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Abstract: Remote sensing is an important tool to monitor forests to rapidly detect changes due
to global change and other threats. Here, we present a novel methodology to infer the tree size
distribution from light detection and ranging (lidar) measurements. Our approach is based on a
theoretical leaf–tree matrix derived from allometric relations of trees. Using the leaf–tree matrix,
we compute the tree size distribution that fit to the observed leaf area density profile via lidar.
To validate our approach, we analyzed the stem diameter distribution of a tropical forest in Panama
and compared lidar-derived data with data from forest inventories at different spatial scales (0.04 ha
to 50 ha). Our estimates had a high accuracy at scales above 1 ha (1 ha: root mean square error (RMSE)
67.6 trees ha−1/normalized RMSE 18.8%/R2 0.76; 50 ha: 22.8 trees ha−1/6.2%/0.89). Estimates for
smaller scales (1-ha to 0.04-ha) were reliably for forests with low height, dense canopy or low tree
height heterogeneity. Estimates for the basal area were accurate at the 1-ha scale (RMSE 4.7 tree ha−1,
bias 0.8 m2 ha−1) but less accurate at smaller scales. Our methodology, further tested at additional
sites, provides a useful approach to determine the tree size distribution of forests by integrating
information on tree allometries.

Keywords: lidar; remote sensing; lidar profile; stem diameter distribution; forest structure; tropical
forests; Barro Colorado Island; leaf area distribution

1. Introduction

Forests shape the Earth’s ecosystem, covering more than 30% of land area worldwide
and storing about 45% of the terrestrial carbon [1–3]. They represent an important habitat
for biodiversity and are relevant for economy and society [4,5]. At the same time, they are
increasingly affected by climate warming and weather extremes [6–8], logging and fire [5],
deforestation and fragmentation [5,9–12].

To conserve forests, their current status and future development must be monitored. In
the past, the state of a forest has been determined using field measurements of sample plots
(e.g., 1 ha). Recent studies, in turn, gathered large-scale plot data (e.g., 50 ha), regularly
collecting detailed information such as the stem diameter or the species and location of
each tree [13]. Over recent decades, remote sensing has become an increasingly used tool
to monitor the state of forests [14,15].

Remote sensing techniques like light detection and ranging (lidar) (terrestrial, airborne
or spaceborne, e.g., Ice, Cloud, and land Elevation Satellite (ICESat) [16], Global Ecosystem
Dynamics Investigation (GEDI) [17]), radar (e.g., TerraSAR-X-Add-on for Digital Elevation
Measurements (TanDEM-X) [18], Advanced Land Observing Satellite (ALOS), Phased
Array type L-band Synthetic Aperture Radar (PALSAR) [19]) and optical reflectance (Land-
sat [20], Sentinel [21] or Moderate-resolution Imaging Spectroradiometer (MODIS) [22])
provide information on forests at different spatial and temporal resolutions. Earth observa-
tions have been used to gain insight on (a) forest cover, (b) forest biomass, and (c) forest
structure. For example, global forest cover has been explored from Landsat data at the 30-m
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resolution [3] and has been used for the analysis of deforestation, forest fragmentation [9],
and their respective drivers [10].

Often, remote sensing observations have been analyzed by computing correlations
with forest attributes (e.g., lidar metrics correlated with biomass or basal area) [23–28].
Such approaches have a high predictive power, but typically focus on predicting single
forest attributes (like biomass) and require field-data-intensive calibration of site-specific
parameters in the statistical relationships. Studies also combined statistical methods with
information on tree geometry [29–31]. A good example for an approach that integrates
tree geometry is Spriggs et al. [30], who combined allometric relations with a Bayesian
optimization approach.

Recent studies have followed the approaches of tree segmentation [32–36] by detecting
single tree crowns from airborne lidar to estimate tree size attributes and frequencies. Those
techniques interpret lidar point clouds and allow the detection of tree geometry relations (in
particular for large trees). Similar approaches also use information from terrestrial lidar [37]
with its strength to detect detailed tree leaves and branches, particularly in the lower canopy
(often constrained to small forest plots). Both approaches require high-resolution lidar
point clouds to have sufficient information on the trees.

Here, we present a novel approach for inferring forest structure from lidar mea-
surements that is complementary to the recent approaches. Our approach integrates the
available information on tree geometry in a theoretical model. Through its combination
with the measured vertical lidar profile (e.g., derived from waveforms or lidar point clouds),
we calculated how many trees of a certain size could occur in a forest to match the mea-
sured profile (Figure 1). This allowed us to estimate the tree size distribution of a forest
(i.e., number of trees in different stem diameter classes) based on lidar measurements.
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lustrated by different shadings) can contribute tree crown leaves to the lidar -derived leaf area 
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tree matrix, we derived the stem diameter distribution from lidar by applying classical 
methods of mathematics (matrix inversion). We validated the estimated stem diameter 
distribution by using field inventory data and demonstrated the accuracy of our approach 
at different spatial scales (50, 25, 5, 1, 0.25, and 0.04 ha). We analyzed how reliably we can 
estimate tree numbers per stem diameter class. In addition, we derived estimates for the 
total stem number and basal area from the lidar measurements. 

Figure 1. Combination of light detection and ranging (lidar) measurements with the tree geometry model to estimate the
stem diameter distribution of a forest. The starting point is (a) the measured lidar point cloud (here shown for an exemplary
1 ha subplot of Barro Colorado Island (BCI)). Points are colored according to their height (with a gradient from the top with
blue colors to the bottom with green colors). (b) The vertical leaf area profile can be derived from the lidar point cloud by
accounting for decreasing lidar returns with decreasing height due to the tree leaf density (ground returns of height < 3 m
are not shown). The vertical leaf area profile is then combined with the tree geometry model illustrated in (c). By calculating
how many trees of specific size (illustrated by different shadings) can contribute tree crown leaves to the lidar -derived leaf
area profile, we can estimate (d) the number of trees (per ha) in specific stem diameter classes (here, logarithmic y-axis,
50 ha plot of BCI, 20 cm diameter class width). See methods for details.

