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Abstract: Since remote sensing images are difficult to obtain and need to go through a complicated
administrative procedure for use in China, it cannot meet the requirement of huge training samples
for Waterside Change Detection based on deep learning. Recently, data augmentation has become
an effective method to address the issue of an absence of training samples. Therefore, an improved
Generative Adversarial Network (GAN), i.e., BTD-sGAN (Text-based Deeply-supervised GAN),
is proposed to generate training samples for remote sensing images of Anhui Province, China.
The principal structure of our model is based on Deeply-supervised GAN(D-sGAN), and D-sGAN is
improved from the point of the diversity of the generated samples. First, the network takes Perlin
Noise, image segmentation graph, and encoded text vector as input, in which the size of image
segmentation graph is adjusted to 128 × 128 to facilitate fusion with the text vector. Then, to improve
the diversity of the generated images, the text vector is used to modify the semantic loss of the down-
sampled text. Finally, to balance the time and quality of image generation, only a two-layer Unet++
structure is used to generate the image. Herein, “Inception Score”, “Human Rank”, and “Inference
Time” are used to evaluate the performance of BTD-sGAN, StackGAN++, and GAN-INT-CLS. At the
same time, to verify the diversity of the remote sensing images generated by BTD-sGAN, this paper
compares the results when the generated images are sent to the remote sensing interpretation net-
work and when the generated images are not added; the results show that the generated image can
improve the precision of soil-moving detection by 5%, which proves the effectiveness of the proposed
model.

Keywords: data augmentation; deeply monitoring; GAN; remote sensing image; text description

1. Introduction

With the rapid development of remote sensing technology [1], it is relatively easy to
acquire a remote sensing image, but there are still problems: the acquired image cannot
be used immediately and often requires a cumbersome processing process. Among them,
the obtained samples lack the corresponding label, which requires a high sample label for
the research of deep learning. Researchers need to spend a great deal of energy to annotate
the existing image, and this has greatly hindered the widespread use of remote sensing
images. How to save time and labor costs with the labeling of high-quality samples has
become an urgent problem to be solved. As an effective means to solve this problem, data
augmentation has become a hot research topic.

As an important branch in remote sensing, remote sensing dynamic soil detection
has a high demand for remote sensing images. However, there is a lack of remote sensing
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data, and the diversity of samples is not enough to improve the generalization ability of
the network. Taking the research on change detection (including dynamic soil detection)
as an example, some studies ignore the problem of the lack of images [2] and the security
reason to share images [3,4], but others pay attention to this problem and propose various
data augmentation strategies to solve it [5,6]. Why is data augmentation strategy needed?
The reasons are as follows. The current training flow commonly used by remote sensing
interpretation networks (i.e., the detection network in the change detection task) is shown
in Figure 1.
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Figure 1. Remote sensing interpretation network training flow chart.

As can be seen from Figure 1, the staff need to select the better-quality remote sensing
image for the interpretation task, but the time cost of this process is huge. This problem
is caused by the low quantity and poor quality of remote sensing images. With the
development of artificial intelligence, data augmentation is an effective method to solve this
problem. It can enlarge the sample in a small amount of data and satisfy the requirement of
deep learning. Therefore, data augmentation is used to expand the remote sensing image
data, and the accuracy of the remote sensing interpretation network is improved. Data
augmentation steps are added to the training flow of remote sensing interpretation, as
shown in Figure 2.

A certain

category of 

spots with a 

quantity 

greater than 

5%

A certain

category of 

spots with a 

quantity

less than 

5%

Data augmentation

Remote

Sensing

Interpretat

ion

model

output

Figure 2. Remote sensing interpretation network with improved training flow chart.

Data augmentation generally includes traditional data augmentation algorithms and
data augmentation algorithms based on deep learning [7]. The former includes rollover,
scaling, cropping, and rotation [8]. These algorithms perform geometric transformations
on existing images to increase the number of images. The latter includes variational autoen-
coder VAE [9] and generative adversarial network GAN [10], both are based on multilayer
neural networks. VAE can map low-dimensional inputs to high-dimensional data, but they
need prior knowledge; it is more convenient to use GAN for data augmentation without
knowing the complicated reasoning process in advance. The training process for data
augmentation of GAN is shown in Figure 3.
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Figure 3. GAN training flow chart. G represents the generator of GAN and D represents the
discriminator of GAN. The function of G is to learn the mapping rules of the random noise to the
generated data and then obtain the generated image (the false sample). D is used to determine
whether a sample is a real sample or a false sample.

