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Abstract: Although the deep semantic segmentation network (DSSN) has been widely used in remote
sensing (RS) image semantic segmentation, it still does not fully mind the spatial relationship cues
between objects when extracting deep visual features through convolutional filters and pooling
layers. In fact, the spatial distribution between objects from different classes has a strong correlation
characteristic. For example, buildings tend to be close to roads. In view of the strong appearance
extraction ability of DSSN and the powerful topological relationship modeling capability of the graph
convolutional neural network (GCN), a DSSN-GCN framework, which combines the advantages of
DSSN and GCN, is proposed in this paper for RS image semantic segmentation. To lift the appearance
extraction ability, this paper proposes a new DSSN called the attention residual U-shaped network
(AttResUNet), which leverages residual blocks to encode feature maps and the attention module
to refine the features. As far as GCN, the graph is built, where graph nodes are denoted by the
superpixels and the graph weight is calculated by considering the spectral information and spatial
information of the nodes. The AttResUNet is trained to extract the high-level features to initialize
the graph nodes. Then the GCN combines features and spatial relationships between nodes to
conduct classification. It is worth noting that the usage of spatial relationship knowledge boosts
the performance and robustness of the classification module. In addition, benefiting from modeling
GCN on the superpixel level, the boundaries of objects are restored to a certain extent and there are
less pixel-level noises in the final classification result. Extensive experiments on two publicly open
datasets show that DSSN-GCN model outperforms the competitive baseline (i.e., the DSSN model)
and the DSSN-GCN when adopting AttResUNet achieves the best performance, which demonstrates
the advance of our method.

Keywords: deep semantic segmentation network (DSSN); graph convolutional neural network
(GCN); remote sensing (RS); semantic segmentation; spatial relationship

1. Introduction

As the fundamental task of geographic information interpretation, remote sensing
(RS) image semantic segmentation is the basis for other RS research and applications, such
as natural resource protection, land cover mapping and land use change detection [1,2].
Although it has received considerable attention in the past decade, semantic segmentation
of high-resolution RS image is still full of challenges [3–6], because of the complexity of
structure in RS images, which leads to interclass similarity and intraclass variability [7–9].

With recent developments in deep learning [10–14], deep semantic segmentation net-
work (DSSN) has made remarkable improvements for RS image semantic segmentation [15]
compared to traditional methods, such as random forest (RF), decision trees (DT) and sup-
port vector machines (SVMs) [16]. For the first time in end-to-end semantic segmentation,
Long et al. [17] proposed the fully convolutional network (FCN) for by adding the decon-
volution layers [18] to the convolutional neural network (CNN). As the representative of
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the encoder–decoder architecture, U-Net [19] used skip connections to take advantage of
multiscale information. The reason why U-Net achieved promising performance was that
it strengthened the feature maps by combining low-level detail information and high-level
semantic information through the skip connections. Moreover, SegNet [20] recorded the
index of max pooling in the encoder to perform nonlinear upsampling in the decoder.
After that, many other DSSNs [21–25] had been proposed, including the DeepLab V3+
network, which adopted the atrous separable convolution for image semantic segmentation
and achieved the state of art result. In DSSN, the extracted deep features are applied to
specify the category of each pixel, which proves the importance of the features for semantic
segmentation. To obtain powerful features needs to further improve the expressive abil-
ity of the network. Like human visual system, the attention mechanism helps to boost
meaningful features while suppressing weak ones [26]. In the channel domain, features
are selected in channel dimension according to the importance. Hu et al. [27] proposed
the squeeze-and-excitation block (SE), which adaptively recalibrates channel-wise feature
responses by explicitly modeling interdependencies between channels. The spatial domain
attention introduces spatial context by assigning different weights to pixels with different
positions. Attention U-net [28] used attention gates module to control the importance of
features at different spatial locations. The semantic segmentation network with spatial
and channel attention (SCAttNet) [29] was proposed for RS image semantic segmentation,
which adopted the convolutional block attention module (CBAM) [30] consisting of spa-
tial attention followed by channel attention. However, this cascading mechanism could
cause aliasing of spatial information and channel information. Therefore, the concurrent
spatial and channel ‘squeeze & excitation’ attention module (scSE) [26] was proposed for
medical image segmentation to have concurrent spatial and channel SE blocks [27] that
recalibrate the feature maps separately along channel and space, which sped up the transfer
of information.

In the field of RS, a lot of works on DSSN-based RS image semantic segmentation
emerged in recent years. Many researchers applied FCN to the semantic segmentation of
RS images [31–34]. Kampffmeyer et al. [35] proposed a novel DSSN, which was used for
urban land cover mapping. Wang et al. [36] used an ensemble multiscale residual deep
learning method based on U-Net architecture to extract buildings. Audebert et al. [37]
trained a variants network of SegNet and used multicore convolutional layers to quickly
aggregate predictions on multiple scales. Zhang et al. [38] proposed the dual multiscale
manifold ranking (DMSMR) network to further improve the performance of segmenta-
tion. Pan et al. [39] performed semantic labeling of high-resolution aerial imagery with
the fine segmentation network. In order to use multisensor data, such as DSM, both
the RGB image and the multimodal data are combined to provide more information for
DSSN [40]. Marmanis et al. [33] proposed a Siamese network to handle the images and the
DSM data, and combined edge detection and semantic segmentation in the improved ver-
sion [41]. He et al. [42] introduces edge information into DSSN to revise the segmentation
results. Moreover, prior knowledge is used for RS image semantic segmentation. Alirezaie
et al. [43] applied U-Net to achieve fast and accurate pixel-level classification followed with
a knowledge-based post-processing. However, when extracting the deep features through
convolutional and pooling layers, DSSN ignores the spatial relationship between objects,
which plays a key role in the classification from the biological vision perspective [44].
This problem will be more serious in processing high-resolution RS images, which contain
rich objects and spatial relationships.

Due to the irregular distribution of ground objects and connections between objects
only in mutual relations, the objects and their relationships form a graph, where graph
nodes represent objects and the connecting edges between the graph nodes denote the
spatial relationship between the objects [45], such as neighboring, intersecting, separating,
etc. Although DSSNs have achieved great success in processing Euclidean data, the perfor-
mance of these methods is still unsatisfactory as to graph data, which is in non-Euclidean
space. As an application of deep learning to graph data, graph convolutional neural
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network (GCN) has obvious advantages in extracting features from irregular graph data
by graph convolution. The core idea of graph convolution is to use edge connections to
aggregate node information for generating new representations of nodes, so GCN has a
strong ability to model the dependency relationship between graph nodes. These advan-
tages have promoted the breakthrough of researches related to graph analysis [46]. Kipf
et al. [47] proposed an effective layered propagation graph model, which directly operated
on graph data by convolution in spectral space. NN4G [48] realized graph convolution
based on spatial domain by directly accumulating the information of neighbor nodes.
Regarding that GCN was limited to shallow layers, Li et al. [49] successfully constructed
Deep-GCN by borrowing tricks from CNN, including residual connection and dilated
convolution, and adapted them to the architecture of GCN to alleviate gradient vanishing.
Graph attention network (GAT) [50] used the attention mechanism to determine the weight
of each neighbor node to the central node when aggregating the neighbor information.
Compared to GAT, GCN pays more attention to spatial relations, rather than similarity
represented by weights. To make full use of local position of each pixel, Yi et al. [51]
proposed a pixel-based GCN model initialized by a fully convolutional network (FCN) for
semantic segmentation of natural image. Although every pixel possesses the local position,
it cannot really represent the ground objects and the strength of the spatial relationship is
ignored. In order to mine both the object information and topological relationships among
multiple objects, Li et al. [52] presented a CNN-GCN framework to address multilabel
aerial image scene classification. The abstract features from CNN are conducive to scene
classification [2], while the pixel-level semantic segmentation requires details to specify the
category of each pixel.

