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Abstract: In many regions of the world, wheat is vulnerable to severe yield and quality losses from
the fungus disease of Fusarium head blight (FHB). The development of resistant cultivars is one
means of ameliorating the devastating effects of this disease, but the breeding process requires the
evaluation of hundreds of lines each year for reaction to the disease. These field evaluations are
laborious, expensive, time-consuming, and are prone to rater error. A phenotyping cart that can
quickly capture images of the spikes of wheat lines and their level of FHB infection would greatly
benefit wheat breeding programs. In this study, mask region convolutional neural network (Mask-
RCNN) allowed for reliable identification of the symptom location and the disease severity of wheat
spikes. Within a wheat line planted in the field, color images of individual wheat spikes and their
corresponding diseased areas were labeled and segmented into sub-images. Images with annotated
spikes and sub-images of individual spikes with labeled diseased areas were used as ground truth
data to train Mask-RCNN models for automatic image segmentation of wheat spikes and FHB
diseased areas, respectively. The feature pyramid network (FPN) based on ResNet-101 network was
used as the backbone of Mask-RCNN for constructing the feature pyramid and extracting features.
After generating mask images of wheat spikes from full-size images, Mask-RCNN was performed
to predict diseased areas on each individual spike. This protocol enabled the rapid recognition of
wheat spikes and diseased areas with the detection rates of 77.76% and 98.81%, respectively. The
prediction accuracy of 77.19% was achieved by calculating the ratio of the wheat FHB severity value
of prediction over ground truth. This study demonstrates the feasibility of rapidly determining levels
of FHB in wheat spikes, which will greatly facilitate the breeding of resistant cultivars.

Keywords: deep learning; wheat spike; Fusarium head blight; target recognition; computer vision

1. Introduction

Wheat (Triticum aestivum L.) is a globally significant crop for human and animal
consumption. In the United States, wheat plays an important role in promoting export
markets and trade balances in addition to meeting domestic food and feed production
needs [1]. Many diseases affect wheat production and threaten global food security. One of
the most devastating fungal diseases attacking wheat is Fusarium head blight (FHB),
caused primarily by Fusarium graminearum. FHB attacks the spikes (ears) of wheat, causing
marked reductions in both the yield and quality of the crop. Moreover, the fungus can
produce an array of mycotoxins (e.g., deoxynivalenol or DON) within the grain rendering
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it unsuitable for human or animal consumption [2,3]. Thus, FHB can severely impact
public health [4,5] in addition to reducing the yield and quality of the crop. Spikelets
infected with FHB show premature bleaching. In a susceptible wheat line, infection of
just a single spikelet can eventually spread across the entire spike. The breeding of FHB
resistant cultivars is one of the most important means for ameliorating the impact of this
disease [6,7]. To develop resistant cultivars, hundreds of breeding lines must be evaluated
for FHB severity each year, often at multiple field sites. Protocols for assessing FHB
resistance have conventionally relied upon the trained eye. The severity of FHB in wheat
was accurately scored by counting infected spikelets and expressing that as a percentage
of total spikelets [8]. Nevertheless, this approach is laborious, costly, time-consuming,
and subject to human error [9]. The spectral sensor can intelligently perceive the spectral
characteristics of an object at a certain point but cannot obtain a macroscopic image of the
identified object [10–12]. Thus, there is an urgent need to develop a more effective and
high-throughput approach for assessing this disease in the field.

Computer vision-based phenotyping is a rapid, high-throughput, and non-destructive
technique for capturing many types of traits [13–17]. Imaging techniques such as hyper-
spectral imaging (HSI) [18], and red–green–blue (RGB) imaging [19], have been widely
used to study the complex traits associated with plant growth, biomass, yield, and re-
sponses to biotic stresses such as disease and abiotic stresses such as cold, drought and
salinity [20–22]. With respect to FHB, Whetton et al. [23] processed HSI images of infected
and healthy crop canopies including wheat and barley under controlled environmental
conditions. The correlations between FHB severity and HSI data were investigated for
quantification of wheat resistance to FHB [24]. Based on support vector machine (SVM)
and fisher linear discriminant analysis, healthy and infected spikes were classified with
acceptable accuracies (79–89%) [25,26]. The performance of the diagnosis model was then
improved using a particle swarm optimization support vector machine (PSO-SVM) [27].
Relevance vector machine (RVM) performed better than the logistic model for prediction
of FHB severity under natural environmental conditions [28]. However, more advanced
algorithms such as convolutional neural network (CNN) have not been adopted in their
study. In addition, one big challenge faced by HSI technology is the difficulty for rapidly
processing a large amount of high-dimensional data obtained in a continuous spectral
range and to effectively execute automatic operations [29–38].

