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The inference of functional vegetation traits from remotely sensed signals is key to
providing efficient information for multiple plant-based applications and to solve related
problems. Functional traits can be of morphological, biochemical, physiological, struc-
tural or phenological nature and reveal performance and vitality of plants. These traits,
variables or physiological characteristics include, for instance, plant height [1], leaf area
index [2], biomass [3], nutrient contents [4], water status [5], pigments [6], photosynthetic
activity [7], disease resistance [8], yield prediction [9] or stress detection, being used by
a diversity of ecological and agricultural applications. Spatial–temporal information of
these traits is needed in numerous ecosystem applications, such as agriculture (crop breed-
ing/monitoring/yield estimation) or biodiversity and landscape ecology. Therefore, the
development and adaptation of fast, efficient, accurate and generic retrieval algorithms for
quantification of vegetation traits, directly or indirectly from remote sensing observations,
is required. In this context, variable data-driven as well as radiometric-data driven methods
are continuously expanding over the time with rising remotely sensing data processing
applications and studies. Drivers of this methodological expansion are, among others, the
increase in computational power, the easier availability and increasing dimensionality of
Earth observation (EO) data, and finally the ongoing progress in designing and planning
spaceborne imaging spectroscopy missions. All methods have their respective limitations
and advantages. Most importantly, they should be provided on appropriate platforms and
(free-to-use) software tools, in order to be evaluated by plant physiologists, agronomists,
remote sensing scientists and ecologists.

With the ambition to collect current state-of-the-art research, the Special Issue (SI)
of “Remote and Proximal Assessment of Plant Traits” aimed to address contributions
about estimation of morpho-physiological and biochemical plant traits from EO data in
agricultural and ecological contexts, supporting food security and sustainability. Overall,
with 14 published studies including 12 research studies, one technical note and one review
study, a wide range of applications was covered meeting the expectations of the call
for papers.

The majority of studies aimed at estimating functional vegetation traits at local and
a few at regional scale within different ecosystems (mainly agriculture). Remote sensing
of plants (crops) was performed at leaf- or canopy-levels by means of diverse sensors on
field-level to spaceborne platforms, covering multi- and hyperspectral resolutions and
applying a multitude of retrieval algorithms. In addition, these quantification studies,
Castrignanò et al. [8] explored a classification method for the detection of biotic stress and
two studies used time series analysis for assessing phenology [10] and yield [1]. Table 1
provides an overview of all the studies including the respective meta-information.
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Table 1. Overview of papers published in the Special Issue (order in publishing date), with short description of objectives,
targeted type of variables (traits), type of ecosystem/vegetation studied, scale (local/regional/global) including level (leaf,
canopy or atmosphere), platform/sensors, spectral resolution and applied methods, as well as type of paper.

# Reference Topic/Short Title Targeted Traits Ecosystem
(Vegetation Type) Scale (Level)

Platform,
Spectral

Resolution
(Sensor)

Retrieval
Methods

Study
Type

1 Wang et al.
[10]

Effects of weather
variation on rice

phenology.
phenology Ag (rice) regional

(canopy-level)

satellite,
hyperspectral

(MODIS)

time series
analysis Research

2 Miraglio et al.
[5]

Joint use of PROSAIL
and DART for fast

LUT building.

gap fraction, leaf
chlorophyll
content, leaf

carotenoid content,
leaf water content
and leaf mass per

area (LMA)

woodland savanna
(oak stands)

local/stands
(canopy-level)

airborne,
hyperspectral
(AVIRIS) and

proximal
sensing (ASD

field
spectrometer)

RTM
(inversion

with look-up
table)

Research

3 Kennedy et al.
[6]

Monitoring
vegetation variables

in Arctic
environments using

multi-angle
hyperspectral data.

leaf and canopy
chlorophyll content

(LCC, CCC) and
plant area index

(PAI)

herbaceous plants,
shrubs, mosses,

sedges and grasses
and lichens

local plots
(canopy-level)

proximal
sensing,

hyperspectral
(ASD field

spectrometer)

RTM
(numerical

optimization
and look-up
tables), VIs
and GPR

Research

4 Qiu et al.
[3]

Estimation of the key
rice growth indicators

by means of
commercial RGB

cameras of
unmanned aerial
vehicles (UAVs).

leaf dry biomass,
leaf area index and
leaf total nitrogen

Ag (rice) local plots
(canopy-level)

UAV
(multispectral)