We tested our approach on a 50-ha forest plot in Panama. After determining the
leaf–tree matrix, we derived the stem diameter distribution from lidar by applying classical
methods of mathematics (matrix inversion). We validated the estimated stem diameter
distribution by using field inventory data and demonstrated the accuracy of our approach
at different spatial scales (50, 25, 5, 1, 0.25, and 0.04 ha). We analyzed how reliably we can
estimate tree numbers per stem diameter class. In addition, we derived estimates for the
total stem number and basal area from the lidar measurements.
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2. Materials and Methods
2.1. Study Site

We applied our approach to a tropical forest located on Barro Colorado Island in
Panama (BCI, 9◦9′ N, 79◦51′ W) [38–41], where a 50-ha plot of old-growth tropical moist
forest has been monitored every five years since 1980. The study site is located in a natural
reserve area in the center of the island. In each census, each tree was tagged and mapped,
its species was identified and its stem diameter was measured at breast height. In our
study, we used the census of the year 2010, considering all trees of stem diameter ≥ 1 cm.
The analyzed forest census included 244,269 trees and 301 tree species (1.5% of the originally
recorded trees were disregarded because they were dead or lost, see Supplementary S1).
The forest inventory data can be requested from the ForestGeo Global Earth Observatory
Network [42] or downloaded for free from Dryad [43].

To relate the height and crown dimension of a tree to its stem diameter, we used three
allometric equations:

(a) tree height h (m) is related to the stem diameter d (m) by an asymptotic function [24,44]

h = (57.4 × d)/(0.43 + d), (1)

(b) tree crown radius cr (m) is related to the stem diameter d (m) by a power law [23,45]

cr = 9.08 × d0.68 (2)

and
(c) vertical tree crown length cl (m) is linearly related to the tree height by [23]

cl = 0.4 × h. (3)

The tree crown radius, length and the assumed shape were used to calculate the tree
crown volume, which is multiplied with a density factor of ρ = 0.44 m2/m3 to estimate the
tree leaf area [23]. The tree height and crown length were used to estimate the leaf area
of a tree at different heights within the forest canopy (we assumed that trees’ leaves are
homogenously distributed within their crown).

Tree allometries have been derived from independent field studies [23,24,44,45]. Here,
we averaged tree allometries across occurring tree species, which has been shown to be a
valid approach when studying the forest structure [46]. In the standard case, we assumed
that tree crowns have an ellipsoidal shape, but we tested different crown shapes (spheres
and cylinders) as well. We further tested the sensitivity of different allometries for tree
height (non-asymptotic power law of tree height [45])

h = 43.4 × d0.6 (4)

and of leaf density within crowns (factor of ρ = 1 m2/m3).
Airborne lidar data were available for the 50-ha forest plot for the year 2009 [47].

The point densities ranged from 0 to 103 m−2 (in flight swath overlaps) with a median of
19 m−2. The point cloud was terrain-normalized and thinned using random subsampling
to obtain a near homogeneous point density of four returns per m2. The latter was achieved
by iterative subsampling to different point densities and inspection of the resulting density
rasters until no further density differences from the flight pattern were visible. The thinned
point cloud contained 19% of the returns from the original point cloud. For details on the
instrumentation and processing of the lidar data, see Lobo and Dalling [47] (Materials and
Methods). The lidar dataset is publicly available and can be requested from J.W. Dalling
(see statement on data accessibility in [47]).
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2.2. Derivation of Leaf Area Profiles from lidar

The lidar data (i.e., lidar profile) includes information on the site-specific forest struc-
ture as lidar signals get reflected by the leaves and branches of trees. We assumed that the
point density PD (1/m2) of the lidar profile in a specific height layer (h(i−1),hi) of constant
width ∆h = 1 m is a result of (a) the tree crown density (LAD) at which lidar signals could
get reflected and (b) the probability (W) that the lidar signal could penetrate into the
respective height layer i (i.e., has not already been reflected in the layers above):

PDi = l × LADi ×Wi (5)

The parameter l represents a density factor (here, l = 1 m2/m3) that combines different
aspects: the density of lidar shots sent to the forest canopy, the fraction of tree leaves
(relative to tree branches) at which signals can be reflected and the density of successful
lidar signals returned at the top of the forest (due to gaps in the canopy).

The observed lidar point density PDi in (m-2) is then defined as

PDi = (1/A) ×
K

∑
k=1

δik (6)

with the plot area A (m2), the total number of lidar points K and

δik =

{
1 hi−1≤ zk< hi

0 else
(7)

The sum of the function δik yields the number of lidar points with the return height
zk (m) in the respective height layer i. To compute the probability W, we used the Beer–
Lambert law of light transmission and extinction [48].

Wi = exp
(
−k× ∆h×∑n

j=i+1 LADj

)
(8)

where ΣLADj is the cumulative leaf area density (m2/m3) from the top of the forest (j = n)
down to the height layer j = i+1. The parameter k in Equation (8) represents the average
light extinction coefficient (k = 0.2 for near-infrared or infrared signals with wavelengths of
600–1400 µm) [48].

Based on Equation (5), we can then recursively estimate the forest’s leaf area profile
(LADlidar) via

LADlidar
i =

PDi
l ×Wi

(9)

starting with a height layer above the forest canopy (i.e., LADn = 0 results in Wn = 1). We
did not include ground returns in our approach and considered only height layers ≥ 3 m.
The values of the parameters k and l are relevant for the derived leaf area profile, but had
only minor influence on the estimation of the stem diameter distribution in our study
(Figure A1).

2.3. ‘Leaf–Tree Matrix’ of the Tree Geometry Model

To estimate the number of trees for different stem diameter classes (here, assumed to
be unknown) from the lidar-derived leaf area profile, we developed a theoretical model
that integrates the available information on tree geometry and allometry.

For this, we introduced the ‘leaf–tree matrix’. The matrix summarizes the conse-
quences of the assumed tree allometries (see Section 2.1) in a virtual forest in which exactly
one tree is present for each stem diameter class. Figure 2 visualizes this matrix, which
contains for each stem diameter class (columns) and height layer (colored rows) the cor-
responding leaf area per tree. White cells indicate that trees in the corresponding stem
diameter class do not have leaves in the respective height layer. Height layers are defined
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in 1-m width, and stem diameter classes (of increasing width) correspond to the respective
height layers (based on the assumed stem diameter-height relation, Section 2.1). Each
tree has a maximum height (upper boundary of the height layer, based on the tree height
allometry and diagonal entries of the matrix). Crowns reach only into the lower height
layers (according to the tree crown allometry). Leaf area was assumed to be proportional
to the tree crown volume (based on the tree crown allometry) and distributed uniformly
among the crown-covered height layers (Section 2.1). See Figure A2 for the leaf–tree matrix
with different assumed crown shapes and model assumptions.
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Figure 2. Visualization of the leaf–tree matrix (left) and an enlarged cut-out (right). Each column in the matrix reflects the
leaf area contribution of one tree to different height layers. Columns represent different stem diameter classes. Colors in the
matrix show leaf area values with a gradient from light green (low values) to dark green (high values) (white indicating no
leaf area). On the right, an exemplary tree of 10 cm stem diameter is highlighted in the cut-out with its crown leaf area
distributed to four height layers. Note the logarithmic x-axis of the stem diameter (cm).