In recent years, good progress has been made in image data augmentation. To fa-
cilitate the work, the related research is introduced from these directions: conditional
generative adversarial network (cGAN), image generation, and image semantics and text
semantic loss.

1.1. Conditional Generative Adversarial Network

Compared with the original generative adversarial network, the conditional generative
adversarial network adds the constraint information at network’s input. Still, it has made
great progress in image generation. P. et al. regarded the conditional generation antagonism
network as a general solution for image generation [11]. The network proposed by P. takes
the sketch of the image as the conditional constraint information and generates the image
from the sketch [12]. The generation of remote sensing data also belongs to the field of
image generation. Herein, the research is based on the generative adversarial network.

1.2. Image Generation

At present, image generation based on GAN can be divided into two categories: the
first is to generate the image of the specified category; the second is to generate the image
matching the text description.

In 2014, Based on cGAN, J. et al. used random noise and specific attribute information
as input, and randomly used conditional data sampling in the training process to generate
a good face image [13]. In the framework of the Pierre-Simon Laplace pyramid, E. and
his colleagues constructed a cascade generation confrontation network in 2015, which
can generate high-quality natural images from coarse to fine [14]. In 2016, C.K. et al.
applied the GAN to the image super-resolution problem. In the process of training the
network, backpropagation of the gradient estimation after deagitation was performed.
Good results were achieved in natural image generation in the ImageNET dataset [15].
A.M. et al. proposed a new method of image generation, DGN-AM, which is based on a
prior DGN (deep generator network) and combined with the AM (activation maximization)
method. By maximizing the activation functions of one or more neurons in the classifier, a
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realistic image is synthesized [16]. In 2017, A. et al. proposed PPGN based on DGN-AM,
consisting of a generator G and a conditional network C that tells the generator to generate
classes; it generated high-quality images and performed well in image repair tasks [17].
W.R. et al. proposed an ArtGAN to generate natural images such as birds, flowers, faces,
and rooms [18].

In 2016, S. et al. encoded the text description into character vector as part of the
input of generator and discriminator, respectively, based on the conditional generative
adversarial network, the assumption that text descriptions can be used to generate images
was validated on general datasets such as MS COCO [19–21]. S. et al. proposed a GAWWN
network, in which a constraint box is added to guide the network to generate a certain
attitude image at a given position [22]. In 2017, H. and others applied the idea of dis-
tributed generation to the generation of confrontation network and proposed a StackGAN
model [23,24]. The first step is to generate a relatively fuzzy image, mainly the background,
contour, etc. The second step is to take the image generated in the first step as the input;
at the same time, text features are fused to correct the loss of the first stage, resulting in a
high-definition image. In 2018, H. et al. improved the StackGAN model by using different
group generators and discriminators to train at the same time. Images with different
accuracy were generated. The low-accuracy images were trained in the high-accuracy
generators, different group generators and discriminators use the same text features as
constraints, resulting in better results than other generation models [25]. T. and others
improved the StackGAN model using the attention mechanism, proposed the ATTNGAN
model, paid more attention to the related words in the text description in the process of
the phased generation, and generated more detailed information in different subregions
of the image [26,27]. S. and others put forward a model of image generation based on
semantic layout. Firstly, the corresponding semantic layout of the text is obtained by a
layout generator, then the corresponding images are generated by an image generator.
Finally, the validity of the model is verified on the MS-COCO dataset, and a natural image
of diversity is generated [28,29]. Although the abovementioned GANs have achieved good
results in the field of image generation, most of these were generated for natural images.
Remote sensing images are different from natural images because of their unique spec-
tral characteristics and huge amount of data, requiring high quality, speed, and diversity.
The proposed model (BTD-sGAN) is suitable for remote sensing image generation to solve
these problems.

In addition, generating the corresponding image from the text description involves
the knowledge of multimodal representation learning. In 2021, F. et al. proposed a network
named EAAN that can correlate visual and textual content [30], and also performed
research on natural images. This paper attempts to study remote sensing images.