VIs: Green
Leaf Index

(GLI) and Red
Green Ratio

Index (RGRI),
Modified

Green Red
Vegetation

Index
(MGRVI),

Excess Red
Vegetation

Index (ExR)

Research

5 Aharon et al.
[11]

Evaluation of
image-driven plant

phenotyping
methods to facilitate

effective and accurate
selection for early
vigor in cereals.

various
morphological

growth parameters

Ag (triticale and
ryegrass)

stands and
local plots

(single plant
and canopy)

ground-based
and UAV

(RGB)

3D and 2D
modeling,

time series, VI:
excessive

green (ExG)

Research

6 Castrignanò
et al. [8]

Early Detection of
Xylella fastidiosa in
Olive Trees Using

UAV

scale of symptom
severity Ag (olive groves)

local stands
(leaf- and

canopy level)

UAV,
multispectral

(DJI Mavic Pro
drone with a

four-band
multispectral

camera)

non-
parametric

classification
method

Research

7 Berger et al.
[12]

Survey and
experimental case
study about active

learning for solving
regression problems

leaf carotenoid
content, leaf water

content

Ag (winter wheat
and maize)

fields
(canopy-level)

airborne
(HyMAP)

resampled to
EnMAP,

hyperspectral

hybrid (RTM
and GPR),

active learning
Review

8 Ronay et al.
[7]

Characterization of
physiological changes
in corn during early

growth due to
crop–weed

competition, detected
through

hyperspectral
measurements.

relative water
content, leaf
chlorophyll

content,
photosynthetic rate

and stomatal
conductance,

intercellular CO2

Ag (maize)
pots in

greenhouse
(leaf-level)

proximal
sensing,

hyperspectral
(ASD field

spectrometer)

hyperspectral
VIs Research

9 Mahajan et al.
[4]

Remote sensing
methods to

characterize foliar
nutrient status of

mango.

P, K, Ca, Mg, S, Fe,
Mn, Zn, Cu, B, N Ag (mango) regional

(leaf-level)

proximal
sensing,

hyperspectral
(GER1500
spectrora-
diometer)

VI, partial
least square
regression

(PLSR),
principal

component
regression and
support vector

regression
(SVR)

Research
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Table 1. Cont.

# Reference Topic/Short Title Targeted Traits Ecosystem
(Vegetation Type) Scale (Level)

Platform,
Spectral

Resolution
(Sensor)

Retrieval
Methods

Study
Type

10 de Sá et al.
[2]

Exploration of noise
impact on hybrid

inversion of
PROSAIL using
Sentinel-2 data.

leaf chlorophyll
content, leaf dry

matter content, leaf
water content, leaf

area index

local
(canopy-level)

synthetic,
multispectral
(Sentinel-2)

hybrid (RTM
and GPR,
random
forests,

artificial
neural

networks
(ANN) and
multi-task

neural
networks)

Research

11 Rufo et al. [9]

Evaluation of a
4-band multispectral
camera on-board an

unmanned aerial
vehicle (UAV) and
ground-based RGB
imagery to predict

agronomic and
biophysical traits.

leaf area index
(LAI), agronomic
traits (grain yield

and number of
grains)

Ag (wheat) local
(canopy-level)

airborne
(UAV) and
proximal

sensing (JAZ-3
Ocean Optics

STS VIS
spectrometer),
multispectral

VIs (modified
triangular
vegetation

index—
MTVI2, NDVI,

GNDVI),
stepwise
multiple

regression
analysis

Research

12 Khak Pour
et al. [13]

developing mobile
platform for
field-based

high-throughput
wheat phenotyping

canopy height,
temperature,

humidity

Ag (wheat and
similar crops)

local (canopy
level)

ground level
(multispectral
active sensor,

ultra-sonic
and thermal)

mounting
sensors and
developing

software

Technical
note

13 Estévez et al.
[14]

Top-of-atmosphere
retrieval of multiple
crop traits by means
of hybrid retrieval

workflow.

leaf water content,
leaf chlorophyll

content, fractional
vegetation cover,
leaf area index,

canopy chlorophyll
content, canopy
water content

Ag (winter wheat,
maize)

local—
regional
(top-of

atmosphere
and

top-of-canopy)

satellite,
multispectral
(Sentinel-2)

hybrid (RTM
& GPR) Research

14 Varela et al. [1]

Growth dynamics
and yield prediction

of sorghum using
high temporal

resolution UAV
imagery time series

and machine
learning.

canopy cover,
biomass, canopy

height
Ag (sorghum) local (canopy

level)
UAV

(multispectral)

3D modeling,
VIs, random
forest (RF),
time series

Research

1 Ag stands for agriculture; Na stands for natural; RTM stands for radiative transfer model; VIs stands for vegetation indices; ML stands for
machine learning.