A color imaging camera with built-in RGB filters can rapidly capture RGB images
through three spectral channels (red, green, and blue), and has great potential for real-time
detection of wheat FHB [39]. Although K-means clustering and random forest classifier
have been used for segmentations of disease areas in wheat spikes [40], the advantage of
this digital imaging technique is greater when a large number of datasets are available and
a more powerful machine learning algorithm is utilized. Deep learning with great merit of
automatic feature learning is a core part of the larger family of machine learning based on
multiple layers of artificial neural networks, which allows greater learning capabilities and
higher computational performance. As a widely recognized deep neural network, CNN has
become a standard algorithm in object identification [41–43]. Hasan et al. [44] tested a faster
region-based convolutional neural network (Faster R-CNN) model to detect wheat spikes
and output a bounding box (bbox) for each spike. Deep convolutional neural network
(DCNN) models were successfully used to localize wheat spikes under greenhouse con-
ditions and predict the FHB disease severity with high accuracy [30,45]. Zhang et al. [46]
developed a pulse-coupled neural network (PCNN) with K-means clustering of the im-
proved artificial bee colony (IABC) for the segmentation of wheat spikes infected FHB.
Since only one spike in each image was considered, it would be difficult to efficiently detect
disease in a high throughput way. Then, Qiu et al. [47] developed a protocol that can
segment multiple spikes in an image and then used a region-growing algorithm to detect
the diseased area on each wheat spike. However, conventional image processing operations
including region-growing, gray-scale co-occurrence matrix, and connectivity analysis are
not suitable for real-time disease detections [48]. In addition, wheat spikes located at the
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image borders could not be segmented, and the accuracy of the target spike and disease
area identifications was significantly reduced due to the presence of awns on the spike.
In these studies, the shape or contour information was only roughly extracted; thus, it was
difficult to accurately identify the targets. Such factors reduced the accurate assessment of
FHB disease levels. Thus, a new strategy should be designed to reliably evaluate wheat
resistance to Fusarium head blight under field conditions. Mask region convolutional
neural network (Mask-RCNN) is a machine vision based deep structural learning algo-
rithm to directly solve the problem of instance segmentation [49]. This algorithm has
been successfully employed to identify fruits and plants. For instance, Ganesh et al. [50]
and Jia et al. [51] developed harvesting detectors based on the Mask-RCNN for robotic
detections of apple and orange in orchards with precision of 0.895 to 0.975. Yang et al. [52]
revealed the potential of Mask-RCNN for the identification of leaves in plant images for
rapid phenotype analysis, yielding the average accuracy value up to 91.5%. Tian et al. [53]
illustrated that Mask-RCNN performed best compared to other models including CNN
and SVM in automatic segmentation of apple flowers of different growth stages.

The novelty of this study is in the development of an integrated approach for FHB
severity assessment based on Mask-RCNN for high-throughput wheat spike recognition
and precision FHB infection segmentation under complex field conditions. The Mask-
RCNN combined object detection and instance segmentation provide an efficient frame-
work to extract object bboxes, masks, and key points [49]. The main objective of this
research is to determine the performance of Mask-RCNN based dual deep learning frame-
works for real-time assessments of wheat for FHB severity in field trials. The specific
objectives were to: (1) develop an imaging protocol for capturing quality images of wheat
spikes in the field; (2) annotate spikes and diseased spikelets in the images; (3) build a
Mask-RCNN model that works well in detecting and segmenting wheat spikes under
complex backgrounds; (4) develop a second Mask-RCNN model that is valuable for pre-
diction of diseased areas in individual spikes of segmented sub-images; (5) evaluate the
disease grade of wheat FHB based on the ratio of the disease area to the entire wheat
spike. We believe this is the first study using dual Mask-RCNN frameworks for automatic
evaluation of wheat FHB disease severity.

2. Materials and Methods
2.1. Data Collection

FHB evaluation trials were established at the Minnesota Agricultural Experiment
Station on the Saint Paul campus of the University of Minnesota. Wheat samples of
55 genetic lines were sown on May 2019 and FHB inoculations were made using the conidial
spray inoculation [54]. To achieve sufficient infection levels on wheat lines throughout
the field nursery, three inoculations were made: the first performed one week before the
heading time of the earliest maturing accessions, the second one week later, and the third
coinciding with accessions having late heading dates. Daily mist irrigation (0.61 cm per day)
was provided at regular intervals (10 min at the top of every hour, 0.05 cm per hour) from
6 p.m. through 5 a.m. (12 times) to promote infection and disease development. Irrigation
began after the first inoculation and continued until the latest maturing accessions reached
the late dough stage of development. The growth stage of wheat at the time of image
acquisition is a key factor for effective FHB detection. When the wheat was in the start of
flowering and the late maturing stage, distinction of diseased spikes was not possible based
on the naked eye [55]. The best time to assess the disease is when the spike symptoms
become visible but not yet senescence.