In order to address these problems, we propose a DSSN-GCN framework focusing on
spatial relationship modeling, which is a generic way for RS image semantic segmentation
by combining DSSN and GCN. The DSSN is trained to extract high-level features to seman-
tically initialize the graph nodes. As the deep features extracted by DSSN are not sufficient
for semantic segmentation, we adopt GCN to make full use of detailed information such as
the spatial relationship modeled by a region adjacency graph, where regions obtained by
the unsupervised superpixel segmentation algorithm implemented on images denote the
graph nodes and the spatial relationships between nodes represent graph edges. Consider-
ing that the contributions of different nodes in the neighborhood to the central node are
different, the strength of spatial relationship is determined by the spectral similarity and
the spatial location. Then the GCN uses the features and the spatial relationships to classify
the graph nodes. Moreover, in order to extract better features and improve the accuracy
of semantic segmentation, the attention residual U-Net (AttResUNet) is proposed in this
paper, which integrates residual blocks and attention module in the U-shaped architecture
with skip connections [19]. In AttResUNet, the residual blocks [53] help to extract features
effectively from deep networks, and the attention mechanism [26] with spatial attention
and channel attention is adopted to refines the feature maps automatically. Extensive
experiments on the UC Merced Land-Use Dataset (the UCM dataset) [54] and the land
cover classification dataset on DeepGlobe Challenge (the DeepGlobe dataset) [55] show
that our proposed approach outperforms the competitive baseline (i.e., the DSSN model),
which demonstrates that the spatial relationship knowledge can boost the performance and
robustness of the classifier. In addition, the results of segmentation show the object-level
modeling helps to reduce pixel-level noises and restore the boundaries of objects [56,57].
The main contributions of this paper are twofold:

(1) A DSSN-GCN framework is proposed to combine DSSN and GCN for RS image se-
mantic segmentation, where the strength of spatial relationship is quantified by considering
spectral and spatial information of ground objects. The spatial relationship introduced by
GCN boosts the performance and robustness of the classification module. In addition, we
convert the pixel-level semantic segmentation into the superpixel-level node classification
by graph modeling, which helps to reduce pixel-level noises and restore the boundaries of
ground objects.
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(2) We propose a new DSSN (AttResUNet), which has U-shaped architecture using
residual blocks to encode feature maps and attention module to refine the features. Experi-
ments on two publicly open datasets show that the DSSN-GCN when adopting AttResUNet
achieves the best performance, which demonstrates the advance of our method.

The remainder of this paper is organized as follows. The proposed method is described
in Section 2, including introduction of the proposed AttResUNet, feature extraction based
on DSSN, graph construction and node classification via GCN. Section 3 presents the
experiments and results. Finally, Sections 4 and 5 provide the discussion and the conclusion
respectively.

2. Materials and Methods

In this section, the workflow of the DSSN-GCN framework is described at first. Then,
the proposed AttResUNet will be introduced in detail and it is shown how to extract
features based on DSSN. The construction of graph model will be presented in the next.
Finally, node classification via GCN is presented.
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Figure 1. The workflow of the proposed deep semantic segmentation network (DSSN)-graph convolutional neural network
(GCN) framework, including the DSSN module, the graph module and the GCN module. The whole process goes from top
to bottom. First, the DSSN module extracts the deep features for the semantic initialization of the graph nodes. Then the
graph module constructs the graph with ground objects and their spatial relationships. Finally, the GCN module combines
the features and the spatial relationships in the graph to perform classification.
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The workflow of the proposed DSSN-GCN framework is visually shown in Figure 1.
In the graph module, in order to make full use of the object-level spatial relationship
and reduce the impact of pixel-level random noise, objects (or superpixels) segmented
by the superpixel segmentation algorithm represent graph nodes. Topological spatial
relationships between the objects denote the connecting edges of the graph. In DSSN
module, considering the powerful ability of feature extraction of DSSN, the DSSN is
trained to extract the deep features to semantically initialize the intrinsic content of the
graph nodes. In the GCN module, the GCN, which is good at modeling the irregular
dependency relationship, converts the semantic segmentation task into the graph node
classification task. With the help of the topological spatial relationships between objects and
the deep features with strong generalization, the GCN models the relationships between
graph nodes and classifies all nodes.

2.1. The Proposed DSSN: AttResUNet

The proposed DSSN is shown in Figure 2. It consists of three parts: the U-shaped
architecture with skip connections, the encoder based on residual blocks and the attention
module, which is composed of spatial attention and channel attention in parallel. The at-
tention module is placed after each block of AttResUNet to refine the extracted features.
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In order to get a good result of semantic segmentation, it is very important to take low-
level details into consideration, while retaining high-level semantic information. Especially
for RS image, it contains richer detail information than natural images. The U-shaped
architecture with skip connections strengthens the feature maps by combining low-level
detail information from the encoder and high-level semantic information from the decoder,
which allows DSSN to use these two kinds of information in segmentation. In general,
the deeper network would get the better features. However, it could hamper the training
because of gradient vanishing. He et al. [53] solved this problem by residual neural network
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(ResNet) that consists of a series of stacked residual blocks, as shown in Figure 2b, which
allowed high-level gradients to be directly backpropagated through short connections to
facilitate training to learn better features. The following formulas describe the residual
block in detail.

yl = h(xl) +F (xl , Wl) (1)

xl+1 = f (yl) (2)

where xl and xl+1 respectively represent the input and output of the l-th residual block.
Each residual block generally contains a multilayer structure. F (·) is the residual function,
which generates the residual by using layer weights Wl , the identity mapping function h(·)
is usually used as x = h(x) and f (·) is the rectified linear unit (ReLU) activation function.

In RS images, there are abundant ground objects and the extremely complex spatial
distribution. It is important to automatically select regions of interest according to the
task. In order to select and refine the features, the attention module with channel attention
and spatial attention in [26] is applied to AttResUNet. Like the human visual system,
the attention module can enhance meaningful features and suppress useless features,
which is achieved by adjusting the weights of corresponding features. In the attention
module shown in Figure 2c, spatial attention and channel attention are parallel. Features
(C × H ×W) from convolution layers are used as input. The spatial attention performs a
1 × 1 × 1 convolution and a sigmoid activation on the input feature to learn the spatial
attention map (1 × H ×W), which represents the importance of different spatial positions,
then multiply the input with the spatial attention map to strengthen the expression of
spatial semantic information. In the channel attention, the global average pooling is
performed on the input feature at first. Then, there are two 1 × 1 ×1 convolution and a
sigmoid activation to calculate the channel attention mask (C × 1 × 1). Finally, channel-
wise multiplication is applied between the input feature and the mask to weight each
channel according to its usefulness. At the end of the attention module, the outputs from
spatial attention and channel attention are added together to fuse the channel information
and the spatial information for semantic segmentation.

2.2. Feature Extraction Based on DSSN

In general, DSSN consists of an encoder and a decoder. The encoder extracts feature by
convolutional layers and pooling layers. The decoder restores the feature maps to original
image size with upsampling. After decoding, the results of segmentation are generated
from input data.

pc = ϕ · φ(X0, θ), c = 1, 2, . . . , n (3)

Y = argmax(pc) (4)

where both input data X0 ∈ Rw×h×channel and output data Y ∈ Rw×h have a width of w
and height of h. φ is the encoder and ϕ is the decoder.

