordantly overlaying
this complex is the Alpujárride complex, represented by a detritic formation (epimeta-
morphic rocks, quartzites, and phyllites) of Permian age, and by a Triassic carbonate
series containing intrusive bodies of diabases and dolerites [33]. After a significant ero-
sional phase, these formations were covered by the Maláguide complex, made up of a
post-orogenic, Neogene series of sedimentary rocks (sandstone, quartzite, silt, limestone,
and conglomerate) [36]. Finally, a thin level of quaternary alluvial deposits, formed of sand,
silt, and clays, overlies the complex nappes.

The mineralization is mainly represented by two sulfide deposits on the carbonate
sequences in the Nevado–Filábride and Alpujárride complexes. It is characterized by a strict
stratigraphic control, although many faults are also mineralized and sometimes contain
thick seams. In addition, mineralizations can also be found disseminated in Miocene
materials, gossans, stickworks, and veins [33].

The deposits were mainly exploited through underground mining using the room-and-
pillar method until the 1960s, when large open-pit exploitations were developed. One third
of the total reserves was extracted between 1940 and 1990, thanks to the application of
differential flotation processes and open-pit mining [33].

Over the years, 12 open pits were excavated, 3000 wells were drilled, and hundreds
of galleries and waste dumps were developed [36]. The waste dump debris material was
accumulated on existing hillsides, without any particular safety measures, and remaining
in a limit equilibrium situation (SF ≈ 1).

The first ecological restoration in Sierra Minera was conducted in 1982 by Benaroya
SA, the mining company. It was carried out by sealing the mining tailings with a soil
layer, in order to allow the growth of vegetation and to avoid the mobilization of heavy
metals [37]. Later, in 1996, the Spanish Geological Survey conducted an environmental
restoration project aimed at characterizing the geo-mechanical properties of dominant
lithologies in the area (Table 1) [28]. For this purpose, geotechnical boreholes, as well
as in situ and laboratory tests, were carried out. The pumping tests carried out in well
points over the study area revealed that most of the lithologies are fairly impermeable



Remote Sens. 2021, 13, 2008 5 of 24

(e.g., those formed by schists, phyllites, and marls) [28]. However, quaternary formations,
Miocene sedimentary rocks, and some Alpujárride detritic units are permeable. The study
concluded that the presence of schists, phyllites, and, most importantly, waste dump debris
material favored the occurrence of slope instabilities. Moreover, it was found that these
instabilities were induced by intense and short periods of rainfall, triggering torrential
events. In Sierra Minera, these type of events are concentrated in a few days throughout
the year; 20 or 30 days, mainly in autumn. New insights into the analysis of such slope
instabilities are presented in this paper.

Table 1. Geo-mechanical properties of dominant lithologies (adapted with permission from ref. [28]).

Lithology Density
(kgm−3)

Saturated
Density (kgm−3)

Young
Modulus (kNm−2)

Poisson
Ratio

Friction
Angle (◦)

Cohesion
(kNm−2)

Graphite schists 2.60·103 2.63·103 3.0·105 0.3 31 160
Mica-schists 2.40·103 2.43·103 3.0·105 0.3 30 100

Phyllites 2.20·103 2.21·103 3.0·105 0.3 25 86
Waste dump debris 2.00·103 2.00·103 4.5·104 0.3 20 100

2.2. In Situ and Satellite Data

For the purpose of landslide mapping and monitoring, in situ investigations were
conducted over the study area through geomorphic analysis and topographic surveying.
A landslide inventory (Figure 1) was elaborated through fieldwork and aerial-photo inter-
pretation, updating the previously published data [23]. Most of the inventoried landslides
affect waste dump areas and open-pit slopes. Although some landslides, associated with
the presence of phyllites and schists, seem to affect both cut and fill slopes from haul roads.
Most of the mapped slope instabilities can be classified as complex movements, frequently
consisting of debris roto-translational landslides, debris flows, and translational landslides,
together with rockfalls and toppling [38].

In addition, in situ topographic surveying activities were performed using differential
global positioning system (DGPS) instrumentation. Thus, ground monitoring data were
obtained for validation purposes from two campaigns performed in 11 July 2017 and
15 November 2018, over one of the inventoried landslides.

During one of the conducted in situ monitoring campaigns, two stacks of 64 and
83 Sentinel-1 Single Look Complex (SLC) images (with a spatial resolution of 3 by 14 m)
were acquired under ascending and descending passes, respectively, and considered for the
investigation. These images covered the period from the 10 July 2017 to the 15 November
2018. Finally, we used a digital elevation model of the study area with a spatial resolution
of 5 by 5 m, corresponding to the December 2009 acquisitions, and downloaded from the
National Geographic Institute of Spain [39].

3. Methodology

The methodology presented here relies on the joint exploitation of remote sensing,
and in situ and additional available data, to quantify mean LOS ground velocity, 2D
safety factor SF, and 2D landslide size for a set of automatically-mapped slope instabilities.
It essentially comprises three successive steps. First, LOS ground velocity maps were
derived using a web-based unsupervised satellite InSAR processing chain, which were
then validated with DGPS data. The unsupervised nature of the algorithm relates to the
fact that it is capable of running in a fully automated manner, and thus reducing the
user interaction to only few initial steps. Then, a spatial analysis of the InSAR-retrieved
velocities was performed using an optimized SU map, from which an active deformation
slope unit (ADSU) map was obtained. Finally, 2D FE modeling was employed to perform
stability analyses on each ADSU from the optimal map. As a result, a LOS ground velocity
(VLOS), a safety factor SF, and a landslide size was obtained for each ADSU (Figure 2).
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The results can be updated, for a continuous assessment, by repeating the analysis on a
regular basis.