An autofocus single-lens reflex (SLR) camera (Canon EOS Rebel T7i, Canon Inc.,
Tokyo, Japan) mounted with a fixed macro lens was utilized to acquire images. The camera
ran in automatic mode, allowing it to set the appropriate acquisition parameters including
white balance, ISO speed and exposure time. Images of wheat spikes of 55 genetic lines
at the late flowering stage to the milk stage of maturity (from July 11 to August 2) were
eventually collected during sunny weather (10:00 to 13:00) in the field. Different genetic
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lines of wheats had different resistance to FHB. The images obtained contained FHB of
15 severity stages from grade 0 to grade 14 (Grade 0: [0–1%], Grade 1: (1–2.5%], Grade 2:
(2.5–5%], Grade 3: (5–7.5%], Grade 4: (7.5–10%], Grade 5: (10–12.5%], Grade 6: (12.5–15%],
Grade 7: (15–17.5%], Grade 8: (17.5–20%], Grade 9: (20–25%], Grade 10: (25–30%], Grade
11: (30–40%], Grade 12: (40–50%], Grade 13: (50–60%], Grade 14: (60–100%]). Images
were captured under the ambient conditions of the field site, which included complex
and variable backgrounds of blue sky, white clouds, and green wheat plants. Each image
(resolution: 6000 × 4000) contained about 7–124 spikes (Figure 1a).
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Figure 1. An example of manual annotation of target images; (a) a typical full-size image of spikes from a single planted
row of wheat in the field; (b) the same image with annotated wheat spikes; (c) a segmented sub-image of a single wheat
spike; (d) the individual wheat spike with annotated diseased areas.

2.2. Data Annotation and Examination

Wheat spikes and diseased areas in collected images were manually annotated. A to-
tal of 690 images were captured from a large wheat germplasm collection that varied
with respect to FHB reaction. Among this set, 524 images (including 12,591 spikes) and
166 images (including 4749 spikes) were randomly selected as the training set and the
validation set of the model for spike identifications, respectively. For disease area detection,
2832 and 922 diseased spikes in sub-images were used, respectively, for model training
and validation by random selection. All image annotations were executed by using an
artificial image annotation software (Labelme, https://github.com/wkentaro/labelme).
Three steps were used for image annotation. The first step was to label wheat spikes in
the original images (Figure 1b); the second step was to segment annotated spikes into
different sub-images, and the third step was to label the diseased areas in each individual
spike. Specifically, the shapes of wheat spikes in the full-size image in the training set were
marked by manually drawing polygons. Each of the labeled spikes was then automatically
segmented into a sub-image containing a single spike by image processing. All areas of the
sub-image were first defaulted as the background (black color) using binarization; then,
only the annotated areas were allowed to be recovered (Figure 1c). The physical feature of
the diseased areas on the spike of the sub-image was labeled manually (Figure 1d).

2.3. Mask-RCNN

Mask-RCNN was employed to automatically segment the diseased areas of the wheat
spikes in full-size images. It is a two-stage model for object detection and segmentation.
The first stage is the regional proposal network (RPN), which aims to propose candidate
bboxes in the regions of interest (RoI). The second stage is based on the normalized RoIs
acquired from RoI Align to output confidence, bbox, and binary mask. The Mask-RCNN
is mainly composed of four parts including a backbone, feature pyramid network (FPN),
RPN, and feature branches [56]. The backbone is a multilayer neural network used to
extract feature maps of original images. A backbone network can be any CNN with
residual network (ResNet) developed for image analysis. The ResNet was proposed to
solve the vanishing gradient problem when training deep convolutional networks [57].

https://github.com/wkentaro/labelme
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It relies on a series of stacked residual units as a set of building blocks to develop the
network-in-network architecture [58]. The residual units consist of convolution, pooling,
and layers.