The probability of results belonging to class c is pc, and the total number of classes is
n. In the back propagation, the neural network reduces the training loss by continuously
adjusting the learnable parameters θ to optimize the results. The cross-entropy loss function
L is often used for the semantic segmentation task, as the following:

L = −
w

∑
i=1

h

∑
j=1

n

∑
c=1

yc
ijlog

(
pc

ij

)
(5)

for pixel (i, j), prediction from the forward propagation of network is Yij ∈ Y, if Yij = c,
then yc

ij = 1, otherwise, yc
ij = 0.

After the supervised training, the DSSN has learned how to extract features that
are effective to semantic segmentation. Obviously, features can be extracted from the
encoder or decoder. Although the feature from the encoder is highly abstract, its size is
small and details such as the spatial relationship are lost after convolution and pooling.
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The highly abstract feature is helpful to a one-hot task such as image classification, but is
not suitable for semantic segmentation. On the contrary, the decoder recovers the original
size of features and restores some details by upsampling. Therefore, we chose the features
extracted by the decoder to initialize the graph.

2.3. Graph Construction

The objects and the relationships constitute an unstructured graph. The graph is
represented by a tuple Graph = (V, E), where V is the set of graph nodes and E is the
set of edges representing the connection between nodes. If eij ∈ E, node vi connects to
node vj with edge eij. In the RS image, V is a set of ground objects and E represents
the relationships between the objects. In order to construct the graph, as depicted in
Figure 3, superpixels segmented by the unsupervised segmentation algorithm are used
as graph nodes. Each superpixel is composed of a set of adjacent pixels with consistent
characteristics. In addition, the first-order adjacency relationship (with common edge)
between superpixels is regarded as graph edge to take the topological spatial relationship
into consideration.

V = {S1, S2, . . . , Sk|Si = Segment(X0), 1 ≤ i < K} (6)

where X0 is the input image and Si denotes the i-th superpixel. K is the total number of
superpixels or nodes.
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Figure 3. A toy example about the graph construction process. After the unsupervised superpixel segmentation, the remote
sensing (RS) image (a) consisted of superpixels (b), which are regarded as graph nodes (c). Additionally, the first-order
adjacency relationship (with common edge) between superpixels denotes graph edge (c).

In the region of superpixel corresponding to node vi, the average value of each channel
of the deep features extracted by DSSN is taken as the node feature vector xG

i ∈ XG. The fea-

ture vector of the graph is XG =
[
xG

1 , xG
2 , . . . , xG

K
]T ∈ RK×D, where D is the dimension of

the feature vector of the graph node.
For each node, we need to figure out which category it belongs to. It is easy to know

the class of each pixel from the label image. In general, a homogeneous region, such as a
superpixel, can be represented by its main characteristics, so it makes sense to specify the
majority class as category for the region. Specifically, we counted the class of all pixels in
each node and assigned the category that contains the maximum number of pixels with
the same class as the label of the node.

The spatial adjacency relationships between the graph nodes are denoted by the
adjacency matrix A ∈ RN×N . Considering that the contributions of different nodes in the
neighborhood to the central node are different, the strength of spatial relationship between
them is determined by the spectral similarity and the spatial location. If node vi is adjacent
to node vj, the connecting edge between them has a weight aij ∈ A. To quantitatively
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express the strength of spatial relationship between vi and vj, we set that the aij is larger if
the greater the spectral similarity between the two nodes.{

aij = 0, if vi is not adjacent to vj

aij = exp
(
− ‖labi−labj‖

σ2
w

)
, if vi is adjacent to vj

(7)

where lab denotes the average color value of the node in the LAB color space of the
Commission International Eclairage (CIELAB) and σ2

w controls the range of weight.

2.4. Node Classification via GCN

We adopted GCN, denoted as g(X, A), to get the classification Z of the graph nodes.
Same as CNN, GCN extracts features on graph structure data by convolution, which is
called graph convolution. As shown in Figure 4, graph convolution consists of three
steps. In the first step, each node sends its characteristic information to neighboring nodes.
This step is to extract the characteristic information of the node. Every node collects
the characteristic information from neighboring nodes and fuses the local structure and
the characteristic information in the second step. In the third step, gather the previous
information and then performs a nonlinear transformation to increase the expressive ability
of the model.
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Figure 4. Visual example of the three steps in the graph convolution of GCN: information broadcast-
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to its neighboring nodes v2, v3, v4 and v5 at first. Second, node v2 collects features from node v2, v3,
v4 and v5. Third, aggregate information by gathering and activating nonlinearly the fusion features.

Graph convolution aggregates the information of node from its neighbor nodes to
generate a new representation. Therefore, using graph convolution on ground objects is
useful for aggregating spatial information, which means that it is necessary to take matrix
A representing the relationships between nodes into consideration when calculating the
features H of each layer of GCN.

Z = g(H, A) (8)

H(l+1) = σ
(

LGH(l)W(l)
)

, LG = D̃
− 1

2 ÃD̃
− 1

2 (9)
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where H(l) is the feature of layer l of GCN, for the input layer H(0) = XG. σ, W and LG are
the nonlinear activation function, the learnable parameter matrix and the Laplacian matrix
respectively. Ã = A + I, where I is the identity matrix. D̃ is the degree matrix of Ã.

In the training process, GCN adjusts W by continuously reducing loss, thereby opti-
mizing the output, as shown:

L =
n

∑
i=1

loss
(

g
(

XG
i , A

)
, Ti

)
(10)

where Ti is the ground truth of training sample i and the number of samples is n. L is the
loss function, such as the cross entropy loss function.

When finishing training, the GCN combines features XG and adjacent matrix A to
classify the graph nodes. As the nodes are from superpixels, each node corresponds to a
region on the image. The class of all pixels in the region is the same as the category of the
corresponding node, thereby the entire semantic segmentation of the image is completed.

In general, the process of our DSSN-GCN framework is composed of three steps above
including feature extraction based on DSSN, graph construction and node classification via
GCN, which is in brief captured in Algorithm 1.

Algorithm 1. Combining DSSN and GCN for Semantic Segmentation of Remote Sensing Imagery

Input: the remote sensing image dataset DT ; the number of superpixels k.
1. Train DSSN with samples from DT .
2. Use the DSSN to extract high-level features X f = {x1, x2, . . . , xD}.
3. Construct the graph nodes V. Regions segmented by the unsupervised segmentation
algorithm are used as graph nodes V = {v1, v2, . . . , vk}. Use features X f to semantically initialize

the intrinsic content of the graph nodes, represented as XG =
[
xG

1 , xG
2 , . . . , xG

K
]T ∈ RK×D.

4. Construct the graph edges E. Take the first-order adjacency relationships (with common edge)
between the graph nodes as the graph edges and calculate the strength of the edges.
5. After the training of the GCN, adopt the GCN to perform classification on the graph nodes.
6. Get the maps of semantic segmentation. Assign the category of each node to the pixels
located in the node.
Output: the maps of semantic segmentation.

3. Experiments

In this section, the data description and details of experimental settings were intro-
duced at first. The experimental results and analysis were given after that.

3.1. Datasets and Evaluation Metrics

To test our method, experiments were performed on the UCM dataset [54] and the
DeepGlobe dataset [56].

As visually illustrated in Figure 5, the UCM dataset that contains 2100 aerial images
with 0.3 m spatial resolution and 256 × 256-pixel size was labeled into 17 categories for
semantic segmentation on DLRSD dataset [54]. In order to reduce the similarity between the
classes [43], we merged the 17 classes into 8 classes, which are vegetation (trees and grass),
ground (bare soil, sand and chaparral), pavement (pavement and dock), building (building,
mobile home and tank), water (water and sea), airplane (airplane), car (car) and ship (ship),
and removes images containing a field or tennis court. Each category is a combination
of the original categories in the parentheses. These filtered images are randomly divided
into the training set, validation set and test set, each with 1513, 189 and 190 images, with
the proportions of 80%, 10% and 10% respectively. The class distribution for UCM dataset
can be seen in Table 1. The four categories of vegetation, pavement, ground and building
account for the first, the second, the third and the fourth place respectively. The proportion
of top four categories was more than 85% and the proportion of airplane was the least (less
than 0.5%).
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Table 1. The class distribution for the UCM dataset (%).