1.3. Image Semantics and Text Semantic Loss

In image processing, semantic loss is inevitable in the process of image convolution
or downsampling. To avoid semantic loss of the image, T. et al. [31] proposed a new
conditional normalization method, called SPADE, which solves the problem of semantic
loss in batch normalization, but does not pay attention to the semantic loss of text. Therefore,
this paper improves the downsampling process of the generator, adds the text feature
to constrain, reduces the semantic loss of the text, and improves the diversity of the
generated images.

Herein, the work is based on the structure of GAN because of the excellent effect of
GAN on several datasets [32,33]. The task of target detection and image segmentation based
on remote sensing image needs not only the generated image, but also the corresponding
label of the image. Although GAN has achieved good results in natural image generation,
there is little research on remote sensing image generation in GAN. Herein, the following
problems will be solved: (1) the number of tagged remote sensing images is little; (2) the
diversity of remote sensing image samples is insufficient.
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Herein, an improved model named BTD-sGAN (Text-based Deeply-supervised GAN)
is proposed. To solve the problem of insufficient samples with labels, we use the network
segmentation graph as input in the input of the BTD-sGAN, which can restrict the process of
image generation to avoid the final image of the secondary annotation. To solve the problem
of insufficient sample diversity, the main body of BTD-sGAN is the deeply-supervised
generation network, D-sGAN (Deeply-supervised GAN) [34], the generator structure is
still Unet++ network and the discriminator structure is FCN network. BTD-sGAN takes the
image segmentation graph, Perlin and text vector, which are fused as input. At the same
time, to reduce the semantic loss of the text, the text vector is always used as a supervisor to
correct the loss during the downsampling process. The experimental results for BTD-sGAN
show that the improved network can not only increase the number of generated samples
with tags, but also increase the diversity of generated samples.

2. Materials and Methods
2.1. Methods

Herein, the practical application direction is as a remote sensing dynamic soil detection
project data generation module, mainly for China remote sensing data for the experiment.
Remote sensing dynamic soil detection is used to identify and label some types of buildings
that violate regulations through the image segmentation network, but due to the lack
of remote sensing data, interpretation accuracy is faced with a breakthrough bottleneck.
Therefore, this paper is based on the above remote sensing data for the study of data
augmentation.

The improved model (BTD-sGAN) is based on D-sGAN, and the training process is
similar. It should be noted that the Gaussian noise at the input of the generator is replaced
by Perlin noise, and the segmented image and encoded text vector are fused. The discrimi-
nator also adds a text vector as a constraint. The improved generative adversarial network
learns the mapping of segmentation graph x, image z, and text vector v to real image y.
The image z follows the Perlin distribution. The training flow for the entire network is
shown in Figure 4.
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Figure 4. BTD-sGAN training process.

In Figure 4, an image segmentation graph x is added to the input to solve the problem
that the GAN-INT-CLS [19] model cannot capture localization constraints in the image.
Herein, the experiment verifies the effectiveness of adding a segmentation graph at the
input end.
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2.1.1. Lower Sampling Procedure

Different from the downsampling module in the D-sGAN model, to improve the
diversity of the generated samples and reduce the semantic loss of the text, the method
of using segmentation graph to monitor was not used, only the real text feature vector
was used to supervise the sampling process. It is important to note that this subsampling
procedure was applied to generators and discriminators. The down-sampling module of
BTD-sGAN is shown in Figure 5.

Batch  Normalization 

4×4-↓2-Conv-k

Concat

LeakyRELU

R
e
siz

e

text feature vector

Figure 5. The down-sampling module of BTD-sGAN.

2.1.2. BTD-sGAN Structure

The Unet++ network uses a “dense link” network structure [35], which can effectively
combine the features from the encoder and the decoder to reduce the semantic loss of the
image, so the model of BTD-sGAN based on Unet++ is improved. In the D-sGAN, the idea
of using multiple discriminators to supervise the generator was put forward, which can
improve the quality of image generation and reduce the generation of image at the same
time. Although the main structure of the generator was based on Unet++, discriminators
(the first and second discriminators of BTD-sGAN L4 in Figure 6) were only used to monitor
the output of the second and fourth layers. The down-sampling module mentioned in
Section 2.1.1 was used for both the generator and discriminator. A schematic of the entire
network structure is shown in Figure 6.
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Figure 6. The structure of BTD-sGAN.