A ResNet model with 101 layers (ResNet-101) mentioned by He, Zhang, Ren and
Sun [57] was employed in this study. ResNet has outperformed previous networks such
as visual geometry group networks (VGGNets) at many tasks including object detection
and semantic image segmentation [59]. The purpose of using FPN is to completely extract
multi-scale feature maps [60]. The RPN has the capacity to generate and choose a rough
detection rectangle. Based on functional branches, three operations in terms of classification,
detection, and segmentation can be performed. In addition, the batch normalization (BN) is
added between activation functions and convolutional layers in the network to accelerate the
convergence speed of network training. Ioffe and Szegedy [61] proved that BN could reduce
the training steps by more than ten times without changing the model accuracy. The original
full-size images with annotated wheat spikes and the sub-images with annotated diseased
areas were used, respectively, as the inputs to train two Mask-RCNN models for detection
of wheat spikes and diseased areas. Based on the trained dual models, the segmentation
of wheat spikes and FHB diseased areas of the images in the validation set was conducted
(Figure 2). The severity of FHB was examined based on the ratio of the number of pixels of
diseased area to the number of pixels of entire spike area. The workflow of this study is
presented in Figure 3.
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2.4. Evaluation Metrics

The performance of the Mask-RCNN was evaluated using several parameters. The
false positive (FP), false negative (FN), and true positive (TP) were computed and used to
generate metrics including recall, precision, F1-score, and average precision (AP). Among
them, the recall (also known as sensitivity) is the proportion of the number of real positive
instances in the total number of instances actually belonging to the positive category,
while precision (also known as positive predictive value) is the proportion of the number
of real positive instances among the total number of instances predicted as belonging
to the positive category [62]. As a measure of accuracy of the test, the F1-score (also F-
measure) is the harmonic mean of the recall and precision, where parameters are evenly
weighted [63]. The AP is the area under the precision–recall (PR) curve [64]. The AP score
is computed as the mean precision over 11 recall values (default values) given a preset
intersection over union (IoU) threshold [65]. The IoU is defined as the degree to which the
manually labeled ground truth box overlaps the bbox generated by the model. The mean
intersection over union (MIoU) is a standard indicator for assessing the performance of
image segmentation [66]. MIoU was computed as the number of TP over the sum of TP,
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FN, and FP. The precision, recall, F1-score, AP, IoU, and MIoU can be expressed by the
following equations:

precision =
TP

TP + FP
, (1)

recall =
TP

TP + FN
, (2)

F1 =
2PR

P + R
, (3)

AP =
1

11 ∑
Rj

P
(

Rj
)
, j = 1, 2, 3 . . . , 11 (4)

IoU(E, F) =
∣∣∣∣E ∩ F
E ∪ F

∣∣∣∣, (5)

MIoU =
1

k + 1 ∑k
i=0

Pii

∑k
j=0 Pij + ∑k

j=0 Pji − Pii
, (6)

where TP corresponds to the number of true positives generated (i.e., the number of wheat
spikes correctly detected), FP represents the number of wheat spikes incorrectly identified,
FN is the number of wheat spikes undetected but should have been identified. E represents
the ground truth box labeled manually and F represents the bbox generated based on the
Mask R-CNN model. If the estimated IoU value is higher than the preset threshold (0.5),
the predicted result of this model is considered as a TP, otherwise as an FP. k + 1 is the total
number of output classes including an empty class (the background), and Pii represents TP,
while Pij and Pji indicate FP and FN, respectively.
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2.5. Equipment

The entire process for model training and validation was implemented by a personal
computer (processor: Intel(R) Xeon(R) CPU E3-1225 v3 @ 3.20GHz; operating system:
Ubuntu 18.04, 64 bits; memory: 20 Gb). The training speed was optimized in graphics
processing unit (GPU) mode (NVIDIA RTX 2070 8 Gb). Table 1 presents the relevant
modeling parameters (such as the base learning rate) adopted in this study. The time for
model training and validation is shown in Table 2. The code for image processing was
written in Python.

Table 1. Modeling parameter settings.

Modelling Parameters Values

Base learning rate 0.02
Image input batch size 2

Gamma 0.1
Number of classes 2

Maximum iterations 2,700,000

Table 2. The total time for model training and validation.