UCM Vegetation Pavement Ground Building Water Car Ship Airplane

all 28.59 27.38 17.63 13.65 7.87 2.88 1.62 0.36
train 29.23 27.17 17.37 13.58 7.84 2.84 1.61 0.35

validation 25.65 30.62 16.71 13.38 8.61 2.63 1.80 0.60
test 26.43 25.77 20.66 14.51 7.39 3.47 1.55 0.21
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The DeepGlobe dataset [55], as shown in Figure 6 provides 1146 submeter high-
resolution images with a size of 2448 × 2448. Seven categories are manually labeled,
namely urban, agriculture, rangeland, forest, water, barren and unknown. As shown
in Table 2, there is a large imbalance in the dataset that the area of agriculture is more
than 50% and the share of urban and forest are 10.93% and 9.98% respectively. Moreover,
the proportion of unknown is close to 0% meaning few pixels of unknown in the ground
truth masks. The entire dataset was divided into the training set, validation set and test
set, containing 803, 171 and 172 images respectively. Images with a size of 256 × 256 are
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uniformly cropped from every raw image. These cropped images were randomly divided
into the training set, validation set and test set, each with 10,272, 1280 and 1296 images,
with the proportions of 80%, 10% and 10% respectively.

Table 2. The class distribution for the DeepGlobe dataset (%).

DeepGlobe Agriculture Urban Forest Rangeland Barren Water Unknown

all 57.88 10.80 11.11 8.41 8.43 3.33 0.05
train 58.42 10.93 9.98 8.51 8.80 3.31 0.06

validation 56.16 7.50 19.27 7.78 5.04 4.23 0.01
test 55.29 13.05 11.99 8.26 8.82 2.59 0.01

In this paper, the overall accuracy (OA), the intersection over union (IoU) and the
frequency weighted intersection over union (FWIoU) are adopted as the evaluation met-
rics [58].

OA = (TP + TN)/(TP + FP + TN + FN) (11)

IoUi =
TPi

TPi + FPi + FNi
, i = 1, 2, . . . , n (12)

FWIoU =
n

∑
1

(
IoUi·

TPi + FNi
TPi + FPi + TNi + FNi

)
(13)

where TP, TN, FP and FN are the number of true positive points, true negative points,
false positive points and false negative points respectively. n is the number of classes.

3.2. Implementation Details

In this paper, we used three representative backbones and a proposed network as
DSSN for feature extraction: U-Net [19], SegNet [20], DeepLab V3+ [25] and the proposed
AttResUNet. On this basis, four neural networks are proposed: DSSN-GCN V1 with
U-Net, DSSN-GCN V2 with SegNet, DSSN-GCN V3 with DeepLab V3+ and DSSN-GCN
V4 with AttResUNet. For U-Net and SegNet, they are widely used as the baseline model
for RS image semantic segmentation. The DeepLab V3+ network is a new method, which
has achieved the state-of-the-art semantic segmentation results on the natural image.
The network structure of AttResUNet is shown in Table 3. We adopted the residual block1-
4 from ResNet-101 [53] pretrained on ImageNet dataset as the encoder. The decoder uses
3 × 3 convolutions and 4×4 transposed convolutions to recover the original input size.
For the training of DSSN, the stochastic gradient descent method (SGD) and the cross
entropy were adopted as the optimizer and the loss function respectively.

The simple linear iterative cluster (SLIC) [59] was used to segment images to get the
ground objects (or superpixels). Features of each object were from the mean values of
the feature maps of the upsampling layer within the corresponding region of the object.
We adopted the feature maps from layers of the DSSN networks above: feature map for
DSSN-GCN V1, DSSN-GCN V2, DSSN-GCN V3 and DSSN-GCN V4 were all obtained from
the last layer of its DSSN. To initialize the graph, the features of the objects were used as
the features of the graph nodes in GCN [47]. The SGD optimizer and the cross-entropy loss
function were used for the training of the GCN. With these settings, extensive experiments
including sensitivity analysis were performed to choose the best critical parameters and
examine the effectiveness of the proposed DSSN-GCN model. All the experiments were
conducted on the Pytorch framework with NVIDIA 1080Ti GPU.

3.3. Sensitivity Analysis of Critical Parameters

Hyperparameters in our proposed method mainly included the number of superpixels
k, the similarity factor σ2

w and the number of GCN layers l. k determines the number of
ground objects (or superpixels) in the graph. σ2

w controls the range of value of adjacent
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matrix in the graph. l is the number of layers of GCN, which represents the depth of
the network.

Table 3. The network structure of AttResUNet.

Layers Ouput Size

Input input H ×W × 3

InputConv
conv 7 × 7, stride 2 H/2 ×W/2 × 64
attention module H/2 ×W/2 × 64

maxpool 3 × 3, stride 2 H/4 ×W/4 × 64

Encoder1
ResBlock1 H/4 ×W/4 × 256

attention module H/4 ×W/4 × 256

Encoder2
ResBlock2 H/8 ×W/8 × 512

attention module H/8 ×W/8 × 512

Encoder3
ResBlock3 H/16 ×W/16 × 1024

attention module H/16 ×W/16 × 1024

Encoder4
ResBlock4 H/32 ×W/32 × 2048

attention module H/32 ×W/32 × 2048

Bridge conv 3 × 3, stride 1 H/32 ×W/32 × 192
attention module H/32 ×W/32 × 192

Decoder1

deconv 4 × 4, stride 2 H/16 ×W/16 × 128
concatenation H/16 ×W/16 × (1024 + 128)

conv 3 × 3, stride 1 H/16 ×W/16 × 128
attention module H/16 ×W/16 × 128

Decoder2

deconv 4 × 4, stride 2 H/8 ×W/8 × 96
concatenation H/8 ×W/8 × (512 + 96)

conv 3 × 3, stride 1 H/8 ×W/8 × 96
attention module H/8 ×W/8 × 96

Decoder3

deconv 4 × 4, stride 2 H/4 ×W/4 × 64
concatenation H/4 ×W/4 × (256 + 64)

conv 3 × 3, stride 1 H/4 ×W/4 × 64
attention module H/4 ×W/4 × 64

Decoder4
deconv 4 × 4, stride 2 H/2 ×W/2 × 48

conv 3 × 3, stride 1 H/2 ×W/2 × 48
attention module H/2 ×W/2 × 48

Decoder5

deconv 4 × 4, stride 2 H ×W × 32
conv 3 × 3, stride 1 H ×W × 32
conv 1 × 1, stride 1 H ×W × C
attention module H ×W × C