As a consequence, the vertical leaf area distribution for a forest with only one tree per
stem diameter class can be derived by summing up all column entries (i.e., stem diameter
classes) per row (i.e., height layers) in the leaf–tree matrix.

We denote the leaf–tree matrix by F = (fij) with i,j = 1, . . . , n and the number of trees
for each stem diameter class i by the vector N = (Ni)i=1,...,n (with n being the number of stem
diameter classes, here n = 55). Multiplying the leaf–tree matrix F with the vector N results
in the leaf area profile of a forest plot (LAD in m2/m3), in which we normalize by the plot
area A (m2) and height layer width ∆h (m)

LAD = (F × N)/(A× ∆h) (10)

We aim to develop an approach to infer the stem diameter distribution based on lidar
measurements. Therefore, we assumed that sufficient information about forest structure
was included in the lidar-derived leaf area profile (LADlidar of Equation (9)), which was
used for the LAD (of Equation (10)). Rearranging Equation (10) yields the stem diameter
distribution (unknown vector N).

2.4. Linear Equation Solving to Derive Forest Structure from lidar Profiles

Equation (10) represents a system of n linear equations with n unknowns. To rearrange
this equation for inferring the unknown stem diameter distribution (vector N), the inverse
of the leaf–tree matrix F is required. Since, by construction, the height of trees in the n-th
stem diameter class never exceeds the n-th height layer, all above-diagonal matrix entries
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are zero. This makes the leaf–tree matrix F a lower triangular matrix, which is invertible
(n × n matrix) [49]. Rearranging Equation (10) for the vector N then results in

Nlidar = F−1 ×
(

LADlidar × A× ∆h
)

(11)

Though Equation (11) yields the number of trees (N) for each stem diameter class, some of
the computed values can be negative. Therefore, we developed an iterative numerical back-
ward approach for solving the linear equation system of Equation (10) (using LADlidar to
represent LAD). See Appendix A Table A1 for a comparison of results between the direct and
numerical calculation and Appendix B for details on the algorithm of numerical calculation.

2.5. Analysis and Statistics of Results

We evaluated the accuracy of our approach by comparing the estimated stem diameter
distribution with forest inventory data (i.e., stem numbers per ha and stem diameter
class). To compare the stem diameter distribution observed in the field

(
N f ield

)
with

that estimated from lidar data and our tree geometry model
(

Nlidar
)

, we performed a

logarithmic regression analysis, setting ln
(

Nlidar
)
= I + s× ln

(
N f ield

)
with the intercept

I and the regression slope s. We analyzed the regression slope s and the coefficient of
determination R2 for stem diameter classes with stem numbers larger than zero only (in
both inventory and estimates). Optimal values of R2 = 1 and s = 1 would reflect the highest
achievable accuracy of the lidar -derived tree numbers.

We further calculated the root mean square error RMSE (in trees per ha)

RMSE =
1

Aha
×

√√√√∑n
j=1

(
Nlidar

j − N f ield
j

)2

n
(12)

and its normalized counterpart nRMSE (in %, using the range of censused stem numbers
across all stem diameter classes to normalize)

nRMSE = Aha ×
RMSE(

max
j

N f ield
j −min

j
N f ield

j

) (13)

with Aha being the plot area in ha. We calculated both RMSE and nRMSE for (non-
logarithmic) stem numbers aggregated to 10 cm stem diameter classes and for trees with
stem diameter d ≥ 10 cm.

We further estimated the total tree density (N) and basal area (BA) of the forest based
on the lidar-derived stem diameter distribution (using stem diameter classes of the leaf–tree
matrix and class mid values for basal area estimates) and compared them with the field
inventory. Again, we focused on classes with stem diameter above 10 cm. In addition, we
compared the tree density and basal area estimates also for each 10-cm aggregated stem
diameter class (j) with the inventory

∆N
j =

1
Aha
×
∣∣∣Nlidar

j − N f ield
j

∣∣∣ (14)

∆BA
j =

∣∣∣BAlidar
j − BA f ield

j

∣∣∣ (15)

To assess the accuracy of our approach on different spatial scales, we varied the size
of the analyzed plot. First, we applied our approach at the scale of 50 ha (entire forest plot).
In a second step, we divided the forest plot into subplots of equal sizes of, respectively, 25,
5, 1, 0.25, and 0.04 ha. Subplot sizes of 25 × 25 m or lower are especially interesting as they
correspond to the size of the footprint of satellite-based lidar observations (GEDI [17]). For
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a specific plot size, we calculated, for each subplot, the nine statistical measures (regression
slope, R2, RMSE, nRMSE, tree density, and basal area in total and absolute differences
per 10-cm stem diameter class). For each spatial scale, we calculated the arithmetic mean,
standard deviation, and range of the statistical measures across the respective subplots. For
the mean values of R2, regression slope, RMSE, and nRMSE, we used linear regression to
identify scaling relations expressing these statistical quantities as functions of the plot size.
To compare the estimated tree density and basal area with inventory data, we used linear
regression, computed the bias (average difference of field from lidar-derived attribute),
RMSE and nRMSE (normalized by the mean of the observed attribute).

We further correlated the R2 values we obtained for the estimated stem diameter
distribution (per subplot) (a) with the other obtained statistical measures (RMSE, nRMSE,
and regression slope for the stem diameter distribution), (b) with characteristics of the
lidar-derived leaf area profile (e.g., median profile height), and (c) forest attributes (e.g.,
tree density and basal area). For a full list of attributes used for the correlations, see Table 1.
We evaluated each correlation by calculating Spearman’s rank correlation coefficient r.

Table 1. List of attributes used for the correlations with R2 (from the comparison of the estimated
stem diameter distribution with field data). Columns denote the data used, a description of the
attribute, its unit and the different statistical calculations applied.

Data Source Attribute Unit Calculations

lidar data Profile height m
Maximum,

Median,
Variance

Leaf area density m2/m3
Maximum,

Median,
Variance

Number of lidar returns 1/m2 -
profile height weighted

by leaf area m Median (WMPH 1),
Variance (WVPH 2)

Forest inventory Basal area 3,4 m2/ha Sum
Tree density 3,4 1/m2 Sum

Tree height 3 m Median,
Standard deviation

1 Median height of the vertical leaf profile derived from lidar (weighted by the derived leaf area density LADlidar

per height layer). 2 Variance of height of the vertical leaf profile derived from lidar (weighted by the derived leaf
area density LADlidar per height layer). 3 Including trees of stem diameter d ≥ 1 cm. 4 Including trees of stem
diameter d ≥ 10 cm.