2.1.3. Loss Function

The BTD-sGAN loss function consists of two parts, the generator part and the discrim-
inator part, which can be expressed as

LBTD−sGAN(G, D) = Ex,y[log D(v, y)]
+Ex,z,v[log(1− D(v, G∗(x, z, v))− D(v∗, y))].

(1)

The matching text feature vector v, true image y, and mismatched text feature vector
v∗ are represented. The discriminator only detects true when the real image and text match,
false when the real image and text do not match, and false when the generated image and
text match.

In particular, the discriminator is used to monitor the two-layer and four-layer outputs
of Unet++, so it can be expressed as
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D(v, G∗(x, z, v))= ∑
k=1,2

λkD(v, G(x, z, v)). (2)

The generator tries to minimize the loss, and the discriminator tries to maximize the
loss. Herein, we used λk(k = 1, 2) to represent the subnet’s weight, and the parameters
satisfy the relation λ1 + λ2 = 1 and λ1 < λ2.

2.2. Datasets

Existing generation models based on text description (such as GAN-INT-CLS, Stack-
GAN++) are mostly studied on the basis of natural images. For fairness, the natural image
dataset Oxford-102 [36,37] was used to compare the effects of BTD-sGAN model and other
models. At the same time, in order to observe the performance of BTD-sGAN model in the
actual remote sensing image generation task, remote sensing datasets from the Jiangxi and
Anhui provinces in China were used for training and testing.

2.2.1. Oxford-102 Dataset

Oxford-102 belongs to the natural image dataset, which contains images of flowers,
including 102 different flower species and a total of 8189 images. Some images of the
Oxford-102 dataset are shown in Figure 7.

Figure 7. The Oxford-102 dataset.

2.2.2. Remote Sensing Datasets of Jiangxi and Anhui Provinces, China

The remote sensing datasets of the Jiangxi and Anhui provinces in China were shot by
China Gaofen Satellite with a ground resolution of 2 m and the original remote sensing



Remote Sens. 2021, 13, 1894 9 of 18

image resolution of 13,989 × 9359. In this paper, the image was cropped to 128 × 128 size.
A partial image of the remote sensing dataset is shown in Figure 8.

13989× 9359

128×128

. . . . . .

128×128 128×128

Crop Crop Crop Crop

Figure 8. Remote sensing datasets of the Jiangxi and Anhui provinces in China.

2.3. Evaluation Metrics

The proposed model (BTD-sGAN) focuses on the diversity of generated images.
To evaluate the quality and diversity of the generated images, the recently proposed
evaluation metric—Inception Score (abbreviated as IS) [38]—was selected. At the same
time, to evaluate whether the generated sample matches the given text description, an
artificial evaluation method called “Human Rank” was adopted. For the generation time
of BTD-sGAN, the evaluation metric called “Inference Time” was proposed. To evaluate
the effect of the proposed model on the actual remote sensing dataset, the generated image
was sent into the training set of the remote sensing interpretation model, and the effect
of the proposed model was reflected through the interpretation accuracy, which is called
“Interpretation Score”. These evaluation metrics are detailed as follows.
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2.3.1. Inception Score

The IS (Inception Score) evaluation index can comprehensively consider the quality
and diversity of the generated images. The evaluation equation can be expressed as

Inception Score = exp(ExDKL(p(y|x)||p(y))), (3)

where x represents the generated image and y represents the prediction label of x for
Inception model [39,40]. For a good generation model, it is expected that the model can
generate images of high quality and diversity. Therefore, the KL divergence between edge
distribution p(y) and conditional distribution p(y|x) should be as large as possible.