Figure 2. Flowchart of the proposed methodology.

The input data needed to apply the proposed methodology include a stack of SAR
images, a digital elevation model, a landslide inventory map, a geotechnical map, and in
situ ground monitoring data for validation.

The automatic mapping procedure is based on the aggregation of the active MPs
within the boundaries of different sets of morphological SUs, with varying sizes. In fact,
SUs can be delineated applying different degrees of aspect homogeneity, which results in
different maps containing a varying number of polygons.

An ADSU map is obtained for each SU delineation. The different ADSU maps are
evaluated to find the map best matching the landslides observed in the study area. The best
matching map is referred to as the optimal ADSU map. ADSUs are also used to derive 2D
cross-sections through an automated procedure. Finally, stability analyses are performed
for each cross-section, and taking into account their geo-mechanical properties.

The different steps of the methodology, as well as the results obtained at each step,
are described in detail in the next sections.

3.1. Advanced Differential Satellite InSAR Processing and Comparison with In Situ
DGPS Measurements

LOS ground velocity maps in the study area were derived by processing the afore-
mentioned Sentinel-1 images stacks using FASTVEL [12,40], an on-demand, unsupervised
processing service available on the Geohazards Exploitation Platform (GEP) [41]. GEP is
part of the Thematic Exploitation Platforms initiative set up by the European Space Agency
(ESA), aiming to support the exploitation of satellite Earth Observation for geohazard
assessment (https://geohazards-tep.eu/) (accessed on 13 February 2020) [42,43].

https://geohazards-tep.eu/
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FASTVEL offers two different processing modes, namely, interferogram generation
and multi-temporal analysis, and aimed respectively at generating differential interfero-
grams or mean ground velocity maps. Earth Observation sources supported by FASTVEL
include ERS, Envise-ASAR, and Sentinel-1.

In multi-temporal analysis mode, the service provides the following output results:
(i) a LOS ground velocity map; (ii) the updated topography, including a reference digital
elevation model with height uncertainty; and (iii) a CSV file with the main LOS interfer-
ometric products. Once the SAR images covering the area of interest have been selected,
the user is required to enter a few processing parameters, with the option of selecting
the default parameters provided, if preferred. These account for the maximum temporal
and spatial baseline, the maximum Doppler centroid difference, the maximum image
Doppler centroid value, and the Goldstein phase filter exponential factor. In addition,
the user must select a mean coherence threshold to set the initial grid of points, and a
maximum atmospheric phase screen correlation distance for linking the initially selected
points to minimize atmospheric phase screen propagation. For a detailed description of
the FASTVEL service, please refer to its user guide [44].

In this study, default values were adopted for most of the parameters. Note that in
the particular case of Sierra Minera, the default values provided by FASTVEL performed
well, due to the fact that the area is majorly covered by sparse vegetation, the fact that
the movements are slow to extremely slow, and the fact that there are no additional
decorrelation sources, such as atmospheric artifacts or strong topographical variations.
Thus, LOS ground velocity maps could be calculated in the study area, both in ascending
and descending geometries, for the period monitored by DGPS.

Then, the DGPS ground velocities were projected onto the LOS for comparison, con-
sidering both geometries (ascending and descending), and using the following equations:

VGPS
LOS = VGPS

3D · cos θ, (1)

cos θ = cosEGPS
3D · cos αSAR

LOS · cos βSAR
LOS + cosNGPS

3D · sin αSAR
LOS · cos βSAR

LOS + cosUGPS
3D · sin βSAR

LOS , (2)

αSAR
LOS = tan−1 cosNSAR

LOS

cosESAR
LOS

, (3)

βSAR
LOS = tan−1 cosUSAR

LOS√
(cosESAR

LOS )
2
+ cosNSAR

LOS )
2

. (4)

In Equations (1)–(4), VGPS
LOS and VGPS

3D are respectively the projected and the raw ground
velocities measured by DGPS; θ is the angle formed by the two velocity vectors; cosNGPS

3D ,
cosEGPS

3D , and cosUGPS
3D are respectively the north, east, and up unitary vector components

of the raw DGPS vector; αSAR
LOS is the azimuth angle of the LOS vector measured on the

horizontal plane, from the east axis to the north axis in a counterclockwise direction; βSAR
LOS

is the incidence angle of the LOS vector, measured on the vertical plane from the horizontal
plane to the up axis in a counterclockwise direction; and cosNSAR

LOS , cosESAR
LOS , and cosUSAR

LOS
are respectively the north, east, and up unitary vector components of the LOS vector.

3.2. Parametric Delineation of Slope Units

Slope units are morphological terrain units, which are alternative to square grid
cells, bounded by drainage and divide lines [45,46], and delineated in such a way that
the terrain homogeneity is maximized within the units and inhomogeneity is maximized
across neighboring units [47,48]. Terrain units are portions of terrain with similar geological
and geomorphological features, and which divide a region into portions that have a set
of common properties, different from the adjacent ones across definable boundaries [49].
Thus, SUs are a particular type of terrain units causally related to hydro-geomorphological
conditions [47] and represent a formalization of what geomorphologists describe as slopes.
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Slope units are well suited for hydrological and geomorphological studies, and for
landslide susceptibility modeling and zonation [46,50–53]. SUs are, therefore, also par-
ticularly suited in the context of InSAR and FE modeling, since they encompass areas
with similar slope-facing direction (i.e., aspect). SUs have been used in the literature in
conjunction with optical satellite imagery for landslide mapping [54]. However, the use of
SUs to either aggregate InSAR data or derive 2D FE modeling geometries has not, to our
knowledge, previously been reported.