3. Results
3.1. Stem Diameter Distribution Derived at the 50-ha Scale

The stem diameter distribution of the 50-ha forest plot shows a typical heavy-tailed
pattern, as often observed in old-growth forests, with few large trees and numerous small
ones (Figure 3a, linear appearance on log–log axes). To test our approach at the 50-ha
scale, we derived the stem diameter distribution from lidar and compared the estimated
tree numbers per stem diameter class with the observed numbers from the inventory
(Figure 3). The stem diameter distribution was estimated from lidar with a high accuracy
(RMSE = 22.8 tree per ha, nRMSE = 6.2%, R2 = 0.89, Figure 3, Table A1).
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Figure 3. Comparison of the stem diameter distribution derived from lidar with field data at BCI (50 ha). (a) The tree
number per stem diameter class derived from lidar (green points) and field inventory (grey line) of BCI on log–log axes
(see methods for details). (b) 1:1 plot of the comparison on log–log axes including a linear regression line (blue line) for
evaluation. Grey dots represent the logarithmic tree numbers for each stem diameter class comparing those derived from
lidar (y-axis) and those censused in the inventory (x-axis). For the root mean square error (RMSE) (22.8 trees per ha) and
normalized RMSE (nRMSE) (6.2%) values, we refer to the methods and Table 3.

The number of mid-sized and large trees was estimated accurately (10 cm < stem
diameter ≤ 50 cm with RMSE = 39.4 trees per ha, stem diameter > 50 cm with RMSE
= 1.2 trees per ha) while trees smaller than 10 cm in stem diameter were overestimated
(RMSE = 590.5 trees per ha, Figure A3a). Based on the lidar-derived stem diameter distri-
bution, the estimated tree density of 516.7 trees per ha (stem diameter d ≥ 10 cm) slightly
overestimated the censused density of 447.3 trees per ha (bias of −69.4 trees per ha). The
basal area estimates showed in turn, a slight underestimation (inventory: 30.1 m2/ha,
lidar: 23.6 m2/ha, bias: 6.5 m2/ha, Figure A3a). A sensitivity analysis revealed only minor
influences of differently assumed crown shapes, tree height allometry or the leaf density
within crowns (Table 2, Figure A2).

Table 2. Sensitivity analysis of different model assumptions (see also Figure A2). The changed model
assumptions for each scenario are written in bold.

Sensitivity Scenario 1 2 3 4

Crown shape Sphere Cylinder Ellipsoid Ellipsoid
Height allometry Asymptotic Asymptotic Asymptotic Power law

Crown length Crown radius 0.4 × height 0.4 × height 0.4 × height
Crown leaf density 0.44 m2/m3 0.44 m2/m3 1 m2/m3 0.44 m2/m3

Regression slope 1.22 1.29 1.21 1.1
R2 0.89 0.98 0.92 0.89

RMSE (trees/ha) 32.0 4.5 15.0 15.3
nRMSE (%) 8.8 1.2 4.1 3.8

3.2. Small-Scale Derivations of Stem Diameter Distributions

We tested our approach also for smaller plot sizes (25, 5, 1, 0.25, and 0.04 ha, Table 3,
Table A2). For most plot sizes (e.g., at the 1-ha and 0.25-ha scale), the stem diameter
distributions were estimated well from the lidar data (Figure 4a–f, e.g., average R2 values
of 0.76 and 0.67, average RMSE values of 67.6 and 118.1 trees per ha, Figure A4). Few plots
at the 0.25-ha scale showed lower R2 (down to 0.13), higher RMSE values (up to 385.6 trees
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per ha) or higher nRMSE values (up to 105.7%) (Figure A4). At the 0.04-ha scale, more plots
with lower accuracy of the estimated stem diameter distribution occurred; nevertheless,
we obtained a mean R2 of 0.44 (mean RMSE of 219.2 trees per ha, mean nRMSE of 70.9%)
(Figure 4i, Table 3, Table A2). Similar results can also be observed for the regression slope
(Figure A4). Interestingly, the R2 values scaled with plot size (Figure 5, similarly also
RMSE, nRMSE, and regression slope) and correlated non-linearly with the other statistical
quantities (Table A3; however, the correlations of R2 with RMSE or nRMSE were less strong,
r = 0.09 and 0.05 at 1-ha scale).

Table 3. Comparison of forest attributes derived from lidar and from the forest inventory for different plot sizes. Results are
shown for the regression analysis (slope and R2), RMSE and nRMSE (overall and for three different categories of small,
mid-sized and large trees grouped according to stem diameter d) and aggregated forest attributes (tree density and basal
area, for stem diameter d ≥ 10 cm). For each plot size, the mean ± standard deviation (and in brackets, minimum and
maximum) of the respective attribute is given. The plot size is given in ha with the number of plots and plot dimension in
m ×m. Forest attributes are compared between lidar and inventory also in terms of the bias, RMSE, and nRMSE (%) (see
methods for details). See Table A2 for additionally analyzed plot sizes.

Plot Size (ha) 50 1 0.25 0.04

Side length (m) in x-direction 1000 100 50 20

Side length (m) in y-direction 500 100 50 20
Number of plots 1 50 200 1250

Overall quality Regression slope 1.24 0.9 ± 0.14
(0.66, 1.23)

0.76 ± 0.2
(0.11, 1.3)

0.55 ± 0.38
(−0.94, 2.17)

R2 0.89 0.76 ± 0.13
(0.38, 0.95)

0.67 ± 0.17
(0.13, 0.94)

0.44 ± 0.27
(0.00005, 1)

RMSE (trees/ha) 22.8 67.6 ± 45.1
(15.2, 187.4)

118.1 ± 77.6
(13.4, 385.6)

219.2 ± 160.4
(17.7, 1074.6)

nRMSE (%) 6.2 18.8 ± 13.2
(4.2, 55.0)

33.2 ± 21.7
(3.0, 105.7)

70.9 ± 62.0
(3.2, 590.1)

RMSE per size group
(trees/ha) Small trees 1 590.5 719.5 ± 379.6

(188.6, 1844.9)
796.8 ± 492.6
(153.6, 3028.1)

902.2 ± 751.6
(128.4, 5423.6)

Mid-sized trees 2 39.4 77.1 ± 30.5
(28.0, 175.3)

112.9 ± 43.1
(39.9, 267.6)

153.9 ± 73.9
(33.5, 606.7)