Application Training Time Validation Time

Wheat spike identification 45 h 23 min 26 s 16 min 30 s
FHB disease detection 23 h 46 min 58 s 1 min 28 s

3. Results
3.1. Model Training

Dual training Mask-RCNN models of deep neural networks were established based on
the annotated images of wheat spikes and FHB diseased areas. Figure 4a shows the trend of
accuracy and loss during first model training for wheat spike identification. It was observed
that the loss of the bbox and the mask dropped sharply from the initial iteration and tended
to stabilize after 25,000 iterations. Compared with the loss, the model accuracy increased
during this process. The function curves of the accuracy and the loss fluctuated during the
iterations and weakened after iterating 210,000 times. Both the accuracy function and the
loss functions reached convergence after 270,000 iterations. As can be seen, the loss value
of the mask was always greater than that of the bbox. When the model accuracy for wheat
spike increased to 1 (100%), the loss value of the bbox reached the lowest (0.001), and the
loss value of the mask reduced to 0.037. Similarly, Figure 4b describes the variation of the
accuracy and the loss in another model training for FHB disease assessment. Throughout
the iteration process, both the loss values of the bbox and the mask gradually decreased
and tended to converge, while the model accuracy maintained a trend of weak growth
until convergence. Eventually, the loss values of the mask and the bbox reduced to 0.063
and 0.002, respectively, while the model accuracy for diseased areas increased to over
99.80%. These results indicate that the trained classifiers effectively learned the features of
annotated wheat spikes and diseased areas.

3.2. Wheat Spike Identification

The trained Mask-RCNN model was then used to recognize wheat spikes in full-
size images in the validation set. Instance segmentation of individual wheat spikes was
conducted under complex conditions including occlusion and overlap. The category score
(bbox) and mask of each wheat spike was generated for the test images. The algorithm
successfully recognized the high-density wheat spikes in the field (Figure 5a). Due to the
camera shooting angle, wheat spikes in the images inevitably obstructed each other, but the
algorithm was able to segment two wheat spikes with overlapping boundaries (Figure 5b).
Most FHB phenotyping was only taken from plants in the center portion of a plot and
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the edge of plots were excluded due to possible edge effects, which meant wheat spikes
that were incompletely segmented were usually located at the borders of full-size images.
Figure 5c shows that the wheat spikes cut at the image borders are able to be successfully
recognized. It is important to identify the partial spikes because such spikes can be used
as a beneficial supplement to maximize the dataset and enhance the robustness of the
model. The segmentation results of 166 test images showed that the MIoU rate for wheat
spikes reached 52.49%. The algorithm presented an acceptable performance for wheat
spike prediction, with the AP of the mask and the bbox of 57.16% and 56.69%, respectively
(Table 3). Based on the results of 166 images, the overall rates of precision, recall, IoU and
F1-score were 81.52%, 71.00%, 46.41% and 74.78%, respectively. The total number of spikes
identified by the Mask-RCNN was compared with the actual number of spikes labeled
manually. Among 4749 wheat spikes, 3693 spikes were correctly identified, yielding the
recognition rate of 77.76%. This proves that the Mask-RCNN was effective for rapidly
identifying wheat spikes under field conditions.
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Table 3. Results of Mask-RCNN for wheat spike and Fusarium head blight (FHB) disease detection.

Type P (%) R (%) F1-Score
(%)

IoU
(%)

AP of
Bbox (%)

AP of
Mask (%)

MIoU
(%)

Wheat spike 81.52 71.00 74.78 46.41 56.69 57.16 52.49
FHB disease 72.10 76.16 74.04 51.24 63.38 65.14 51.18

The failures of the proposed methodology for wheat spike identification were also
evaluated. Figure 6 depicts the predictions of selected wheat spike images from the
validation dataset. As can be observed, most spikes were successfully detected. For spikes
not detected, the FN were detection failures calculated in the cases of wheat spikes (blue
rectangles) highly occluded (Figure 6a,c), cut at the image border (Figure 6b) or missing
annotation on slightly blurred spikes (Figure 6d) due to human error. The FP were detection
failures (red rectangles) caused by various factors, such as the presence of awns obscuring
background spikes (Figure 6a,b), overlapping spikes (Figure 6d), and out-of-focus spikes
(Figure 6c). These factors should not be considered by the model. Specifically, Figure 6a
shows the misdetection (a blue rectangle with a red rectangle inside) of a wheat spike (blue
rectangle) due to the occlusion of awns. In contrast, the detection (a red rectangle with
a blue rectangle inside) observed in Figure 6b is a true spike (blue rectangle) covered by
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a red mask (red rectangle) that also has been obscured by the awns (presenting a similar
pattern to spikes). This spike was undetectable due to the model error. Figure 7a,b show
that there was one wheat spike misclassified as two spikes. The multi-detections were FP.
As the number of long spikes in the dataset was not large, the specific features of these
spikes were not fully learned by the algorithm, generating the same result as in the case of
overlapped wheat spikes (Figure 7c,d).
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is missed), which is a false negative, while the spike with the red rectangle only has the prediction
result (a.k.a. is detected) with no ground truth (a.k.a. is not labeled), which is false positive.
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3.3. FHB Disease Evaluation