Output output H ×W

As the representation of the ground object on the image, the superpixel, which retains
the boundary of the ground object, is composed of a set of pixels with similar characteristics
such as color, brightness, texture, etc. Therefore, converting the pixel-by-pixel classification
to the object-based node classification can not only reduce the time consumption of classifi-
cation, but also reduce noises and restore the boundary of the ground objects to a certain
degree. The number of superpixels in an image determines the size of each superpixel.
The smaller k, the larger the area corresponding to one superpixel. If the superpixel is too
small, the characteristic information will be insufficient, on the contrary, details would
be lost. In (a) and (b) of Figure 7, it shows that the best k for the UCM dataset and the
DeepGlobe dataset were both 700 respectively.
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The adjacency matrix in the graph depicts the spatial relationship between nodes.
The matrix values reflect the strength of the relationship and its distribution is controlled
by the similarity factor σ2

w. (a) and (b) of Figure 8 illustrate the accuracy of segmentation in
different σw. With the increase of the similarity factor, both OA and FWIoU rose at first and
then decreased. When σ2

w = 2 on the UCM dataset and σ2
w = 3 on the DeepGlobe dataset,

the best performance was obtained.
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The number of layers was positively correlated with the complexity of the neural
network. In general, the deeper the model structure, the better the fitting effect. However,
due to the gradient vanishing, GCN was usually limited to shallow layers (l = 2–4) [50].
In view of this problem, we tested our DSSN-GCN model with 1–5 layers of GCN. In
Figure 9a,b, as the layers of GCN increased, OA and FWIoU both increased up to the
maximum. The accuracy of segmentation reached the best value when l = 2 on the UCM
dataset and when l = 4 on the DeepGlobe dataset. Additionally, it is worth noting that OA
and FWIoU were both poor when GCN had only one layer, because the layer of GCN was
too shallow to learn better feature expression.
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3.4. Comparison with the State-of-the-Art Method

In order to evaluate the performance of our proposed DSSN-GCN model, experiments
were conducted on the UCM dataset and the DeepGlobe dataset. In the experiments, we
tested four DSSN-GCN networks, which were DSSN-GCN V1 based on U-Net, DSSN-GCN
V2 based on SegNet, DSSN-GCN V3 based on DeepLab v3+ and DSSN-GCN V4 based on
the proposed AttResUNet, respectively.

3.4.1. Results on the UCM Dataset

The overall accuracy of semantic segmentation on the UCM dataset is shown in the last
column of Tables 4 and 5. The OA/ FWIoU increased by 1.99%/2.94% for DSSN-GCN V1
compared to the U-Net, the OA/FWIoU rose by 0.89%/1.23% for DSSN-GCN V2 compared
to the SegNet, the OA/FWIoU increased by 0.68%/0.84% for DSSN-GCN V3 compared to
the DeepLab V3+ and DSSN-GCN V4 improved the OA/FWIoU by 0.69%/1%. Each DSSN-
GCN outperformed its DSSN, which proved the effectiveness of the integration of DSSN
and GCN in DSSN-GCN framework. Moreover, Tables 4 and 5 shows that the proposed
AttResUNet was better than all reference methods and DSSN-GCN V4 achieved the best
semantic segmentation results, which demonstrated the advance of our AttResUNet.

Table 4. The overall accuracy (OA) (%) of semantic segmentation on the UCM dataset.

Model Vegetation Ground Pavement Building Water Car Ship Airplane Overall (OA)

U-Net 81.21 73.13 90.03 65.10 89.58 72.61 87.52 0 79.72
DSSN-GCN v1 84.22 80.76 85.69 71.85 89.16 69.79 80.25 0 81.71

SegNet 81.35 77.34 83.31 75.97 87.94 70.74 85.45 10.00 80.28
DSSN-GCN v2 83.44 76.52 84.18 80.01 88.16 63.99 82.02 0 81.17

DeepLab v3+ 80.13 77.85 80.97 86.05 87.07 75.63 93.73 57.27 81.25
DSSN-GCN v3 82.30 78.87 85.45 80.78 86.18 68.35 91.02 0 81.94

AttResUNet 85.77 75.62 86.44 86.76 92.30 82.04 87.60 58.43 84.31
DSSN-GCN V4 86.67 77.06 88.08 86.80 93.57 75.72 81.29 33.78 85.00
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Table 5. The intersection over union (IoU) (%) of semantic segmentation on the UCM dataset.

Model Vegetation Ground Pavement Building Water Car Ship Airplane Overall (FWIoU)

U-Net 70.20 61.14 68.71 56.73 79.65 62.02 68.45 0 66.23
DSSN-GCN v1 71.33 64.03 73.08 62.80 81.32 59.65 68.29 0 69.17

SegNet 68.47 65.14 69.16 60.31 80.60 59.82 63.95 9.62 67.18
DSSN-GCN v2 69.32 66.17 70.77 62.53 81.84 58.45 66.05 0 68.41

DeepLab v3+ 68.34 65.17 71.77 65.54 81.93 61.54 58.14 37.62 68.71
DSSN-GCN v3 69.33 65.64 72.87 67.21 82.25 61.25 59.67 0 69.55

AttResUNet 72.42 65.72 77.11 71.02 86.01 70.67 76.09 49.53 72.99
DSSN-GCN V4 73.47 67.03 77.87 73.24 87.36 68.18 72.87 33.07 73.99

Tables 4 and 5 reported respectively the OA and the IoU of semantic segmentation
of each category on the UCM dataset. Due to the class imbalance, the main categories
including vegetation, ground, pavement and building were more than 85% (Table 1) in
the dataset. Considering the top four categories, it can be seen that DSSN-GCN V1 im-
proved the OA/IoU of vegetation, ground and building by 3.01%/1.13%, 7.63%/2.89%
and 6.75%/6.07% respectively compared with the U-Net, DSSN-GCN V2 rose the OA/IoU
of vegetation, pavement and building by 2.09%/0.85%, 0.87%/1.16% and 4.04%/2.22%
respectively on the basis of the SegNet and DSSN-GCN V3 achieved an improvement
in the OA/IoU of vegetation, ground and pavement by 2.17%/0.99%, 1.02%/0.47% and
4.48%/1.1% respectively compared to DeepLab v3+, and DSSN-GCN V4 improved the
OA/IoU of the main categories by 0.9%/1.05%, 1.44%/1.31%, 1.64%/0.76% and 0.04%/2.22%
respectively. As shown in Table 5, the IoUs of the top five classes (top four categories and
water) of our proposed DSSN-GCN models (including V1, V2, V3 and V4) were higher
than that of backbones (including U-Net, SegNet, DeepLab V3+ and AttResUNet) by 1–6%.
However, the IoUs of airplane exceeded that of DSSN-GCN models. Though the airplane
made up a quite low share (0.36%) of the UCM dataset, the IoU of airplane still contributed
1/8 (eight categories in the UCM dataset) to the MIoU. Therefore, it is reasonable to adopt
the FWIoU metric to evaluate semantic segmentation methods under the circumstance of
the class imbalance.

To compare results of all models above, we visualized the results of the proposed
DSSN-GCN models and other referenced methods. In Figure 10, we could see the results
of U-Net, DSSN-GCN V1, SegNet, DSSN-GCN V2, DeepLab V3+, DSSN-GCN V3, the pro-
posed AttResUNet and AttResUNet-GCN (DSSN-GCN V4) from (c) to (j). It presents that
segmentation of our DSSN-GCN model was more accurate and consistent compared to its
backbone network, shown in (d) to (c), (f) to (e), (h) to (g) and (j) to (i), which explained
the effectiveness of the proposed DSSN-GCN model to improve the results of semantic
segmentation. AttResUNet-GCN with the best FWIoU (73.99%) achieved the best results
and results of AttResUNet were better than that of other backbones, which demonstrated
the advance of the proposed AttResUNet. In addition, the results of DSSN-GCN mod-
els were less noisy and possessed more accurate boundaries, especially in building, car
and pavement.