Large trees 3 1.2 5.1 ± 2.5
(2.2, 15.9)

9.1 ± 5.5
(2.4, 36.1)

26.2 ± 21.2
(0, 230.3)

Tree density 4 (trees/ha) Inventory-based 447.3 447.3 ± 46.1
(353, 597)

447.3 ± 60.4
(300, 648)

447.3 ± 115.7
(175, 1025)

lidar-derived 516.7 615.5 ± 159.3
(364, 1320)

758.9 ± 249.2
(316, 1864)

992.6 ± 402.5
(150, 3125)

bias −69.4 −168.2 −311.6 −545.3
RMSE 69.4 228.4 394.4 677.8

nRMSE (%) 15.5 51.1 88.2 151.5

Basal area 4 (m2/ha) Inventory-based 30.1 30.1 ± 5.1
(20.4, 45.8)

30.1 ± 8.3
(15.5, 67.9)

30.1 ± 20.9
(3.5, 206.1)

lidar-derived 23.6 29.3 ± 6.9
(18.8, 58.1)

38.1 ± 15.0
(9.5, 163.4)

59.0 ± 45.0
(4.7, 762.5)

bias 6.5 0.8 −8.0 −28.9
RMSE 6.5 4.7 14.3 49.8

nRMSE (%) 21.6 15.7 47.4 165.3
1 Stem diameter classes d ≤ 10 cm. 2 Stem diameter classes 10 cm < d ≤ 50 cm. 3 Stem diameter classes d > 50 cm. 4 Stem diameter classes
d ≥ 10 cm.
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Figure 4. Stem diameter distributions derived from lidar for scales of 1, 0.25, and 0.04 ha. (a) An exemplary 1-ha plot of the
BCI forest is illustrated by comparing the stem diameter distribution from inventory (grey line) with that derived from lidar
(green points). (b) Map of BCI divided in 1-ha subplots and colored according to R2 values. Values close to one (green)
show a good estimation. The exemplary plot shown in (a) is highlighted with a black border. (c) Histogram of R2 values for
all subplots of 1 ha (the vertical line shows the median). Similar analysis is shown in (d–f) for the 0.25-ha scale and in (g–i)
for the 0.04-ha scale. An analysis of the regression slope, RMSE and nRMSE values is shown in Table 3 and Figure A4.
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Figure 5. Scaling relations between plot size and goodness-of-fit measures. (a) The RMSE between lidar-derived and
inventory-based stem numbers of subplots is shown (mean: black dots, standard deviation: grey polygon) with increasing
plot size (ha). Please note the log–log axes. A linear regression (black line, based on black dots) provides a slope and R2

of the respective scaling relation. A similar analysis is given for (b) nRMSE (%), (c) the regression slope of lidar-derived
and inventory-based stem numbers, and (d) coefficient of determination R2. Please note the different sample sizes for the
different spatial scales (see also Tables 3 and A2 for details).
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Estimates on the tree density and basal area showed good results for the 1-ha scale
with nRMSEs of 51.1% and 15.7%, respectively (bias of −168.2 trees/ha and 0.8 m2/ha,
Figure 6, Table 3). The estimation capability for the tree density and basal area per stem
diameter class did not change with decreasing plot size (mostly for small-sized classes) but
showed larger variations for smaller plots (Figure A3c,d). Interestingly, the forest basal
area was best estimated at the 1-ha scale (Figure 6, Figure A5, Table 3, underestimated for
larger plot sizes, Table A2), while the tree density was best estimated at the 50-ha scale
(Figure 6, Table 3). Both attributes were overestimated by lidar at smaller spatial scales
(Table 3, Table A2).
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Figure 6. Comparison of lidar-derived and inventory-based (a–c) tree density (N) and (d–f) basal area (BA) for the (a,d)
1-ha scale, (b,e) 0.25-ha scale, and (c,f) 0.04-ha scale. Each black dot represents one subplot of the respective spatial scale.
Dotted lines denote the 1:1 line. Blue lines show the linear regression line (with its equation and R2 shown in each panel).
Values on the bias, RMSE, and nRMSE are provided in Table 3. Please note the different axis ranges and sample sizes for the
different spatial scales (see also Table 3).

To understand how well stem numbers can be derived from lidar using our approach
(e.g., in case no inventories are available), we correlated the R2 values of comparing
inventory- and lidar-derived stem diameter distributions with other measures characteriz-
ing each plot for the spatial scales of 1, 0.25, and 0.04 ha. Those measures describe either the
lidar profile or the forest structure (Table 1). We found correlations for the median height
of lidar returns WMPH (weighted median profile height, weighted by the derived leaf area
density LADlidar, r = −0.19 to −0.31, Table A3) and total tree density (stem diameter d ≥ 1
cm, r = 0.12 to 0.27, Table A3, Figure 7).

The WMPH became more important with increasing spatial scale (as well as variance
of leaf area density), while the total tree density showed less strong correlation at larger
scales. Interestingly, the tree density, only for stem diameter d ≥ 10 cm, revealed an
opposite trend with stronger correlation at the 1-ha scale than at smaller scales (Table A3).
This suggests that forest plots characterized by a low and dense canopy could enable a
more reliable estimation of the stem diameter distribution from lidar data. In addition, the
forest heterogeneity (standard deviation of tree height) also plays a relevant role (r = −0.16
to −0.28, Figure 7c, Table A3). Surprisingly, a reliable estimation of the stem diameter
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distributions (in terms of high R2 values) showed weak correlations with the number of
lidar returns, median tree height, and forest basal area (Table A3).

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 7. Correlations of R² with characteristics of the lidar profile, forest attributes, and profile 
differences. In (a) correlations of R² values and the mean profile height (WMPH) is shown at the 
0.04-ha (left), 0.25-ha (middle) and 1-ha scale (right). Each black dot represents a forest plot, and 
the blue dashed lines reflect the optimal values for R² (close to one). The correlation coefficients 
are displayed below (Spearman’s r). In (b–c) the correlation coefficients are shown for each plot 
size: in (b) lidar-derived attributes (black: profile height WMPH, green: variance of leaf density) 
and in (c) forest attributes (black: tree density for d ≥ 1 cm, green: standard deviation of tree 
height). Grey dashed vertical lines show no dependence (r = 0). 