The commonly accepted taxonomy of retrieval methods (for short overviews and
appropriate references see Berger et al. [12], Estevez et al. [14] or Mahajan et al. [4]) was
nicely reflected by the studies of our SI:

(i) Parametric regressions, mainly referring to the use of different (hyperspectral) vegeta-
tion indices (VI) [3,4,6,7,9];

(ii) Nonparametric regressions, which include chemometric methods, such as partial least
square regressions (PLSR), as well as machine learning (ML) regression algorithms,
such as artificial neural networks, support vector regression (SVR) or Gaussian process
regression (GPR) [4,6];

(iii) Physically based or inversion of leaf and canopy radiative transfer models (RTM), for
instance the 1D approaches of PROSAIL [6] or 3D DART model families [5];

(iv) Hybrid approaches, where simulated RTM data serve for training of ML regression
algorithms [2,12,14].

With the methodology covered by the published studies, we can recognize a clear
trend towards more complex retrieval methods (ii–iv) moving away from the traditional
and still most frequently used parametric regressions (i), towards a deeper understanding
of underlying physical processes of the radiation–vegetation interactions by exploring
RTMs (iii). Hybrid approaches (iv), combining RTMs with efficient and fast ML regression
algorithms, emerged as most promising category as demonstrated by three studies [2,12,14].
These methods could become the key player of next-generation retrieval strategies in re-
spect of a potential routine delivery of global vegetation products by future spaceborne
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imaging spectroscopy missions. For instance, top-atmosphere retrieval from Sentinel-2
data of multiple vegetation traits was suggested by Estévez et al. [14], which could be
extended to spaceborne hyperspectral data in the future. Moreover, the implementation
of intelligent sampling methods (active learning) to provide faster and lighter retrieval
models, particularly useful for implementation into cloud computing platforms, such as the
Google Earth Engine (GEE), was proposed by Berger et al. [12]. In this context, an appealing
solution for further reduction of computation times was presented by Miraglio et al. [5]:
Hereby, reflectance curves from the complex 3D DART model were approximated using
the simpler and faster 1D PROSAIL model, with this drastically reducing model running
time for generation of a reflectance database. According to Mahajan et al. [4], the com-
bination of different nonparametric approaches can also provide efficient, elegant and
highly accurate solutions for the prediction of multiple plant nutrients from hyperspectral
data, as the authors nicely demonstrated with the synergistic use of PLSR and SVR models.
Moreover, the studies of Aharon et al. [11] used image analyses and 3D modeling to assess
morphological traits for weed competitiveness and recommended for future work to add
machine learning techniques. Wang et al. [10] analyzed imagery at larger spatial (county)
and temporal (16 years) scales to assess phenology in relation to weather conditions based
on a time series approach. To complete the scale range, a close range phenotyping system
based on sensing techniques was developed by Khak Pour et al. [13], who presented their
high throughput data collection platform with an exemplary wheat monitoring case study.

Regarding sensor systems, a decisive trend of increasing UAV data exploitation could
be identified. This was particularly the case for the prediction of agronomic traits within
breeding programs [1,9] and stress detection [8], but also for managing crop production [3].
Except for one study [12], simulating data from the German environmental mapping and
analysis program (EnMAP), spaceborne imaging spectroscopy data were not explored
by the published papers. This is about to change, with increasing data streams to be
provided by current (PRISMA) or near-term missions, such as EnMAP, or future CHIME.
Moreover, the synergistic usage of multiple optical sensors systems could greatly enhance
the information content in respect to the different research questions as addressed in the
published articles. Still, some other gaps and challenges remain, such as handling of large
amounts of data, dealing with spatial and temporal structures in a more efficient way and
also improvements of retrieval accuracy in particular of the leaf-level traits. To address this,
an attractive option could be the exploitation of deep learning methods.

In summary, the 14 studies published here not only reflect the continuous advancement
of new Earth observation sensors and methods, but also may support in further stimulating
the ongoing progress in the field of vegetation traits retrieval and related applications. This
ongoing progress will contribute towards more efficient operational monitoring of plants
and crops, from plant organs, small plots, sub-field, field over regional to global scales,
providing breeders, farmers and ecologists with relevant information for their decision-
making processes in the context of Agriculture 4.0, as well as for additional research.
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