2.3.2. Interpretation Score

This index is proposed according to the actual remote sensing interpretation task. It is
assumed that there are n remote sensing images in the dataset used by the interpretation
model, including kn remote sensing images generated by the generation model. There are
(1− k)n remote sensing images in the actual remote sensing dataset (such as remote sensing
images of the Jiangxi and Anhui provinces in China), where k is the mixing coefficient and
the value range is [0, 1]. Two thirds of this dataset was used as the training set and 1/3
as the test set. Then, remote sensing interpretation models (such as Unet and FCN) were
trained and tested on the n remote sensing data images, and the interpretation accuracy of
the interpretation model is called “Interpretation Score”. Herein, the interpretation types of
remote sensing images only include map spots (illegal ground object targets) and nonmap
spots (ground object targets other than map spots). If the “overlap ratio” of interpretation
results is used to represent interpretation accuracy, the expression of “Interpretation Score”
is shown as

Interpretation Score =
(

P11

P11 + P12 + P21
+

P22

P22 + P21 + P12

)/
2, (4)

where P11 represents the number of spot pixels interpreted as spot pixels, P12 represents
the number of spot pixels interpreted as nonspot pixels, P21 represents the number of
nonspot pixels interpreted as spot pixels, and P22 represents the number of nonspot pixels
interpreted as nonspot pixels.

2.3.3. Human Rank

IS (Inception Score) cannot reflect the matching degree between the generated image
and the text description, so the artificial evaluation method was used. The specific evalua-
tion methods are as follows: 30 text descriptions are randomly selected from the dataset,
3 images are generated for each model, 10 evaluators are selected to rank the results of each
model, and the average value of the ranking is taken as the artificial evaluation score of the
model. The smaller the ranking is, the better the model effect is. This artificial evaluation
method is called “Human Rank”. Suppose that the score given by the ith person for the
ranking of a model is Ri, then, the score of the model can be expressed as

HumanRank =
10

∑
i=1

Ri

/
10, (5)

where i represents the serial number of people who rank the model.

2.3.4. Inference Time

“Inference Time” refers to the time of image generation, i.e., the time taken by the
generation model to generate multiple remote sensing images. It usually means the time
taken to generate mKB remote sensing images, where m represents the amount of memory
occupied by the generated image. The unit of “Inference Time” is second.
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3. Results

To evaluate the effectiveness of the proposed algorithm in different scenarios, two
evaluation experiments are carried out. In the first part, the natural image dataset Oxford-
102 (universal dataset) is used as the training set, and the effects of BTD-sGAN, GAN-
INT-CLS [19], and StackGAN++ [25] are compared. In the second part, to verify the
diversity of the generated remote sensing images, remote sensing images of the Jiangxi and
Anhui provinces in China are used as training sets to test the performance of BTD-sGAN
on the actual remote sensing datasets. At the same time, BTD-sGAN is compared with
GAN-INT-CLS and StackGAN++ in the second experiment.

3.1. Experiment 1

In this experiment, Oxford-102 flower dataset is used, and images in the whole dataset
are described manually to form an “image–text description” data pair. Two thirds of
the data pairs in the dataset are taken as the training set, and 1/3 of the data pairs are
taken as the test set. BTD-sGAN, GAN-INT-CLS, and StackGAN++ are trained and tested.
Finally, the generated results of several models are obtained. During training, the three
models use the same data pair. The experimental parameters are 50 epochs, each epoch
iterates 150 times, and each time 64 samples are trained. During testing, the three models
obtain the generated results and evaluation scores according to the same text description.
The experimental process of model comparison is shown in Figure 9.

Oxford-102 flower data settext description

BTD-sGAN

GAN-INT-CLS

StackGAN++

Generated images

Comparison and analysis

 manually 

describe

Figure 9. Experimental process of model comparison.

The 3KB text descriptions in the test set are randomly selected for testing. The gener-
ated results of the different models are shown in Figure 10.
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the petals of the flower are white 

in color and have a yellow center.

a flower with short and wide 

petals that is yellow.

a flower with long and narrow 

petals that is light purple.

GAN-INT-CLS

StackGAN++

BTD-sGAN

Figure 10. Three GAN generation results on the Oxford-102 flower dataset.

At the same time, in numerical terms, “Inception Score”, “Human Rank”, and “In-
ference Time” are used to compare the effects of different models. The performance
comparison of different models is shown in Table 1.

Table 1. Performance comparison of different models on the Oxford-102 dataset.