In this work, we used the software r.slopeunits of [47] for SU delineation, which
is freely available from http://geomorphology.irpi.cnr.it/tools/slope-units (accessed on
9 April 2020). The software is adaptive because, as outlined in [47], no unique SU delin-
eation exists, since there is an inherent dependence on the scale and nature of the process
under investigation. Given this non-univocity, the software allows SUs to be delineated
with varying sizes and different degrees of homogeneity of aspect. Then, optimized SUs
can be obtained by selecting the values of the software’s input parameters that maximize
fitness of the output SU set for a particular purpose. The input parameters required by the
algorithm are described in detail in [47].

Here, the r.slopeunits software was first run multiple times with different combinations
of the input parameters a (minimum area) and c (circular variance of aspect), namely
a = (5000, 10,000, 50,000, 100,000, 150,000, 250,000, 350,000, 450,000) m2 and c = (0.01,
0.05, 0.1, 0.15, 0.25, 0.35, 0.45). Thus, we calculated 56 SU maps, corresponding to the
possible (a, c) combinations. The values selected were similar to the ones used in previous
works [47,55]. Flat areas were excluded from the delineation process by computing a plains
map including all areas of the digital elevation model with slope gradient lower than 5◦.

3.3. Determination of Active Deformation Slope Units

Once the 56 SU sets were obtained, the two InSAR datasets (ascending and descend-
ing) were filtered according to their standard deviations, selecting only the points with
|VLOS| > 2σ (i.e., the moving or active MPs). Then, the active MPs were superimposed
to the SUs by performing the intersection of the two InSAR datasets and the 56 SU maps;
amounting to 112 intersections.

Two different criteria were applied in order to determine which SUs were active
(ADSUs). The SUs (i) containing at least five active MPs, either from the ascending or
descending dataset, and (ii) yielding a density of active MPs greater than or equal to
500 MPs/km2 (around half of the maximum MPs density of FASTVEL) from the corre-
sponding dataset, were considered ADSUs. The two ADSU sets obtained in ascending and
descending geometry for each combination of the input parameters a and c, were combined
into a single set.

To select the best combination of the input parameters a and c of the r.slopeunits
software, the error index EI, introduced by [45] and utilized in [54], was used, which is
defined as follows:

F(a, c) = EI(a, c) =
A∪(a, c)− A∩(a, c)

A∪(a, c)
, (5)

where A∪(a, c) is the area of the region where either the automatically mapped ADSUs
or the inventoried landslides exist (union) with the specified values of (a, c), and A∩(a, c)
is the area of the region where both exist (intersection). The optimal values of the input
parameters a and c (i.e., the ones corresponding to the optimal ADSU set), were obtained
by minimizing Equation (5) to find the best agreement between the mapped ADSUs and
the landslide inventory.

Although the optimal ADSU set was selected on the basis of the results obtained from
Equation (5), we also investigated the use of the custom metric developed in [55,56] for
comparison. This metric analyzes the differences between the inventoried landslides and

http://geomorphology.irpi.cnr.it/tools/slope-units
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the predicted ones (i.e., the mapped ADSUs in this case), in terms of their cumulative
frequency size distributions, and is defined as follows:

F(a, c) =

√√√√i=39

∑
i=1

(Di − Pi(a, c))2, (6)

where 39 is the number of inventoried landslides, Di is the i-th point of the distribution of
the inventoried landslides, and Pi(a, c) is the corresponding i-th point of the distribution
of the mapped ADSUs obtained with the specified values of (a, c), among the 56 different
ADSU sets.

Lastly, the results were discussed in terms of confusion matrices. The values of the
confusion matrices for the two sets of ADSUs corresponding to the minimum of Equations
(5) and (6) were further compared with the values obtained for the active deformation areas
(ADAs) mapped by means of the ADAFinder software package [29]. This comparison
was carried out to evaluate the improvement achieved through the introduction of topo-
graphic data, since ADAFinder is an algorithm for active deformation mapping in which
topography is ignored. The only input data required by the ADAFinder software are the
InSAR-derived LOS ground velocity maps. In order to perform a meaningful comparison,
the two ADA sets obtained with ADAFinder, corresponding to ascending and descending
geometry, were likewise combined into a single set.

3.4. 2D Finite Element Modeling

Stability analyses were performed through 2D FE modeling using the shear strength
reduction technique [57,58], implemented in the GeHoMadrid code [59,60]. Shear strength
reduction simply reduces the soil shear strength, in terms of friction angle Φ and cohesion
c, until collapse occurs. The resulting SF is the ratio of the actual soil shear strength to the
reduced shear strength at failure.

In this work, the analyzed geometries were automatically derived from the optimal
ADSU set using the centroid and the aspect values of each ADSU. Initially, three 400-m long
cross-sections were derived for each ADSU, considering three different aspect values that
were obtained using the three most common measures of central tendency (i.e., the mean,
the median, and the mode; the latter calculated using integer aspect values). In addition,
the middle points of the profile traces of all cross-sections were fixed on the ADSUs
centroids.

Next, 2D stability analyses (plane–strain conditions) were performed over the three
cross-sections obtained for each ADSU, considering a single, homogeneous material and
prescribing zero pore pressure on the surface, corresponding to fully saturated conditions.
Different materials were assigned for each of the ADSUs, depending on the predominant
lithology within their boundaries. The geo-mechanical properties of the four materials
considered were taken from [28] and are listed in Table 1. For the other boundary conditions,
all displacements were fixed in the bottom plane; perpendicular displacements were fixed in
the lateral planes. For the applied external load, only gravitational force was contemplated.

The cases in which the plastic strain contours resulting from the stability analyses
did not properly fit the geometry obtained considering a length of 400 m, were repeated
considering a length of 800 m. Even though most of the analyses were satisfactorily
performed using either 400- or 800-m long cross-sections, a small number of cases needed
to be repeated considering a length of 1200 m. Fine meshes made up of quadratic triangular
elements were used for each geometry, in order to get well-defined failure mechanisms
and precise SFs.