4. Discussion 
We presented here a novel approach for estimating the tree size distributions from 

lidar measurements. Our approach is solely based on the vertical profile of lidar data and 
infers the number of trees per stem diameter class by integrating the available tree size 
allometries. On the example of a tropical forest in Panama, we demonstrated that the pre-
sented method was able to estimate the stem diameter distribution with high accuracy not 
only at the 50-ha scale (RMSE of 22.8 trees per ha, nRMSE of 6.2%, R² of 0.89), but also at 
the 1-ha scale (average RMSE of 67.6 trees per ha, mean R² of 0.76). The basal area was 
estimated well at the 1-ha scale (bias 0.8 m² ha−1), but the bias increased at smaller scales 
(−8.0 m² ha−1 at 0.25-ha scale). We identified the most decisive factors for a good estimation 
of stem diameter distributions at smaller spatial scales as (a) the mean profile height 
(WMPH), (b) tree density, and (c) forest heterogeneity (in terms of tree height). 

The change from a still good estimation of stem diameter distributions at larger spa-
tial scales (50 ha to 0.25 ha) toward slightly biased estimates at the 0.04-ha scale probably 
could be related to the crown overlapping of large trees and edge effects (crowns from 
trees of neighboring plots). This might also affect the identified correlations between the 
goodness of fit and forest attributes, which are not strong (maximum values of 0.3 or −0.3, 
respectively). Forest inventory data including explicit tree locations allowed us to calcu-
late the overlapping crown parts from neighboring plots and, thus, enabled us to quantify 
and to account for such effects. Furthermore, we demonstrated our approach on the ex-
ample of an old-growth tropical forest site (at BCI, Panama). The results of small-scale 
estimations and the identified correlations could differ for forests of other biomes (like 
temperate or boreal forests) or for disturbed or managed sites (e.g., logged forests or forest 
plantations). 

4.1. Strengths and Limitations of the Presented Approach 
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4. Discussion

We presented here a novel approach for estimating the tree size distributions from
lidar measurements. Our approach is solely based on the vertical profile of lidar data and
infers the number of trees per stem diameter class by integrating the available tree size
allometries. On the example of a tropical forest in Panama, we demonstrated that the
presented method was able to estimate the stem diameter distribution with high accuracy
not only at the 50-ha scale (RMSE of 22.8 trees per ha, nRMSE of 6.2%, R2 of 0.89), but
also at the 1-ha scale (average RMSE of 67.6 trees per ha, mean R2 of 0.76). The basal area
was estimated well at the 1-ha scale (bias 0.8 m2 ha−1), but the bias increased at smaller
scales (−8.0 m2 ha−1 at 0.25-ha scale). We identified the most decisive factors for a good
estimation of stem diameter distributions at smaller spatial scales as (a) the mean profile
height (WMPH), (b) tree density, and (c) forest heterogeneity (in terms of tree height).

The change from a still good estimation of stem diameter distributions at larger spatial
scales (50 ha to 0.25 ha) toward slightly biased estimates at the 0.04-ha scale probably
could be related to the crown overlapping of large trees and edge effects (crowns from
trees of neighboring plots). This might also affect the identified correlations between the
goodness of fit and forest attributes, which are not strong (maximum values of 0.3 or −0.3,
respectively). Forest inventory data including explicit tree locations allowed us to calculate
the overlapping crown parts from neighboring plots and, thus, enabled us to quantify and
to account for such effects. Furthermore, we demonstrated our approach on the example of
an old-growth tropical forest site (at BCI, Panama). The results of small-scale estimations
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and the identified correlations could differ for forests of other biomes (like temperate or
boreal forests) or for disturbed or managed sites (e.g., logged forests or forest plantations).

4.1. Strengths and Limitations of the Presented Approach

Our approach complements recent methods [23–36] as it (i) integrates already available
information on tree geometry (captured in the leaf–tree matrix) and (ii) estimates the full
range of size classes in tree size distributions. Tree size distributions can be used to derive
different forest attributes (e.g., tree density or forest basal area) and allow us to estimate
a forest’s successional state or disturbances [50]. By this, our approach extends statistical
methods that often focus on single forest attributes. In comparison to approaches that
also integrate tree geometry with statistics, our approach obtained, for almost 85% of the
analyzed plots at the 0.25-ha scale, an R2 > 0.5 (e.g., Spriggs et al. [30] reached 73% of
0.25-ha plots with an R2 > 0.5 in temperate forests). The presented approach complements
tree segmentation methods. Such methods show their strength in predicting the size and
geometry of large trees, while our approach effectively predicts small- and mid-sized trees
in the forest, also at larger spatial scales.

Our approach is based on information about tree allometries, which are available for a
wide range of different forest types and biomes (e.g., [44,51], information can also be found
in national forest inventories). Tree allometries are assumed a priori in our approach and
can differ across regions and forest types. This approach may not be suitable especially
for large trees, leaning trees or trees with a complex geometry. We identified only minor
influences of these model assumptions on the estimated stem diameter distribution for our
study site (Figure A2, Table 2). We demonstrated a good estimation of the forest basal area
and total tree density based on lidar-derived tree numbers for stem diameters larger than
10 cm.

To improve the allometries, crown size relations can also be derived by tree crown
detection algorithms based on lidar point clouds [32,33,52]. For example, Ferraz et al. [33]
reported tree and crown allometries based on detected single trees and their respective
uncertainties. This approach requires high-resolution lidar point clouds, particularly
for correctly detecting small- and mid-sized trees (with small crowns) in the understory
where the lidar point density is normally lower. While our approach shows its strength in
estimating tree numbers of small- and mid-sized trees (based on the vertical lidar profile),
tree crown detection approaches are especially interesting for applications at smaller
spatial scales. Methods based on crown delineation and classification approaches or using
terrestrial lidar measurements will, in the future, provide further knowledge on the crown
shape of single trees (e.g., National Ecological Observatory Network (NEON)) [53,54].

Our approach includes only average tree size allometries across occurring tree species.
We already demonstrated, in a previous study [46], that forest size structure can be ex-
plained by using average tree allometry. However, forest sites where crown shapes, in
particular, (and the amount of leaf area per crown volume) differ more between tree species
will be more difficult to analyze and will require a closer look. In this case, our method
could be extended toward a linear combination of multiple leaf–tree matrices (one for
each dominant tree species) if information on the species composition is available (e.g., by
optical sensors) [55,56]. A recent study [31] demonstrated how stem diameter distributions
of different plant functional types can be derived based on site-specific calibration.

Our method is based on vertical lidar profiles only (instead of the full lidar point
cloud) and, thus, appears promising for applications to other large footprint lidar data.
Previous studies demonstrated the comparability of profiles derived from lidar point clouds
and airborne large-footprint waveforms (Land, Vegetation, and Ice Sensor (LVIS)) [57,58].
Two parameters of our methodology (the extinction parameter k and density factor l) for
deriving the vertical leaf profile from lidar profiles, could depend on the used remote
sensing technique.