3.4.2. Results on the DeepGlobe Dataset

The last column of Tables 6 and 7 shows the overall accuracy of semantic segmentation
on the DeepGlobe dataset. It shows the advance of our proposed DSSN that AttResUNet
achieved the best performance compared to other DSSNs. The OA/FWIoU increased
by 2.09%/2.53% for DSSN-GCN V1 compared to the U-Net. DSSN-GCN V2 rose the
OA/FWIoU by 0.54%/0.22% compared with the SegNet. DSSN-GCN V3 achieved im-
provement in the OA/FWIoU by 0.61%/0.73% on the basis of DeepLab V3+. Compared
with AttResUNet, DSSN-GCN V4 improved the OA/IoU by 0.11%/0.17%. The OA/FWIoU
of DSSN-GCN model were better than that of its backbone and the best OA/FWIoU were
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85.81%/76.30% from DSSN-GCN V4, which demonstrated the effectiveness of the DSSN-
GCN model.
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Figure 10. The visible semantic segmentation of the UCM dataset. (a) and (b) are raw images and ground truth respectively.
(c) and (d) are the results of U-Net and the results of DSSN-GCN V1, respectively. The results of SegNet and the results of
DSSN-GCN V2 are shown on (e) and (f), respectively. (g) and (h) present the results of DeepLab V3+ and the results of
DSSN-GCN V3, respectively. The results of the proposed AttResUNet and AttResUNet-GCN (DSSN-GCN V4) are displayed
on (i) and (j), respectively.

Table 6. The OA (%) of semantic segmentation on the DeepGlobe dataset.

Model Urban Agriculture Rangeland Forest Water Barren Unknown Overall (OA)

U-Net 71.67 87.03 47.06 90.65 73.74 63.96 0 79.77
DSSN-GCN v1 85.43 88.87 50.53 87.91 75.38 55.64 0 81.86

SegNet 82.68 90.00 52.33 84.65 73.16 57.37 0 81.97
DSSN-GCN v2 83.79 91.95 46.30 85.42 74.52 53.76 0 82.51

DeepLab v3+ 88.67 89.21 55.39 90.09 77.48 70.18 0 84.46
DSSN-GCN v3 86.63 92.03 55.66 86.81 76.12 66.98 0 85.07

AttResUNet 84.56 91.37 56.35 89.64 81.71 75.16 0 85.70
DSSN-GCN V4 84.60 91.16 56.61 89.95 82.09 76.90 0 85.81
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Table 7. The IoU (%) of semantic segmentation on the DeepGlobe dataset.

Model Urban Agriculture Rangeland Forest Water Barren Unknown Overall (FWIoU)

U-Net 65.61 80.65 28.02 69.39 59.08 41.67 0 68.99
DSSN-GCN v1 72.72 81.91 29.49 74.16 59.41 43.94 0 71.52

SegNet 72.57 81.76 29.89 75.53 61.64 44.66 0 71.74
DSSN-GCN v2 73.34 82.15 28.74 75.94 62.69 43.86 0 71.96

DeepLab v3+ 74.53 83.23 37.66 79.52 60.89 52.82 0 74.62
DSSN-GCN v3 75.58 84.17 37.92 79.40 61.67 53.28 0 75.35

AttResUNet 75.32 84.71 38.69 79.18 69.53 58.34 0 76.30
DSSN-GCN V4 75.60 84.77 39.09 79.29 69.48 58.95 0 76.47
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Figure 11. The visible semantic segmentation of the DeepGlobe dataset. (a,b) are raw images and ground truth respectively.
(c,d) are the results of U-Net and the results of DSSN-GCN V1, respectively. The results of SegNet and the results of
DSSN-GCN V2 are shown on (e,f), respectively. (g,h) present the results of DeepLab V3+ and the results of DSSN-
GCN V3, respectively. The results of the proposed AttResUNet and AttResUNet-GCN (DSSN-GCN V4) are displayed
on (i,j), respectively.

The OA and the IoU of semantic segmentation of each category on the DeepGlobe
dataset are presented in Tables 6 and 7, respectively. There was a large class imbalance
in the dataset that main categories including agriculture (58%), urban (11%) and forest
(11%) were more than 80% (Table 2). Considering the top three categories, it could be
seen that DSSN-GCNs had advantages in OA compared to the corresponding DSSNs.
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Furthermore, the IoUs of top four categories of DSSN-GCN were almost better than
its backbone. In addition, DSSN-GCN V1 increased in IoU of all categories, especially
13.76%/7.11% improvement in the OA/IoU of urban. However, in the next to last column
of Tables 6 and 7, all the OA/IoU of unknown were 0. This is because that the proportion
of unknown in the dataset (counting for 0.05%) was too low to be learned and recognized
by the classifier.

The visible semantic segmentation of the DeepGlobe dataset was presented to qualita-
tively verify the conclusions of the paragraph above. It can be seen in Figure 11 that the
results from (c) to (j) were the segmentation maps of the results of U-Net, DSSN-GCN V1,
SegNet, DSSN-GCN V2, DeepLab V3+, DSSN-GCN V3, the proposed AttResUNet and
AttResUNet-GCN (DSSN-GCN V4). It shows that our DSSN-GCN models achieved more
accurate and consistent segmentation compared to its backbone network, shown in (d) to
(c), (f) to (e), (h) to (g) and (j) to (i), which demonstrated that the proposed DSSN-GCN
model was effective to improve the results of semantic segmentation. Moreover, the pro-
posed AttResUNet achieved better results than other backbones and AttResUNet-GCN
with the best OA and FWIoU on this dataset got the best result.

4. Discussion

In this paper, we analyzed the sensitivity of critical parameters including the number
of superpixels k, the similarity factor σ2

w and the number of GCN layers l, which have an
important influence on the proposed DSSN-GCN model. In the model, k determines the
size and number of graph nodes, the value range of the strength of the spatial relationship
was controlled by σ2

w, and l reflects the expression ability of GCN. In order to build the
graph in GCN, we constructed graph nodes through the superpixel segmentation and
transformed pixel-level segmentation into node classification. The number of superpixels
should be selected carefully. Since if the superpixel is too small, the characterization
information will be insufficient, on the contrary, details would be lost. According to the
experimental results, the best k of our model for the UCM dataset and the DeepGlobe
dataset were both 700. However, it is urgent to improve the speed and the accuracy of
the methods for node construction. In the graph, the relationships between nodes were
also of importance, which constitute the path of information transmission in GCN. When
constructing the connection edges between nodes, we comprehensively considered the
spatial relationship (the first-order adjacency relationship) and the spectral information
(values in the CIE LAB color space) to quantify the strength of spatial relationships, and
adopt the similarity factor σ2

w to control the value range of these edges. By doing that,
the strength of spatial relationship between different nodes is of difference. Moreover,
the number of layers is the key parameter of the neural network. Due to the problem of
gradient vanishing, GCNs are limited to shallow layers. Although there are some works
to construct deep GCNs [50], the classification accuracy still needs further improvement.
In view of this problem, we tested the proposed DSSN-GCN model with 1–5 layer GCN
and got the best performance on the UCM dataset for l = 2 and on the DeepGlobe dataset
for l = 4.