Model Inception Score Human Rank Inference Time (s)

GAN-INT-CLS 2.56 ± 0.03 1.98 ± 0.04 54

StackGAN++ 3.52 ± 0.02 1.75 ± 0.03 62

BTD-sGAN 3.66 ± 0.03 1.18 ± 0.02 40

To more intuitively show the generation performance differences of different models,
the scores are also shown in Figure 11.

Figure 11. The performance comparison of different models.
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The results in Table 1 show that the BTD-sGAN is higher in “Human Rank” than
GAN-INT-CLS and StackGAN++, increasing by 0.8 (from 1.98 to 1.18) and 0.57 (from 1.75
to 1.18), respectively. Compared with GAN-INT-CLS and StackGAN++, BTD-sGAN has
an increase of 1.10 (from 2.56 to 3.66) and 0.14 (from 3.52 to 3.66) in “Inception Score”,
respectively. In addition, 14 s (from 54 s to 40 s) and 22 s (from 62 s to 40 s) are reduced in
the “Inference Time”, respectively. Figure 11 more intuitively shows that BTD-sGAN has a
shorter generation time, smaller ranking score, and larger IS score compared to the other
two models.

3.2. Experiment 2

The ultimate purpose of constructing BTD-sGAN is to enhance the data of remote
sensing images and serve those researches based on remote sensing images, such as remote
sensing interpretation tasks. Therefore, remote sensing images from the Jiangxi and Anhui
provinces of China are used as datasets to train and test the effect of BTD-sGAN. In
particular, the image is a multispectral remote sensing image. The experiment only uses
the data of RGB channels, and the final image results from the fusion of RGB channels.

Similar to Experiment 1, the remote sensing dataset is described manually to form a
“remote sensing image–text description” data pair. Among them, 2/3 of the data pairs are
used as the training set and 1/3 of the data pairs are used as the test set. Text description is
randomly selected for testing, and the model generates 3 remote sensing images according
to each text description. The generation effect of BTD-sGAN on the actual remote sensing
dataset is shown in Figure 12.

A road next to

several houses

Two roads beside 

several buildings

A road goes through

the forest

Figure 12. Generation results of BTD-sGAN on China remote sensing datasets.

As can be seen from Figure 12, BTD-sGAN can generate various remote sensing
images according to text description. Taking the text description, “a road next to several
houses”, as an example, BTD-sGAN generates three different shapes of roads according to
this description that all meet the requirements of this text description. The above results
show that BTD-sGAN can generate diverse images and meet the needs of image diversity
in the remote sensing image generation task.
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On the basis of China remote sensing datasets, the generation results of BTD-sGAN,
GAN-INT-CLS, and StackGAN++ are also compared. The results are shown in Figure 13.

GAN-INT-CLS

StackGAN++

BTD-sGAN 

Text description:  some roads next to houses.

Figure 13. The results of different models on actual remote sensing dataset.

In Figure 13, compared with GAN-INT-CLS and StackGAN++, the remote sensing
image generated by BTD-sGAN is clearer and matches the text description.

Furthermore, the performance of BTD-sGAN is evaluated numerically. A new method
is used to evaluate BTD-sGAN, namely, “Interpretation Score”. The idea of this method is
as follows: The generated data is sent to the remote sensing interpretation network to see if
the generated image is helpful to improve the accuracy (equivalent to the “Interpretation
Score”) of the interpretation network. The higher the value of “Interpretation Score”,
the better the effect of model generation. A flow chart of the experiment is shown in
Figure 14.

The generated images and the 

original images are mixed samples 

in proportion

The samples only contain 

original  images(Unmixed)

Remote sensing

interpretation

model

Comparision

of 

interpretation 

accuracy 

Figure 14. Flow chart of the experiment.
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After mixing different proportions of the generated images in the dataset, the change
of “Interpretation Score” with mixed proportions is shown in Figure 15.

Figure 15. Diagram of the change of “Interpretation Score” with mixture ratio.

In Figure 15, mixture ratio represents the ratio of the generated images to the original
images in the dataset.