Once all the ADSUs were satisfactorily modeled, final results were derived from the
models yielding the lowest safety factors (SFs). In addition to the SFs resulting from such
models, landslide sizes were determined for each of the models by computing the surface
area enclosed by the displacement contours at failure in each case. Thus, SFs and landslide
sizes could be calculated for each of the ADSUs within the optimal set.
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4. Results
4.1. Ground Velocity Maps and Validation

LOS ground velocity maps (Figure 3) revealed maximum positive LOS velocities
(movement towards the satellite or uplift) of 5.8 and 8.7 cm/year, respectively, in ascend-
ing and descending geometry over the area of the southernmost group of inventoried
landslides (Figure 1). This area also exhibited the maximum negative LOS velocity (move-
ment away from the satellite or elevation loss) in descending geometry, with a value of
−12.9 cm/year. The ascending results revealed, however, a maximum negative LOS ve-
locity of −9.9 cm/year over the area of the south-westernmost cluster of active MPs in
Figure 3.

Figure 3. LOS ground velocity maps for the period from 10 July 2017 to 15 November 2018. (A) Ascending velocities. (B)
Descending velocities. The black squares show the location of the slope instability monitored by DGPS and used for the
validation analysis.

The results in ascending geometry (Figure 3A) contain 72,610 MPs, with a MPs density
of 712 MPs/km2, whereas the map in descending geometry (Figure 3B) contains 66,293 MPs,
with a MPs density of 626 MPs/km2. Standard deviations of the LOS velocities of all
the MPs from the ascending and descending datasets resulted, respectively, in 0.45 and
0.61 cm/year.

The validation analysis was performed by comparing the InSAR-retrieved LOS ve-
locities with in situ DGPS measurements projected onto the LOS, both in ascending and
descending geometry (Figure 4). Root mean square error (RMSE) values resulted in
1.06 cm/year and 2.46 cm/year, respectively, for the ascending and descending results
(Figure 4F). The difference between both RMSEs is most likely related to the different levels
of noise affecting the InSAR data, which is higher for the descending results, according to
their standard deviation.
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Figure 4. Results of the validation analysis. A 3D view of the (A) InSAR ascending and (B) descending LOS ground velocities
over the points monitored by DGPS, (C) raw DGPS ground velocities for the period from 11 July 2017 to 15 November 2018,
and DGPS ground velocities projected onto the (D) ascending and (E) descending LOS. (F) Scatter plot of the LOS ground
velocities VLOS measured by DGPS and retrieved by InSAR. The gray solid line indicates the cases where the retrieved and
the measured LOS ground velocities VLOS are exactly equal. The blue (red) dashed lines denote the 95% confidence band
for the ascending (descending) data (i.e., two times the RMSE).

4.2. Slope Unit Maps and Active Deformation Slope Unit Maps

The SUs and ADSUs obtained over the study area showed a high degree of variability
for the different combinations of the software r.slopeunits input parameters a and c. These
differences can be observed in detail in Figure 5, for nine of the 56 SU (Figure 5A) and
ADSU (Figure 5B) maps obtained over the central part of the study area, and using different
(a, c) combinations.

Figure 5. (A) Detail of the slope unit (SU) maps obtained with the software r.slopeunits [47] for several combinations of
the input parameters a and c. (B) Detail of the active deformation slope unit (ADSU) maps obtained from the SU maps,
as described in Section 3.3.
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The maximum and minimum number of SUs obtained considering the 56 SU sets
resulted in 4623 and 116, respectively, for SU maps 1 (lower left corner in Figure 5A) and
56, for which the mean SU area resulted in 10,000 and 370,000 m2, respectively.

The number of ADSUs corresponding to the ADSU sets 1 (lower left corner in
Figure 5B) and 56 resulted in 94 and 2, respectively, with a mean ADSU area of 10,000 and
20,000 m2, respectively.

Note that when using the finest SU partition, obtained with the smallest values of
a and c, the number of ADSUs more than doubles the number of inventoried landslides.
On the other hand, for the coarsest SU partition, a negligible number of ADSUs is obtained.
Moreover, in most of the cases where a values greater than 150,000 m2 were used, no ADSUs
were obtained due to the MPs density threshold considered (500 MPs/km2).

In the next section we evaluate the different ADSU sets to find the (a, c) combina-
tion that provides the ADSU set best matching the landslide inventory, i.e., the optimal
ADSU set.

4.3. Optimal Active Deformation Slope Unit Map

The values of the two metrics F(a, c) considered in this work for optimization of the
software r.slopeunits input parameters a and c, Equations (5) and (6), are shown in Figure 6.
Note that the figure shows the values obtained for the 56 ADSU sets resulting from all
the possible (a, c) combinations. In addition, Figure 7 shows the cumulative frequency
size distributions used to calculate Equation (6), also for the 56 ADSU sets. For clarity,
a few ADSU sets covering the whole range of frequency size distributions are highlighted
(Figure 7A). These ADSU sets, denoted by “set 1”, “set 3”, “set 5”, “set 25”, “set 27”, “set
29”, “set 49”, “set 51”, and “set 53”, were obtained with the (a, c) combinations shown in
Figure 5 (from the lower left to the upper right corner). Note that the leftmost point of
all distributions is normalized to 100% by definition. The distribution of the inventoried
landslides is also depicted (Figure 7B).