While the extinction coefficient k reflects the light extinction in the forest canopy,
which depends on the wavelength (e.g., optical vs. near infrared) [48], the density factor l
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is more phenomenological and might correlate with the used tree allometries. Terrestrial
lidar could contribute to the estimation of l for forest plots by reconstructing the detailed
tree crown architecture of branches and leaves. We identified only minor influences of
both parameters (k and l) on the estimated stem diameter distribution for our study site
(Figure A1).

Other methods to derive leaf density profiles from lidar data include similar param-
eters in their approaches [59–62]. For example, the method used by Stark et al. [60] and
Harding et al. [61] is based on the (logarithmic) ratio of point densities of two adjacent
height layers [63] and includes an extinction coefficient. Tang et al. [59] combined the
MacArthur–Horn-method with a gap probability approach [64]. The approach of Detto
et al. [62], in contrast, is based on a stochastic radiative transfer model and accounts for
multiple lidar returns. Methods, like small-footprint full-waveform lidar analyses, could
improve estimates on leaf density profiles in the future [65].

4.2. Future Applications and Challenges

Airborne campaigns of lidar measurements have the advantage of providing forest
measurements for hundreds of hectares, but are limited to the regional scale and are not
able to cover continents. Satellite missions can provide full-waveform lidar data but only
provide samples of space (e.g., GEDI has a footprint of 25 m diameter and spacings of 60
m along track and 600 m across track) [17]. Assuming that such spaceborne-generated
profiles are comparable with profiles derived from point clouds or airborne-generated
waveforms [57], the presented approach could be tested for different remote sensing data
and for forest sites at which inventory and spaceborne lidar data is available.

This could be particularly interesting for exploring the site-dependency of tree allome-
tries (and the parameters k and l) in our approach and testing its applicability for a wide
range of forest types (especially regions characterized by a heterogeneous forest structure).
As our results showed lower quality at smaller spatial scales (of e.g., 0.04 ha), questions on
sampling efforts also arise. Do the results improve if we use several plots distant to each
other (equivalent to spaceborne lidar footprints)? More specifically, it would be interesting
to explore if we can aggregate discontinuously sampled lidar shots over an area to estimate
the stem diameter distribution. How many lidar shots are required to be sampled to obtain
good estimates of a specific forest site?

Recent studies (based on individual-based forest growth models) [31,66,67] demon-
strated how remote sensing information can be combined with forest models to provide
additional information about forests. Forest models simulate the long-term dynamics of
forests (based on single trees) and can estimate forest successional states by matching
simulated and remotely sensed vertical leaf profiles [66]. Our approach—which is based
on related methodological assumptions—thus, also appears promising for estimating the
successional state (caused, e.g., by disturbances).

As we demonstrated that stem diameter distributions in forest plots with a low
dense canopy and low tree height differences can be estimated reliably, we expect that
disturbances that occurred previously could be well identified. Challenges for spaceborne
lidar could make such an analysis difficult as cloud cover can limit observations and
repeated shots will not be located at the same position as before. The latter, however, would
be interesting for the tracking of previously logged or disturbed forests. The combination
of lidar measurements with other remote sensing techniques (e.g., radar data from the
TanDEM-X satellite), thereby, seems promising to allow for an interpolation between lidar
shots for large-scale analyses [68].

lidar measurements covering continents and combined with maps of forest cover
(e.g., [3]) could enable the calculation of the forest structure and stem diameter distributions
at large scale by using the suggested approach if the tree crown allometry is known.
Various forest attributes can then also be derived from the estimated lidar-based stem
diameter distributions (e.g., forest height, biomass, or basal area) and compared not only
with local inventories but also with already existing information, for example, for the
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Amazon in terms of the basal area or forest biomass [69]. The approach proposed here can,
thereby, contribute to the in-depth mapping and monitoring of forests and for supporting
sustainable management, conservation, and the protection of forests.

5. Conclusions

We presented a novel approach for predicting the stem diameter distribution of forests
based on lidar measurements. Our approach is profile-based and structure-based. This
method requires only a vertical lidar profile (instead of point clouds) and integrates the
available tree size allometries to infer the number of trees from the profile. By this, our
approach complements previous methods based on statistical correlations between lidar
and forest attributes or individual tree crown detection methods based on high-resolution
lidar point clouds.

We demonstrated, in this study, a test of our approach with good accuracy for an
old-growth tropical forest. Further tests of our method for other forest sites (at which
tree allometries, lidar data and, for comparison, inventories are available) could help to
comprehensively understand the impact of forest stand characteristics and plot size on the
accuracy of the estimated stem diameter distributions from lidar.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/1/131/s1, Supplementary S1: R-code to calculate the stem diameter distribution of a forest
from lidar data.
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Figure A1. Sensitivity of the parameters k and l on the accuracy of estimating the stem diameter distribution (50-ha scale).
(a) The R2 values, (b) the nRMSE (%) values, (c) the difference of the field-derived basal area (30.1 m2/ha) to lidar-derived
estimates, and (d) the difference of field-observed tree density (447.3 trees per ha) to lidar-derived estimates are shown for
different combinations of parameter values (default values are k = 0.2 and l = 1). The quality of the values is indicated by
gradients from green (good quality) to blue and red (lower quality). White cells demonstrate that no solution was possible
due to infinite values in the leaf area profile derived from lidar (using the respective parameter combination). (e) The
estimated and observed stem diameter distributions compared for selected parameter combinations of k and l.
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Figure A2. Visualization of the leaf–tree matrix and the resulting comparison of the measured tree numbers per stem
diameter class (from inventory) with the estimated tree numbers (from lidar) for different sensitivity analysis. Upper
graphics: each column in the matrix reflects the leaf area contribution of one tree to different height layers. Different columns
represent different stem diameter classes. The leaf area values are shown using a color gradient from light green (low leaf
area) to dark green (high leaf area) (white represents no leaf area). Lower graphics: green points show the estimated tree
numbers from lidar for each stem diameter class and the grey line shows the observed stem numbers in the inventory.
Values of R2 and RMSE are given (see Table 3 for further results and a description of changed model assumptions in
each scenario).
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Table A1. Results of different calculations (direct: calculation of stem numbers N from Equation 11,
numerical backward: numerical solving of Equation 10 for stem numbers N, see methods and
Appendix B) to estimate the stem diameter distribution from lidar measurements (50-ha scale)