In order to verify the effectiveness of our model, we designed four DSSN-GCN
models based on different backbones including the proposed AttResUNet, the classic
U-Net model, SegNet and DeepLab V3+, which is the state-of-the-art model in natural
image semantic segmentation. The DSSN-GCN models (V1, V2, V3 and V4) and the
contrast methods were applied to the experiments. We chose the metrics of OA and FWIoU
to measure the results of semantic segmentation. Additionally, the FWIoU metric was
adopted because it was widely used in semantic segmentation and more reasonable than
MIoU under the circumstance of the class imbalance. The segmentation results on two
datasets in Tables 4–7 present that the DSSN-GCN model outperformed its backbone and
DSSN-GCN V4 achieved the best performance both on the two datasets, which proved the
effectiveness of our DSSN-GCN model. Meanwhile, it shows the importance of the spatial
relationship for high-precision semantic segmentation and the relationship modeling ability
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of GCN. Moreover, there is a large improvement of the proposed AttResUNet compared
to other advanced DSSNs, which shows the advance of our AttResUNet. The OA/IoU
of AttResUNet for the small objects, such as car, ship and airplane in the UCM dataset,
are increased significantly compared to U-Net. However, the performance of DSSN-GCN
V4 on small objects such as car, ship and airplane is inferior to the proposed AttResUNet.
This is because with the help of the residual blocks-based encoder and the attention model,
AttResUNet can extract deep features with stronger expression and select regions of interest
automatically, which is helpful for the segmentation of small objects. In addition, there
were few samples for the training of GCN and some detailed information will be lost
in object-level modeling of DSSN-GCN, which would bring a negative impact on the
recognition of small objects. From Tables 1 and 2, the samples of airplane count for only
0.36% on the UCM dataset, which was the same as the unknown (0.05%) on the DeepGlobe
dataset. These samples were too few to train DSSN to learn expression of the airplane,
which caused all the OA and the IoU of the airplane to be quite low in Tables 4 and 5 and
even all the OA and the IoU of the unknown to be 0% in Tables 6 and 7. This phenomenon
reflected that DSSN model was not good at extracting features of the minority classes
and recognizing them when there were few samples of the minority classes for training.
Additionally, this problem of DSSN further led to the bad performance of DSSN-GCN on
the minority categories.

Remote Sens. 2021, 13, x FOR PEER REVIEW 20 of 23 
 

 

 

Figure 12. The results of segmentation. (a) Raw image, (b) ground truth, (c) results of U-Net, (d) results of DSSN-GCN V1, 

(e) results of the proposed AttResUNet and (f) results of AttResUNet-GCN (DSSN-GCN V4). 

5. Conclusions 

In order to introduce the spatial relationship information into RS image semantic 

segmentation, this paper proposed the DSSN-GCN framework for semantic segmentation 

of the RS image via combining DSSN and GCN. To lift the appearance extraction ability, 

we also proposed a new DSSN (AttResUNet), which had U-shaped architecture using 

residual blocks to encode feature maps and an attention module to refine the features. In 

the framework, a graph was built, where graph nodes were denoted by the superpixels. 

Additionally, the graph weight denoting the strength of spatial relationship was 

calculated by considering the spectral information and spatial information of the nodes. 

Then GCN combines graph node features extracted by DSSN and the graph weight to 

classify all the nodes, which converts the semantic segmentation into the node 

classification. On the basis of the DSSN-GCN framework, we designed four networks, 

namely DSSN-GCN V1, V2, V3 and V4. Extensive experiments performed on the UCM 

dataset and the DeepGlobe dataset show the effectiveness of the DSSN-GCN framework 

and the advance of the proposed AttResUNet. In addition, the superpixel-level modeling 

through GCN helped to reduce pixel-level noises and restored the boundaries of ground 

objects. 

This paper presents that the spatial relationship information introduced by GCN 

enhanced the performance and robustness of classifier. The information of spatial 

relationship is essential for high-precision and interpretable semantic segmentation. How 

to effectively use spatial relationship information and other prior knowledge and learn 

knowledge automatically to interpret RS images intelligently requires further research in 

the future. 

Author Contributions: Conceptualization, Y.L.; methodology, Y.L., S.O.; validation, S.O.; writing—

original draft preparation, S.O.; writing—review and editing, Y.L.; project administration, Y.L.; 

Figure 12. The results of segmentation. (a) Raw image, (b) ground truth, (c) results of U-Net, (d) results of DSSN-GCN V1,
(e) results of the proposed AttResUNet and (f) results of AttResUNet-GCN (DSSN-GCN V4).

As shown in Figures 10 and 11, the segmentation results of the DSSN-GCN model
were significantly better than its backbone both on two datasets. In addition, there were less
noise in the results of DSSN-GCN because the object-based classification reduced noises.
Moreover, since the superpixel was composed of a series of adjacent pixels with consistent
characteristics, which retains the boundary of the object, the results of boundaries of DSSN-
GCN were more closely aligned with the real contours of the ground objects. As shown in
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the red circles of Figure 12, results of DSSN-GCN in (d) and (f) were better than that of (c)
and (e), respectively, even the boundary in (d) and (f) fit the real boundary more closely
than the ground truth (b), especially in buildings.

5. Conclusions

In order to introduce the spatial relationship information into RS image semantic
segmentation, this paper proposed the DSSN-GCN framework for semantic segmentation
of the RS image via combining DSSN and GCN. To lift the appearance extraction ability,
we also proposed a new DSSN (AttResUNet), which had U-shaped architecture using
residual blocks to encode feature maps and an attention module to refine the features.
In the framework, a graph was built, where graph nodes were denoted by the superpixels.
Additionally, the graph weight denoting the strength of spatial relationship was calculated
by considering the spectral information and spatial information of the nodes. Then GCN
combines graph node features extracted by DSSN and the graph weight to classify all the
nodes, which converts the semantic segmentation into the node classification. On the basis
of the DSSN-GCN framework, we designed four networks, namely DSSN-GCN V1, V2, V3
and V4. Extensive experiments performed on the UCM dataset and the DeepGlobe dataset
show the effectiveness of the DSSN-GCN framework and the advance of the proposed
AttResUNet. In addition, the superpixel-level modeling through GCN helped to reduce
pixel-level noises and restored the boundaries of ground objects.

This paper presents that the spatial relationship information introduced by GCN
enhanced the performance and robustness of classifier. The information of spatial rela-
tionship is essential for high-precision and interpretable semantic segmentation. How
to effectively use spatial relationship information and other prior knowledge and learn
knowledge automatically to interpret RS images intelligently requires further research in
the future.

Author Contributions: Conceptualization, Y.L.; methodology, Y.L., S.O.; validation, S.O.; writing—
original draft preparation, S.O.; writing—review and editing, Y.L.; project administration, Y.L.;
funding acquisition, Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China under grant
41971284; the China Postdoctoral Science Foundation under grant 2016M590716 and 2017T100581;
and the Fundamental Research Funds for the Central Universities under grant 2042020kf0218.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: http://weegee.vision.ucmerced.edu/datasets/landuse.html, http://deepglobe.org/
challenge.html.

Acknowledgments: The numerical calculations in this paper have been done on the supercomputing
system in the Supercomputing Center of Wuhan University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ball, J.; Anderson, D.; Chan, C.S. A Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for

the community. J. Appl. Remote Sens. 2017, 11, 042609. [CrossRef]
2. Liu, B.; Du, S.; Du, S.; Zhang, X. Incorporating Deep Features into GEOBIA Paradigm for Remote Sensing Imagery Classification:

A Patch-Based Approach. Remote Sens. 2020, 12, 3007. [CrossRef]
3. Mountrakis, G.; Li, J.; Lu, X.; Hellwich, O. Deep learning for remotely sensed data. J. Photogramm. Remote Sens. 2018, 145, 1–2.