Figure 6. Active deformation slope units (ADSUs) optimization metrics, calculated as a function of the software
r.slopeunits [47] input parameters a and c, for all the possible (a, c) combinations. (A) Values of the metric F(a, c) de-
fined by Equation (5): the optimal values are found in correspondence with the minimum value of Equation (5), indicated
with a red dot. (B) Values of the metric F(a, c) defined by Equation (6): the minimum value of Equation (6) is indicated with
a green dot.
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Figure 7. (A) Cumulative frequency size distributions of the active deformation slope unit (ADSU) maps for all the possible
combinations of the software r.slopeunits [47] input parameters a and c. The highlighted results are listed and described
in the text. (B) Cumulative frequency size distributions of the inventoried landslides, the ADSU set corresponding to the
minimum value of the metric F(a, c) defined by Equation (6) (ADSU set 26), and the optimal ADSU set (ADSU set 18),
corresponding to the minimum value of the metric F(a, c) defined by Equation (5).

The results reveal that the higher the value of a, the higher the difference between the
inventoried landslides and the mapped ADSUs (Figure 6). However, it can be noted that
Equation (5) (Figure 6A) captures a greater variety of results than Equation (6) (Figure 6B),
and increases gradually with increasing values of a, until reaching a = 250,000 m2. Starting
from that value, the overlap between the mapped ADSUs and the landslide inventory
becomes zero, and the error results in 100%. The set of ADSUs corresponding to the
minimum of Equation (5) (ADSU set 18), shown with a red dot in Figure 6A, was derived
from the SU map obtained by (a, c) = (10,000 m2, 0.10). The distribution corresponding to
the ADSU set 18 is shown with a gray solid curve in Figure 7B.

On the other hand, if we analyze the results of Equation (6), we can observe that the
values of this metric vary strongly until reaching a = 150,000 m2. For values above that
threshold, the results become constant. The reason for this is that several ADSU maps are
not comparable with our landslide inventory using cumulative frequency size distribution
plots (Figure 7). These ADSU maps include a few very large ADSUs that do not match
the inventoried landslides (e.g., ADSU sets 3, 5, 27, 29, 51 and 53 in Figure 7A). The set
of ADSUs corresponding to the minimum of Equation (6) (ADSU set 26), shown with a
green dot in Figure 6B, was derived from the SU map obtained by (a, c) = (10,000 m2, 0.10).
The distribution corresponding to the ADSU set 26 is shown with a black solid curve in
Figure 7B.

This means that the metric in Equation (5) allows a more accurate comparison between
the inventory and the ADSU maps, even for maps containing a limited number of ADSUs.
For this reason, the optimal ADSU set (ADSU set 18) was selected on the basis of the results
obtained from Equation (5). Note that the (a, c) combination corresponding to the optimal
set of ADSUs according to the metric of Equation (6) (ADSU set 26) is fairly similar to that
of the selected optimal ADSU set (ADSU set 18). In fact, the ADSU set 18 corresponds to
the second-best result obtained from Equation (6) (Figure 7B).

However, the accuracy, defined as the sum of true positives (TP) and true negatives
(TN), is slightly higher for set 18 than for set 26 (99.39% compared to 99.37%) (Table 2).
The total false statements are also lower for set 18 (0.62% compared to 0.63%).
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Table 2. Confusion matrices and values of the metrics defined by Equations (5) and (6) for three different outputs: the active
deformation areas (ADAs) mapped by means of the so-called ADAFinder software package [29], the active deformation
slope unit (ADSU) set 26, corresponding to the minimum value of the metric F(a, c) defined by Equation (5), and the ADSU
set 18 (optimal ADSU set), corresponding to the minimum value of the metric F(a, c) defined by Equation (5). TN: true
negatives. FN: false negatives. FP: false positives. TP: true positives.

ADA Set ADSU Set 26 ADSU Set 18

TN 98.55% 99.11% 99.10%
FN 0.20% 0.24% 0.21%
FP 0.96% 0.39% 0.41%
TP 0.30% 0.26% 0.29%

F(a, c)–Equation (5) 0.794 0.707 0.679
F(a, c)–Equation (6) 301.96 291.55 294.55

These results suggest that the metric of Equation (5) is more appropriate than that
of Equation (6) for the optimization procedure devised in this work. The ADSU maps
obtained with both metrics increased by 0.5% the accuracy of the ADAs mapped by
ADAFinder (Table 2), which is unable of distinguishing slope instabilities from vertical
ground movements. This improvement is also reflected in the values obtained from
Equations (5) and (6) for the ADSU maps 18 and 26, as well as for the ADA set (Table 2).

The total number of ADSUs that conformed to the optimal set (ADSU set 18), resulted
as 43 (opaque or non-transparent polygons in Figure 8). In turn, the set of SUs obtained
by (a, c) = (10,000 m2, 0.10), used to derive the optimal ADSU set, was formed by a total
of 1959 SUs. From these 1959 SUs, 151 were characterized as unknown SUs. This was
determined by intersecting the non-active deformation SUs with the two InSAR datasets
separately. Those SUs containing less than five MPs both from the ascending and descend-
ing datasets, and yielding a density of active MPs (also from the ascending and descending
datasets) lower than 500 MPs/km2, were characterized as unknown SUs (transparent pink
polygons in Figure 8). These SUs were mainly located over densely vegetated hill slopes,
where only few MPs were obtained (SE quadrants in Figure 3A,B). No landslides were,
however, inventoried over those areas. The remaining 1756 SUs were characterized as
stable SUs (transparent green polygons in Figure 8).