After segmenting the individual wheat spikes in full-size images, a second trained
Mask-RCNN model was employed to evaluate the diseased areas on these infected spikes.
A dataset of 922 sub-images of diseased wheat spikes was used as the validation set in
Mask-RCNN. As shown in Figure 8I, each sub-image contained one spike. The diseased
spikelets in each spike were successfully recognized and marked using the category scores,
bboxes, and masks (Figure 8II). The instance area of FHB disease can be segmented and
extracted. Figure 8III shows the segmentation images of infected spikelets from the spikes.
Results showed that the MIoU rate for disease area instance segmentation reached 51.18%.
The AP rates of the mask and the bbox for FHB disease detection were 65.14% and 63.38%,
respectively. The diseased areas with shadow, strong light, low light, or awn occlusion
were effectively recognized (Figure 8). Figure 9 shows the results for disease detection
when the entire wheat spike is occluded by a straw. Mask-RCNN achieved the accurate
identification of diseased areas. Eventually, a total of 911 diseased spikes were recognized
from 922 samples with the detection rate of 98.81%. Moreover, Mask-RCNN generated
acceptable results for detecting disease, yielding the overall rates of precision, recall, F1-
score, and IoU of 72.10%, 76.16%, 74.04% and 51.24%, respectively (Table 3).

Although the trained model showed excellent performance in disease area recognition,
there were difficulties in some cases. Figure 10 shows selected examples of incorrect
segmentation of FHB diseased areas. As can be seen, the diseased areas of two wheat spikes
were not successfully detected, including the one with the presence of multi-detections
(Figure 10a1–a4) and a highly occluded one (Figure 10b1–b4). Such errors were associated
with FP. As shown in Figure 11a, this detection failure (red rectangle) was reported as
FP caused by the occlusion of awns. Other FP detections included were spikelets that
were misannotated when labeled due to human error (red rectangles in Figure 11c,d).
The undetected wheat spikelets (blue rectangles) in Figure 11a,b,d were the FN due to the
model error. In addition, environment factors including sunlight reflection or appearance
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variations of the diseased areas in view angle, shape, or occlusion may result in the failure
identifications.
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Figure 9. The process of disease detection for an entire wheat spike partially occluded by the peduncle (neck) of another
plant; (a) a selected example of an original image with multiple wheat spikes; (b) a zoom-in view of a spike occluded by a
peduncle; (c) Mask-RCNN for wheat spike detection; (d) Mask-RCNN for disease area identification; (e) the segmentation
result of diseased spikelets.
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The FHB disease severity was evaluated according to the ratio of the disease area to 

the entire spike area. As shown in Figure 12, disease levels of each spike were calculated 
and divided into 14 FHB severity grades. Spikes with lower disease levels were separated 
into more numerous grades with narrower severity intervals, because selecting among 
lines with lower disease levels is more critical to the breeding process, as lines with high 
disease levels are undesirable. Figure 12a depicts the ground truth (ground truth is the 
visual rating of spikes by an expert from the acquired images) of wheat spikes at different 
disease grades in the training set. As seen in Figure 12a, 83.51% of samples in the training 
set were categorized with disease grades of 2–9, while 87.74% of the ground truth in the 
validation set was assigned to this group, which was a little bit lower than that (92.10%) 

Figure 10. Examples of misjudgment of the diseased areas on (a,b) two wheat spikes; (a1,b1) zoom-in views of the spike;
(a2,b2) Mask-RCNN for wheat spike detection; (a3,b3) Mask-RCNN for disease area identification; (a4,b4) the segmentation
result of diseased spikelets.
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Figure 11. The detection of diseased areas in selected wheat sub-images in the validation dataset; (a,b) examples of detection
failures caused by model errors; (c) an example of detection failures caused by human error due to mis-annotation; (d) an
example of detection failures caused by model error or human error (the spike with the blue box rectangle was only captured
in the ground truth set with no prediction results, while the spike with the red rectangle was only captured in the prediction
results not in the ground truth results).