Method Direct Calculation Numerical Backward
Solving

Regression slope 1.22 1.24
Coefficient of determination R2 0.88 0.89

Number of stem classes with negative
predictions (%) 26.9 0

RMSE (trees/ha) 29.6 22.8
nRMSE (%) 8.1 6.2
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Figure A3. Evaluation of uncertainties in the lidar-derived tree density (in trees per ha) and lidar-
derived basal area (in m2/ha) for three spatial scales: (a) 50 ha, (b) 1 ha, and (c) 0.04 ha. Uncertainties
are calculated as the absolute difference of stem numbers or basal area (logarithmic y-axes) per stem
diameter class (x-axes) between the results from lidar and field data (points show the mean and the
solid line shows the range from minimum to maximum). Note that zero differences are not displayed.
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Figure A4. Spatial maps and histograms of the statistics on RMSE (trees/ha), nRMSE (%), and regression slope for the
estimation of stem diameter distributions from lidar, (a–c) at the 1-ha scale, (d–f) at the 0.25-ha scale, and (g–i) at the 0.04-ha
scale at BCI. Green colors denote the optimal values (note different value ranges for the different spatial scales and statistics).
Black vertical lines in the histograms show the median.

Table A2. Comparison of the forest attributes derived from lidar and from the forest inventory for
different plot sizes. Results are shown for the regression analysis (slope and R2), RMSE and nRMSE
(overall and for three different categories of small, mid-sized and large trees grouped according to
the stem diameter d) and aggregated forest attributes (tree density and basal area, for stem diameter
d ≥ 10 cm). For each plot size, the mean ± standard deviation (and in brackets, the minimum and
maximum) of the respective attribute is given. The plot size is given in ha with the number of plots
and plot dimension in m ×m. Forest attributes are compared between lidar and inventory also in
terms of the bias, RMSE, and nRMSE (%) (see methods for details).

Plot Size (ha) 25 5

Side length (m) in x-direction 500 200

Side length (m) in y-direction 500 250
Number of plots 2 10

Overall quality Regression slope 1.17 ± 0.05 (1.14, 1.21) 1.0 ± 0.1 (0.8, 1.1)
R2 0.92 ± 0.005 (0.91, 0.92) 0.84 ± 0.09 (0.65, 0.94)

RMSE (trees/ha) 25.4 ± 2.3 (23.8, 27.0) 34.1 ± 11.5 (17.1, 50.8)
nRMSE (%) 7.0 ± 1.1 (6.2, 7.7) 9.4 ± 3.3 (4.9, 14.1)
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Table A2. Cont.

Plot Size (ha) 25 5

RMSE per size
group Small trees 1 596.2 ± 192.2 (460.3,

732.1)
622.6 ± 240.2
(402.2, 1191.5)

Mid-sized trees 2 36.0 ± 1.4 (35.0, 37.0) 45.9 ± 7.3 (36.8, 55.0)
Large trees 3 2.1 ± 0.6 (1.6, 2.5) 3.3 ± 1.4 (1.5, 5.1)

Tree density 4

(trees/ha)
Inventory-based 447.3 ± 3.0 (445.2, 449.4) 447.3 ± 25.1 (420.0, 489.4)

lidar-derived 562.3 ± 29.4 (541.5, 583.1) 561.4 ± 65.4 (476.2, 715.4)
bias −115.0 −114.1

RMSE 116.5 128.3
nRMSE (%) 26.1 28.7

Basal area 4

(m2/ha)
Inventory-based 30.1 ± 2.4 (28.4, 31.8) 30.1 ± 2.8 (25.5, 34.7)

lidar-derived 24.3 ± 1.3 (23.4, 25.2) 25.3 ± 3.4 (19.6, 31.8)
bias 5.8 4.7

RMSE 5.8 4.9
nRMSE (%) 19.4 16.4

1 Stem diameter classes d ≤ 10 cm. 2 Stem diameter classes 10 cm < d ≤ 50 cm. 3 Stem diameter classes d > 50 cm.
4 Stem diameter classes d ≥ 10 cm.
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Table A3. Correlation coefficients (Spearman’s r) of R2 values (of the compared lidar-derived
and inventoried stem diameter distribution) correlated with other statistical measures, lidar data
measures, and forest structure attributes for different plot sizes (1, 0.25, and 0.04 ha). See methods
and Table 1 for details.

Category Measure
Spatial Scale

1 ha 0.25 ha 0.04 ha

Statistical measures Regression slope 0.63 0.54 0.73
RMSE 0.09 −0.15 −0.20

nRMSE (%) 0.05 −0.19 −0.18

lidar data Profile height—median −0.06 −0.09 −0.06
Profile height—maximum −0.03 −0.10 −0.05
Profile height—variance −0.05 −0.09 −0.05

Leaf area density—median −0.13 −0.03 −0.01
Leaf area density—maximum 0.17 −0.03 −0.03
Leaf area density—variance 0.21 0 −0.04

WMPH −0.31 −0.25 −0.19
WVPH −0.11 0.03 0.08

Number of lidar returns −0.12 0.09 −0.04

Forest inventory Basal area (m2/ha) −0.15 −0.14 −0.09
(for stem diameter d ≥ 10 cm) −0.15 −0.16 −0.10

Tree density (ha−1) 0.12 0.27 0.21
(for stem diameter d ≥ 10 cm) 0.17 −0.02 −0.06

Standard deviation of tree height
(m) −0.16 −0.28 −0.19

Median tree height (m) 0.09 −0.10 −0.09

Appendix B

Numerical Backward Calculation to Solve the Linear Equation System (Equation (10))

We start from the leaf area density profile LADlidar derived from the lidar observations
(see methods). We then define L = A × LADlidar as the leaf area across all height layers,
with A as the plot area in m2.

Starting from the forest top, down to the forest floor, we calculate, for each height
layer i, in the leaf profile L:

1. If the leaf area Li in height layer i is larger than the corresponding entry fii in the
leaf–tree matrix, we calculate the number of stems in the corresponding stem diameter
class by Ni = bLi/(fii)c.
1a. If tolerance is not yet reached, i.e., (Li – N × fii) > ε × Li then Ni = Ni + 1.
1b. The leaf area corresponding to the calculated number of trees Ni in the respec-

tive stem diameter class i is then subtracted from all height layers j (below
layer i) in which those trees also reach in with their crown: Lj = Lj − Ni × fij.

2. If the leaf area Li in height layer i is lower than the corresponding entry fii in the leaf–
tree matrix F, we set the number of stems in stem diameter class i to zero (i.e., Ni = 0).

Step 1 and 2 are repeated iteratively for the lower height layers. See also Supplemen-
tary S1 for the R-code.
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