Figure 8. Mean LOS ground velocities obtained for the 43 active deformation slope units (ADSUs) from the optimal set
(ADSU set 18). All ADSUs are represented in opaque (i.e., non-transparent) colors. (A) Ascending velocities. (B) Descending
velocities. ADSUs not detected in each geometry are represented in opaque white. Unknown and stable SUs are also
depicted in transparent pink and transparent green, respectively.
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Mean LOS velocities for the 43 ADSUs from the optimal set, both in ascending and
descending geometry, are presented in Figure 8A,B, respectively. Note that the 43 ADSUs
that conform to the optimal set were obtained through the combination of the ascending
and descending results. Positive mean LOS velocities in Figure 8 correspond to movement
towards the satellite, whereas negative values represent movement away from the satellite.
ADSUs not detected in ascending, but in descending, are represented in opaque white in
Figure 8A (and vice versa in Figure 8B).

The number of ADSUs derived using ascending and descending data was 31 and 20,
respectively. From among these ADSUs, 10 and 15 presented absolute mean LOS velocities
greater than 2.5 cm/year respectively in ascending and descending geometries. These
ADSUs can be interpreted as representing slope instabilities with the highest degree of
confidence, since the maximum RMSE obtained through the validation analysis resulted in
2.46 cm/year.

Positive mean LOS velocities were only obtained in ascending geometry (Figure 8A),
for a total of four ADSUs. A total of eight ADSUs were detected in both geometries (as-
cending and descending). From among these, three ADSUs showed an opposite direction
of movement in ascending and descending, a behavior typically attributed to slope move-
ments having a strong horizontal component. Considering the 43 ADSUs conforming the
optimal set, taking maximum absolute values in those ADSUs detected in both geometries,
a total of 21 ADSUs presented absolute mean LOS velocities greater than 2.5 cm/year.
Hence, these 21 ADSUs can most certainly be associated with slope instabilities.

4.4. 2D Stability Analyses

Out of the 43 ADSUs in the optimal set (ADSU set 18), 14 revealed 2D safety factors
SFs lower than 1.2, 13 SFs between 1.2 and 1.5, and 16 SFs greater than 1.5. Only three
and five ADSUs revealed SFs lower than 1 and greater than 2, respectively. Most of the
ADSUs with SFs greater than 2, characterized by very low slope gradients, coincide with
the south-westernmost cluster of active MPs in Figure 3. The 2D landslide sizes for the
43 ADSUs ranged from 1900 to 27,000 m2.

The median of the aspect was found to offer the best performance for the purpose
of obtaining cross-sections. In many cases, however, the differences were not significant,
similar results were obtained using the three different aspect values considered (mean,
median, and mode), indicating a proper delineation result in terms of aspect homogeneity.

Thus, 32.56%, 53.49%, and 34.88% of the ADSUs were satisfactorily modeled using
the mean, the median, and the mode of the aspect, respectively. Concerning the length of
the cross-sections, 44.19%, 46.51%, and 9.30% of the ADSUs were modeled using 400-, 800-,
and 1200-m long cross-sections, respectively.

Figure 9 shows detailed results of the 2D stability analyses corresponding to three
cross-sections obtained for three particular ADSUs. The cross-sections corresponding to
Figure 9A,B were obtained using mean aspect values, whereas the cross-section correspond-
ing to Figure 9C was obtained using the median. For convenience, the examples integrate
2D stability analyses performed using 400-, 800-, and 1200-m long cross-sections. Note that
the slope in Figure 9B corresponds to the slope instability monitored by DGPS (Figure 4).



Remote Sens. 2021, 13, 2008 16 of 24

Figure 9. Results of three 2D stability analyses performed using (A) 400-, (B) 800-, and (C) 1200-m long cross-sections
derived from three particular active deformation slope units (ADSUs) from the optimal set (ADSU set 18). First row: 3D
view of the three ADSUs. The blue solid lines represent each profile trace, the 1200-m long profile trace clipped to the
hillshade extent. Second row: finite element meshes corresponding to each profile trace. Third row: equivalent plastic strain
contours at failure corresponding to each profile trace. Fourth row: displacement contours (in m) corresponding to each
profile trace. The resulting 2D safety factors SFs and 2D landslide sizes LSs are also presented. The legends for the third and
fourth rows are shown at the bottom of the figure.

Finally, we elaborated two ADSU maps summarizing the results of the 2D stability
analyses for the 43 ADSUs from the optimal set (ADSU set 18) (Figure 10). The map in
Figure 10A shows the resulting safety factors SFs, whereas the map in Figure 10B shows
the resulting landslide sizes.
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Figure 10. Results of the 2D stability analyses for the 43 active deformation slope units (ADSUs) from the optimal set (ADSU
set 18). (A) 2D safety factors, and (B) 2D landslide sizes.

5. Discussion

This work proposes a new approach for detecting and characterizing slope instabilities
at a regional scale, and aimed at providing non-expert final users, such as Civil Protection
authorities or risk management decision-makers, with easily intelligible products that
can thus be exploited for geohazard management purposes. Although the proposed
methodology has been applied here to analyze mining-induced slope instabilities, it can
likewise be applied to analyze all types of slope instabilities.

Existing approaches for detecting ADAs from InSAR data [29–32] focus on the delin-
eation of the more reliable deforming areas through the aggregation of subsets of points
obtained by filtering the raw LOS ground velocity map. First, in order to filter the LOS
ground velocity map, these approaches usually select the moving points using an absolute
velocity threshold equal to 2σ (two times the standard deviation of the raw LOS ground
velocity map). Then, groups of moving points sharing their influence area are aggregated
into polygons representing the ADAs.

Given the inability of these approaches to discern between different types of ground
movement, sometimes overlapping within a single ADA, it is desirable to develop new
approaches that provide further partitioning of the active areas to better analyze ground
movements in complex areas with large deformation footprints. In that sense, the ADSU
map represents an interesting product that allows a comprehensive analysis of ground
movements; in particular, of slope instabilities. Through the aggregation of the moving
points within the boundaries of slopes defined by polygons with similar slope-facing
direction (aspect), different mean LOS ground velocities can be determined for adjacent
partitions. Using the traditional active deformation mapping approaches, such partitions
would be integrated into a single polygon, with a consequent loss of information.