3.4. Examination of Wheat FHB Severity

The FHB disease severity was evaluated according to the ratio of the disease area to
the entire spike area. As shown in Figure 12, disease levels of each spike were calculated
and divided into 14 FHB severity grades. Spikes with lower disease levels were separated
into more numerous grades with narrower severity intervals, because selecting among
lines with lower disease levels is more critical to the breeding process, as lines with high
disease levels are undesirable. Figure 12a depicts the ground truth (ground truth is the
visual rating of spikes by an expert from the acquired images) of wheat spikes at different
disease grades in the training set. As seen in Figure 12a, 83.51% of samples in the training
set were categorized with disease grades of 2–9, while 87.74% of the ground truth in the
validation set was assigned to this group, which was a little bit lower than that (92.10%)
in the prediction set as described in Figure 12b. The statistical results of the FHB severity
of wheat spikes in the training and validation sets are shown in Table 4. By inspecting
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the distribution of samples, it was observed that the ground truth of FHB severity in
the validation set was close to that of the training set. The overall predicted ratio of the
disease area over the entire spike area was 9.27% (grade 4) based on data in validation
set. For 92.10% of wheat spikes, the infected area of an individual spike ranged from 2.5%
to 25% (grades 2–9). Samples with infection areas of 2.5% to 10% (grades 2–4) accounted
for 60.59%, followed by the 27.55% samples with the infection area between 10% and 20%
(grades 5–9). When the disease level was over grade 4, it was observed that the predicted
number (e.g., 95 for grade 5) of the diseased wheat spikes in each grade was lower than
the ground truth (e.g., 105 for grade 5). In disease grades 5–12, the differences between
blue bars and orange bars are the false negatives. When the disease level was no more than
grade 4, the predicted number (e.g., 133 for grade 4) of spikes in each grade was higher
than its actual number (e.g., 124 for grade 4). These differences in categories (1–4) are
the false positives. Nevertheless, the average disease severity (9.27%) from the prediction
was comparable to that of the ground truth (12.01%). Eventually, the prediction accuracy
(77.19%) for diseased wheat spikes was calculated by the severity value of prediction
(9.27%) over ground truth (12.01%).
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Table 4. Statistical results of wheat spike FHB disease severity.

Dataset Type No. of Spikes
Severity (%)

Mean ± SD Max Min

Training Ground truth 2382 13.23 ± 10.44 85.51 0.50

Validation
Ground truth 922 12.01 ± 8.81 50.16 0.89

Prediction 911 9.27 ± 6.15 34.68 0.86

4. Discussion

This research proposed a new approach using two Mask-RCNN models in a row for
automatic determination of the symptom location and the disease severity of wheat spikes
in the field. The artificial inoculation adopted in this study is able to ensure sufficient
infection to decrease high environmental variations. Natural infections tend to be highly
dependent on weather conditions, but genotypes with high resistance cannot be reliably
identified from natural infections because of low infection pressure [67]. Nevertheless,
the symptoms based on the inoculation may be slightly different from a natural infection.
In future studies, images from naturally infected wheat samples will be used for modeling.
The extent and dynamics of FHB development under the same environmental conditions
depend on the resistance of host plants. This requires a lot exploration to find new sources
of resistance through wild and domesticated wheat germplasm diversity. In this study, the
images of wheat spikes from 55 genetic lines were acquired from the fields. Each genetic
line of wheat had specific resistance to FHB, which means that this sample complexity can
ensure the generalization of deep models. The results of field trials can provide a more
comprehensive estimate of FHB resistance than greenhouse screenings, which is of great
practical significance for breeders to identify resistant varieties.