4. Discussion

In the results section, two experiments were used to verify the effectiveness of BTD-
sGAN. Experiment 1 is based on the universal dataset (Oxford-102 flower dataset), which
can ensure the fairness of all models in the comparative experiment. For the dataset,
Figure 10 shows the generated results of different models. Two conclusions can be drawn
from the generated results. 1) BTD-sGAN can generate images according to text description,
which proves the rationality of the model. 2) Visually, compared with GAN-INT-CLS and
StackGAN++, the generation results of BTD-sGAN are clearer and of better quality; the
performance of BTD-sGAN was evaluated quantitatively. Table 1 and Figure 11 show that
BTD-sGAN is superior to other models in the three indexes of “Inception Score”, “Human
Rank”, and “Inference Time”, which indicates that BTD-sGAN can generate clearer and
more diverse images according to text description, and shorten the time of image generation
to meet the needs of the actual generation task.

Experiment 2 is based on remote sensing datasets of the Jiangxi and Anhui provinces,
China. This experiment is used to test BTD-sGAN’s performance on the actual remote
sensing dataset. First, whether BTD-sGAN can generate a variety of remote sensing images
according to the text description is tested. Figure 12 shows that BTD-sGAN can generate
various remote sensing images, which proves that BTD-sGAN can be used in the actual
remote sensing generation task. Then, the performance of different generation models is
compared. In Figure 13, BTD-sGAN generates clearer images than others. The previous
part evaluates BTD-sGAN according to vision. Numerically, the metrics “Interpretation
Score” is used. Figure 15 shows that the scores of remote sensing interpretation after mixing
can be improved compared with that of unmixed samples, and when the mixing ratio is
1:1, the precision can be improved by 5%. This is because the diversity of the generated
samples is higher than that of the original images and the generalization ability of the
network is improved. However, when the mixture ratio reaches 2:1, the interpretation
accuracy will decrease. Due to the large proportion of generated samples, the network
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learns the features of the generated samples and the insufficient learning of the features of
the original remote sensing images.

5. Conclusions

Aiming at the lack of samples in the deep learning-based remote sensing image
detection project, a new text-based generative adversarial network called BTD-sGAN is
proposed for the data augmentation of remote sensing image. Two experiments were used
to verify the effect of BTD-sGAN. The first experiment was used to test the performance
of BTD-sGAN on the universal dataset, and the second experiment was used to test the
performance of BTD-sGAN on the actual remote sensing dataset. In Experiment 1, BTD-
sGAN generated higher quality images than other models. Compared with GAN-INT-CLS
and StackGAN++, BTD-sGAN increased by 1.10 and 0.14 in “Inception Score” and 0.8 and
0.57 in “Human Rank”, and decreased by 14 s and 22 s in “Inference Time”, respectively.
In Experiment 2, BTD-sGAN produced clearer and more varied remote sensing images
than GAN-INT-CLS and StackGAN++. The results show that the remote sensing image
generated by BTD-sGAN can help improve the accuracy of remote sensing interpretation
network by 5%. In general, BTD-sGAN can be applied to the actual remote sensing
generation tasks, and can also provide the data support for remote sensing interpretation
(e.g., soil-moving detection) and other tasks.

However, BTD-sGAN still has some limitations. The text vectors are used to correct
text semantic loss during downsampling, which leads to image semantic loss to a certain
extent. In other words, the quality of the generated image is sacrificed. In contrast,
the diversity of the generated image is gained. The results presented herein were limited to
only RGB bands. The effectiveness of the method for other spectral bands, such as Near-
Infrared and Red Edge that are used for various purposes, requires further investigation
and is subject to future work. In addition, there are many related types of research in the
field of remote sensing based on deep learning, and the demand will be different. The future
direction is to improve the model to meet the need of remote sensing generation. This
paper will also try to apply the model to some other fields (such as Internet of Vehicles [41])
for data augmentation, so as to further test the practical applicability of the model.
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The following abbreviations are used in this manuscript:

VAE Variational Auto Encoder
GAN Generative Adversarial Network
cGAN conditional Generative Adversarial Network
DGN Deep Generator Network
AM Activation Maximization
PPGN Plug & Play Generative Network
ArtGAN Artwork Synthesis with Conditional Categorical GAN
StackGAN Stacked Generative Adversarial Network
ATTNGAN Attentional Generative Adversarial Network
IS Inception Score
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