Furthermore, in addition to helping determine the mean LOS ground velocity of each
polygon, SUs can be used to derive numerical modeling geometries, given their high aspect
homogeneity. In this work, an automated procedure to obtain 2D cross-sections for each
ADSU has been devised, followed by simplified stability analyses aimed at determining
their SFs and landslide sizes.

The comparison between the computed SFs and the maximum absolute mean LOS ve-
locities resulting from the InSAR data (Figure 11) provided interesting results. In principle,
these two variables should be correlated, assuming that the most unstable slopes should
also be the ones showing the highest slope movement rates.
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Figure 11. Scatter plot of the maximum absolute mean LOS ground velocities VLOS and the 2D
safety factors SFs for 15 active deformation slope units (ADSUs) from the optimal set (ADSU set 18).
The black curve is a fit of the subset of points outlined in black.

At first glance, if we analyze the scatter plot in Figure 11, we can observe that there
is no relationship between the two variables in general terms. However, the points are
not randomly distributed either. In fact, if we analyze the points exhibiting SFs lower
than 2, two distinct clusters are found. One is the group of 21 points with mean LOS
velocities of up to 2.5 cm/year, for which there is no relationship between SF and mean
LOS velocity. The other is the group of 17 points with mean LOS velocities greater than
2.5 cm/year, for which a potential relationship between the two variables is observed
when excluding the two ADSUs with mean LOS velocities of 2.63 cm/year. Note that the
best-fit exponential curve corresponding to the 15 points remaining, after excluding the
two ADSUs with mean LOS velocities of 2.63 cm/year (black curve in Figure 11), yields a
reasonably fair coefficient of determination (R2 = 0.55). Points exhibiting SFs greater than 2,
which correspond to ADSUs characterized by very low slope gradients, are interpreted
as outliers.

This finding is in line with the fact that the maximum RMSE obtained through the val-
idation analysis resulted in 2.46 cm/year. For this reason, the relationship between SF and
mean LOS velocity is only observed for the ADSUs exhibiting mean LOS velocities greater
than 2.5 cm/year; as long as the two ADSUs with mean LOS velocities of 2.63 cm/year,
close to 2.5 cm/year, are excluded. ADSUs exhibiting lower velocities cannot be interpreted
as slope instabilities with absolute certainty, since they are most likely the subject of errors
associated to noisy InSAR data.

These results indicate that significant further efforts are needed in order to improve
the relationship between SF and mean LOS velocity. Possible solutions for this purpose
could include the use of more sophisticated InSAR processing chains, providing higher
resolution and time series of movement. In the case of the slope stability assessment step,
the adoption of accurate lithostratigraphic geometry descriptions (considering different
materials instead of a single material) and hydrogeological data (instead of assuming
fully saturated conditions) and, possibly, the use of 3D FE modeling could provide an
improvement.

Although the proposed methodology could be improved by modifying these aspects,
it is still useful for generating easy-to-interpret products that can be integrated into the
geohazard management chain. In contrast to pixel-based approaches, our methodology
provides discrete, easily intelligible results, by relying on the assumption that failures
cannot be bigger than the physical boundaries of the slopes. By defining the physical
boundaries of the slope where the potential failure can occur, the main restriction of pixel-
based approaches, related to the lack of correspondence between the landslide size and the
pixel size, is overcome.

A further step towards an integrated analysis of slope stability based on these products
could be the combination of mean LOS velocities, SFs, and landslide sizes into a hazard
proxy. According to probabilistic models for landslide hazard assessment, landslide hazard
is the probability of occurrence within a specified period and within a given area of a
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landslide of a given magnitude [61]. Assuming independence among the three probabilities,
the landslide hazard can be defined as follows [62]:

HL = P(AL)·P(NL)·S, (7)

where P(AL), P(NL), and S are respectively the probability of landslide size (magnitude),
of landslide occurrence in an established period (frequency), and of landslide spatial
occurrence (susceptibility), given the local environmental setting.

Here, rather than opting for a quantitative probabilistic analysis of the landslide
hazard, we adopted a qualitative approach to derive a hazard proxy taking into account
the results of the methodology (i.e., mean LOS velocities, SFs, and landslide sizes), which
were nevertheless obtained on a deterministic basis. The slope instability hazard proxy
was evaluated by combining the landslide sizes as a proxy for magnitude, the mean LOS
velocity as a proxy for frequency, and the SF as a proxy for susceptibility (Figure 12).
For each combination, the degree of hazard was established and expressed in qualitative
terms. Figure 12A shows the maximum absolute mean LOS velocities resulting from the
InSAR data. The measurement direction, indicating whether the values correspond to
ascending or descending data, is also shown. The matrix defined to evaluate the slope
instability hazard proxy is shown in Figure 12C.

Figure 12. (A) Maximum absolute mean LOS ground velocities for the 43 active deformation slope units (ADSUs) from the
optimal set (ADSU set 18). Directions of movement are also indicated. (B) Slope instability hazard proxy obtained through
the combination of the 2D landslide size LS (as a proxy for magnitude of failure), the LOS ground velocity VLOS (as a proxy
for frequency of failure), and the 2D safety factor SF (as a proxy for susceptibility of failure) for each ADSU. (C) Matrix
defined to evaluate the slope instability hazard proxy.
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The main drawback of this analysis is the oversimplification of both the geotechnical
setting and the groundwater pore-water pressure distribution, as well as the introduction of
a time frame based on the mean LOS velocity. The resulting hazard proxy should therefore
only be used to act as a trigger for more detailed geotechnical assessment of the identified
priority areas. In contrast, this simplicity allows the approach to be fully scalable.