[CrossRef]
4. Ma, L.; Liu, Y.; Zhang, X.; Ye, Y. Deep learning in remote sensing applications: A meta-analysis and review. J. Photogramm. Remote

Sens. 2019, 152, 166–177. [CrossRef]
5. Li, Y.; Chen, W.; Zhang, Y.; Tao, C.; Xiao, R.; Tan, Y. Accurate cloud detection in high-resolution remote sensing imagery by

weakly supervised deep learning. Remote Sens. Environ. 2020, 250, 112045. [CrossRef]

http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://doi.org/10.1117/1.JRS.11.042609
http://doi.org/10.3390/rs12183007
http://doi.org/10.1016/j.isprsjprs.2018.08.011
http://doi.org/10.1016/j.isprsjprs.2019.04.015
http://doi.org/10.1016/j.rse.2020.112045


Remote Sens. 2021, 13, 119 21 of 22

6. Li, Y.; Zhang, Y.; Huang, X.; Yuille, A.L. Deep networks under scene-level supervision for multi-class geospatial object detection
from remote sensing images. J. Photogramm. Remote Sens. 2018, 146, 182–196. [CrossRef]

7. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing. IEEE Geosci. Remote Sens.
Lett. 2017, 5, 8–36. [CrossRef]

8. Li, Y.; Chao, T.; Yihua, T.; Ke, S.; Jinwen, T. Unsupervised multilayer feature learning for satellite image scene classification.
IEEE Geosci. Remote Sens. Lett. 2016, 13, 157–161. [CrossRef]

9. Li, Y.; Ma, J.; Zhang, Y. Image retrieval from remote sensing big data: A survey. Inf. Fusion. 2021, 67, 94–115. [CrossRef]
10. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
11. Li, Y.; Zhang, Y.; Zhu, Z. Error-tolerant deep learning for remote sensing image scene classification. IEEE Trans. Cybern. 2020,

in press. [CrossRef] [PubMed]
12. Li, Y.; Zhang, Y.; Huang, X.; Ma, J. Learning source-invariant deep hashing convolutional neural networks for cross-source remote

sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6521–6536. [CrossRef]
13. Li, Y.; Zhang, Y.; Huang, X.; Zhu, H.; Ma, J. Large-scale remote sensing image retrieval by deep hashing neural networks.

IEEE Trans. Geosci. Remote Sens. 2018, 56, 950–965. [CrossRef]
14. Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,

60, 84–90. [CrossRef]
15. Basaeed, E.; Bhaskar, H.; Al-Mualla, M. Supervised remote sensing image segmentation using boosted convolutional neural

networks. Knowl. Based Syst. 2016, 99, 19–27. [CrossRef]
16. Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification. IEEE Signal Process.

Mag. 2014, 31, 45–54. [CrossRef]
17. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.
18. Noh, H.; Hong, S.; Han, B. Learning deconvolutional network for semantic segmentation. In Proceedings of the IEEE International

Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1520–1528.
19. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

20. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

21. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

22. Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 40, 834–848. [CrossRef]

23. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

24. Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

25. Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic
Image Segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018.

26. Roy, A.G.; Navab, N.; Wachinger, C. Concurrent Spatial and Channel ‘Squeeze & Excitation’ in Fully Convolutional Networks.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Granada,
Spain, 16–20 September 2018.

27. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.

28. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M. Attention U-Net: Learning Where to Look for the Pancreas. In Proceedings of the
International Conference on Medical Imaging with Deep Learning, Amsterdam, The Netherlands, 4–6 July 2018.

29. Li, H.; Qiu, K.; Chen, L.; Mei, X.; Hong, L.; Tao, C. SCAttNet: Semantic Segmentation Network with Spatial and Channel Attention
Mechanism for High-Resolution Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2020, 1–5. [CrossRef]

30. Woo, S.; Park, J.; Lee, J.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference
on Computer Vision, Munich, Germany, 8–14 September 2018.

31. Wurm, M.; Stark, T.; Zhu, X.X.; Weigand, M.; Taubenbock, H. Semantic segmentation of slums in satellite images using transfer
learning on fully convolutional neural networks. J. Photogramm. Remote Sens. 2019, 150, 59–69. [CrossRef]

32. Sherrah, J. Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery. arXiv 2016,
arXiv:1606.02585.

33. Marmanis, D.; Wegner, J.D.; Galliani, S.; Schindler, K.; Datcu, M.; Stilla, U. Semantic segmentation of aerial images with an
ensemble of CNSS. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Prague, Czech Republic, 12–19 July 2016.

http://doi.org/10.1016/j.isprsjprs.2018.09.014
http://doi.org/10.1109/MGRS.2017.2762307
http://doi.org/10.1109/LGRS.2015.2503142
http://doi.org/10.1016/j.inffus.2020.10.008
http://doi.org/10.1038/nature14539
http://doi.org/10.1109/TCYB.2020.2989241
http://www.ncbi.nlm.nih.gov/pubmed/32413949
http://doi.org/10.1109/TGRS.2018.2839705
http://doi.org/10.1109/TGRS.2017.2756911
http://doi.org/10.1145/3065386
http://doi.org/10.1016/j.knosys.2016.01.028
http://doi.org/10.1109/MSP.2013.2279179
http://doi.org/10.1109/TPAMI.2017.2699184
http://doi.org/10.1109/LGRS.2020.2988294
http://doi.org/10.1016/j.isprsjprs.2019.02.006


Remote Sens. 2021, 13, 119 22 of 22

34. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Fully Convolutional Neural Networks for Remote Sensing Image Classification.
In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July
2016; pp. 5071–5074.

35. Kampffmeyer, M.; Salberg, A.B.; Jenssen, R. Semantic segmentation of small objects and modeling of uncertainty in urban remote
sensing images using deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

36. Wang, C.; Li, L. Multi-Scale Residual Deep Network for Semantic Segmentation of Buildings with Regularizer of Shape
Representation. Remote Sens. 2020, 12, 2932. [CrossRef]

37. Audebert, N.; Saux, B.L.; Lefèvre, S. Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-Scale Deep
Networks. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016; pp. 180–196.

38. Zhang, M.; Hu, X.; Zhao, L.; Lv, Y.; Luo, M.; Pang, S. Learning dual multi-scale manifold ranking for semantic segmentation of
high resolution images. Remote Sens. 2017, 9, 500. [CrossRef]

39. Pan, X.; Gao, L.; Andrea, M.; Zhang, B.; Fan, Y.; Paolo, G. Semantic Labeling of High Resolution Aerial Imagery and LiDAR Data
with Fine Segmentation Network. Remote Sens. 2018, 10, 743. [CrossRef]

40. Chen, K.; Fu, K.; Gao, X.; Yan, M.; Zhang, W.; Zhang, Y.; Sun, X. Effective fusion of multi-modal data with group convolutions for
semantic segmentation of aerial imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 3911–3914.

41. Marmanis, D.; Schindler, K.; Wegner, J.D.; Galliani, S.; Datcu, M.; Stilla, U. Classification with an edge: Improving semantic image
segmentation with boundary detection. J. Photogramm. Remote Sens. 2018, 135, 158–172. [CrossRef]

42. Chu, H.; Shenglin, L.; Dehui, X.; Peizhang, F.; Mingsheng, L. Remote Sensing Image Semantic Segmentation Based on Edge
Information Guidance. Remote Sens. 2020, 12, 1501.

43. Alirezaie, M.; Längkvist, M.; Sioutis, M. Semantic referee: A neural-symbolic framework for enhancing geospatial semantic
segmentation. Semant. Web. 2019, 10, 863–880. [CrossRef]

44. Yong, L.; Wang, R.; Shan, S.; Chen, X. Structure inference net: Object detection using scene-level context and instance-level
relationships. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–22 June 2018; pp. 6985–6994.

45. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans Neural Netw.
2009, 20, 61–80. [CrossRef]

46. Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. In Proceedings of the 2005 IEEE International
Joint Conference on Neural Networks, Montreal, Canada, 31 July–4 August 2005.

47. Kipf, T.; Welling, M. Semi-supervised classification with graph convolutional networks. In Proceedings of the international
conference on learning representations, Toulon, France, 24–26 April 2017.

48. Niepert, M.; Ahmed, M.; Kutzkov, K. Learning Convolutional Neural Networks for Graphs. In Proceedings of the International
Conference on Machine Learning, New York, NY, USA, 19–24 June 2016.

49. Li, G.; Müller, M.; Thabet, A.; Ghanem, B. DeepGCNs: Can GCNs Go as Deep as CNNs? In Proceedings of the IEEE International
Conference on Computer Vision, Seoul, Korea, 27–28 October 2019.
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