Data annotation task is a very laborious and time consuming and very complex
progress. There is a need for more senior experts to annotate input images, as existing
experts may be susceptible to errors when facing a challenging task in disease annotation.
In the future, it should also be possible to make the annotation automatically by the more
advanced software. This kind of automation will be the process desired for the future ap-
plication of our algorithm. The differences between blue bars and orange bars in Figure 12
were due to false positives (disease grades 1–4) or false negatives (disease grades 5–12).
These false rates could affect the decision making when selecting resistant lines. This would
underestimate the disease grade of a wheat line, which means that the disease grade of
this wheat originally belongs to a high grade, but it may be classified into a lower disease
category by the model. Nevertheless, this methodology yielding an accuracy of 77.19% is
good for breeders as manually screening hundreds of wheat lines will also be inaccurate and
this process is very time-consuming and inefficient. Although it is very difficult to overcome
human errors, the annotation of all spikes for modeling can be achieved by carefully label-
ing. A big barrier in the use of Mask-RCNN is the need for more representative and larger
datasets including wheat spikes with awns and overlapping in model training. Samples
under different climatic conditions should be collected in the future. In addition, the number
of samples should be increased by data augmentation to establish a more robust model and
avoid the potential overfitting problem. A high-throughput method utilizing streamlined
image analysis for real-time FHB assessment in the field could be developed, thus helping
to reduce the amount of time, cost (labor), and subjectivity error from conventional manual
phenotyping methods. Recently, Zhang et al. [68] developed an FHB diagnostic system
for detection of individual wheat spikes with a black cloth background. Only 79 samples
were used for training and a very small dataset of 41 wheat spikes were tested in the study.
In contrast, the sample number was much larger in our study. In total, 524 images with
12,591 wheat spikes and 166 images with 4749 wheat spikes were utilized. These images
were taken under complex backgrounds (including blue sky, white clouds, and green wheat
plants) in the field.
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The Mask-RCNN used in our study performed very well yielding the detection rate
as high as 98.81% compared to the study of Williams et al. [69], in which they reported a
detection rate of 89.6% using CNN for kiwifruit. There are two main factors that led to
the success of the current study. The first reason is the superiority of Mask-RCNN over
CNN. Another main reason is probably because each wheat spike used to develop the
training model is labeled with high precision, so that the performance and robustness of the
trained Mask-RCNN model have been significantly improved. This algorithm for wheat
spike detection showed a similar performance to the PCNN in eliminating background
interference [46]. Mask-RCNN has the capability of providing segmentation masks for
rapid detection of multiple wheat spikes (7–124) in one image, which is more feasible for a
high-throughput and real-time assay in the field. Zhang et al. [46] reported a high accuracy
(0.981) for segmentation of individual wheat spikes in an image, but the metrics such as
precision, recall, F1-score, MIoU, and AP were not considered in their study. Although
Li et al. [70] reported an accuracy (F1-score = 71.8–76.4%) for recognition of rice sheath
blight disease that was similar to that found for FHB disease detection in our study (F1-
score = 74.04%), their IoU threshold (0.2) for detection was set very low. In this study,
only the network framework of ResNet-101 was considered for target detection because
residual networks including ResNet-44, 47, 50, 71 and 101 have been used, respectively, as a
backbone network of Mask R-CNN in a previous study for strawberry identification. It was
found that the ResNet-101 achieved the highest detection accuracy [71]. In the study of
Kiratiratanapruk et al. [72], Mask R-CNN provided higher performance than other models
including Faster R-CNN and RetinaNet in detection of rice leaf diseases, but YOLOv3
achieved the highest accuracy. Although the YOLOv3 detector had higher computation
efficiency, the Faster-RCNN outperformed YOLOv3 in apple detection [73]. This indicated
that the more advanced YOLO algorithms (such as YOLOv4 and YOLOv5) should be
utilized in future studies for assessing wheat resistance to FHB.

A ground-based motorized phenocart could be designed in the future to provide real-
time and accurate FHB assessment data to assist in disease phenotyping, which will hasten
the time required to develop new breeding lines with enhanced FHB resistance. The ideal
vehicle should be low-cost, lightweight, and easy to maneuver across variable field surfaces.
The image capture equipment should be designed to collect images under the variable
environmental conditions (e.g., wind and sunlight) that occur in the field. The human error
caused by manual labeling should be corrected, and more samples should be analyzed for
training a more reliable model to reduce the error. The severity of FHB on individual wheat
lines can increase over the course of the season. In practice, conventional assessments
of FHB severity are usually made just once when the disease has reached its maximum.
Given that different wheat lines mature at different times, conducting multiple disease
assessments of an entire breeding nursery would be prohibitive. The results from this study
demonstrate that the developed framework has great potential for real-time assessment of
FHB severity in wheat spikes in the field. This development that will greatly enhance the
efficiency of reliably selecting wheat lines with the desired level of FHB resistance. The use
of a uniform background panel fixed to a phenocart would produce a clearer and more
uniform background contrast for wheat spikes, allowing easier identification of the targets
and improving the detection accuracy of the algorithm. In addition, new classifiers are
expected to be developed to assist rapid labeling of training data in the future.

5. Conclusions

A high-throughput framework of deep-learning based disease detection algorithms
was established to automatically assess wheat resistance to FHB under field conditions. The
protocols involved image collection, processing and deep learning modeling. Dual Mask-
RCNN models were developed for rapid segmentations of wheat spikes and FHB diseased
areas. Based on the methodology, mask images of individual wheat spikes and diseased
areas were outputted, with detection rates of 77.76% and 98.81%, respectively. The Mask-
RCNN model demonstrated strong capacity for recognition of the targets occluded by
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wheat awns or cut at the image borders. By calculating the wheat FHB severity value of
prediction over ground truth, acceptable prediction accuracy was achieved. The knowledge
generated by this study will greatly aid in the efficient selection of FHB resistant wheat
lines in breeding nurseries. This, in turn, will contribute to the development of resistant
wheat cultivars that will ameliorate the losses due to FHB, thereby contributing to global
food security and sustainable agricultural development.
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