This last point is particularly interesting when considering that massive InSAR data
will shortly be available thanks to upcoming projects, such as the Copernicus European
Ground Motion Service. Once the open-access InSAR data that are to be provided by this
project are available all over Europe, it will be possible to perform slope stability analysis
over all mining waste disposal areas at a European scale using the proposed methodology.

To illustrate this point, we elaborated an SU map over the Region of Murcia, and fo-
cusing exclusively on mining and waste disposal areas (Figure 13). For this purpose,
we extracted the mineral extraction areas and dump sites from the Corine Land Cover
2018 [63]. Note that the map only contains SUs that overlap these two land cover classes
(Figure 13B). The SUs were delineated with the software r.slopeunits [47] excluding all areas
with slope gradient lower than 50, and using the optimal values of the input parameters a
and c that we obtained for Sierra Minera, i.e., (a, c) = (10,000 m2, 0.10).

Figure 13. (A) Mineral extraction areas and dump sites extracted from the Corine Land Cover 2018 [63] over the region
of Murcia, and slope units (SUs) overlapping both classes, obtained with the software r.slopeunits [47], using the optimal
values of the input parameters a and c, i.e., (a, c) = (10,000 m2, 0.10). The black square shows the location of the study area.
(B) Detail of the mineral extraction areas and dump sites over the study area, and slope units (SUs) intersecting both classes.

6. Conclusions

This paper introduces a novel methodology for regional slope stability analysis in
mining waste disposal areas. The methodology combines satellite InSAR, SUs, and 2D
FE modeling to quantify mean LOS velocities, SFs, and landslide sizes for a set of slope
instabilities derived following a semi-automated procedure.

The first step of the methodology is to generate LOS ground velocity maps through
InSAR processing, which must be properly validated. The second step consists in the
aggregation of the moving points within the boundaries of morphological SUs, which
allows obtaining an ADSU map optimized with respect to the landslide inventory. The last
step is to perform stability analyses on each of the ADSUs within the optimal map.

In this work, InSAR processing was carried out by using the unsupervised FASTVEL
processing chain [12,40], and the results were validated using in situ DGPS data. The soft-
ware r.slopeunits [47] and the GeHoMadrid code [59,60] were used for SU delineation and
2D FE modeling, respectively.
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The methodology, was set up for Sierra Minera (Murcia), a former mining area in
southeast Spain, where it has proven effective for detecting and characterizing a consider-
able number of slope instabilities. Out of the 1959 SUs used to derive the optimal ADSU set,
a total of 43 were found to be active according to the InSAR data, whereas 1756 were found
to be stable. Only 151 SUs, located in areas poorly covered by the InSAR data, were charac-
terized as unknown. A total of 21 out of the 43 ADSUs that conform to the optimal ADSU
set presented absolute mean LOS velocities greater than 2.5 cm/year. These 21 ADSUs can
be interpreted as slope instabilities with absolute certainty, considering that the maximum
RMSE obtained through the validation analysis resulted in 2.46 cm/year. The set of SUs
used to derive the optimal ADSU set was obtained by (a, c) = (10,000 m2, 0.10).

From among the 43 ADSUs that conform to the optimal ADSU set, 14 revealed SFs
lower than 1.2, 13 showed SFs between 1.2 and 1.5, and 16 showed SFs greater than 1.5.
Only five ADSUs characterized by very low slope gradients revealed SFs greater than 2.
Landslide sizes for the 43 ADSUs ranged from 1900 to 27,000 m2.

The comparison of the computed SFs with the maximum absolute mean LOS ve-
locities resulting from the InSAR data led to noteworthy observations. The best-fit ex-
ponential curve obtained for the 15 ADSUs presenting SFs lower than 2 and mean LOS
velocities greater than 2.5 cm/year yielded a reasonably good coefficient of determination
(R2 = 0.55), indicating a potential relationship between SF and mean LOS velocity. These
findings are consistent with the maximum RMSE obtained through the validation analysis
(2.46 cm/year). However, the relationship between SF and mean LOS velocity was not
observed for two ADSUs with mean LOS velocities of 2.63 cm/year; which is still close to
2.46 cm/year.

Possible improvements to further refine these results could include the use of more so-
phisticated InSAR processing chains providing LOS ground velocity maps at full resolution
and time series of movement, the adoption of precise lithostratigraphic and hydrogeological
data in the stability analyses, and the application of 3D FE modeling.

This paper presents the first study using FASTVEL for slope stability mapping,
and providing validation results for FASTVEL. It also provides a new systematic, au-
tomated procedure based on SU delineation to aggregate InSAR data, and demonstrates
the use of SUs to automatically derive 2D FE modeling geometries for the first time. Fur-
thermore, this work discusses the possibility of evaluating the slope instability hazard
through a qualitative approach combining the results of the methodology (i.e., mean LOS
velocities, SFs, and landslide sizes) to derive a hazard proxy.

It should be noted that the results of the proposed methodology can be periodically
updated, for continuous evaluation, by performing the analyses on a regular basis. The ap-
plication of the methodology allows generating products that provide non-expert end users
with intelligible, clear, and easily comparable information, which can then be integrated in
the geohazard management chain. These products can thus be used by Civil Protection or
risk management authorities for geohazard management purposes. Moreover, since the
methodology is fully scalable, its application for slope stability analysis in all European
mining waste disposal areas will soon be possible, once the upcoming massive InSAR
data from ongoing projects such as the Copernicus European Ground Motion Service is
made available. Even though the methodology presented here was used to analyze mining-
related slope instabilities, the same can likewise be used to analyze slope instabilities
affecting natural and man-made slopes in general.
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