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Abstract: Identifying the rapeseed (Brassica napus L.) flowering dates are important for planting area
estimation, growth monitoring, and yield estimation. However, there is currently a lack of data
on rapeseed flowering dates at the parcel scale. In this study, a new spectral index (Normalized
Rapeseed Flowering Index, NRFI) is proposed to detect rapeseed flowering dates from time series
data generated from Landsat 8 OLI and Sentinel-2 sensors. This study also analyzed the feasibility of
using the backscattering coefficients (VV, VH, and VV/VH) of Sentinel-1 to detect the flowering dates
of rapeseed at the parcel scale. Based on the spectral and polarization characteristics of 718 rapeseed
parcels collected in 2018, we developed a method to automatically identify peak flowering dates by
the local maximum of NRFI series and the local minimum of VH and VV, along with the maximum
of VV/VH. The results show that most of the peak flowering dates derived from Sentinel-1 and
Sentinel-2 can be confirmed by the in-situ phenological observations at the Deutscher Wetterdienst
(DWD) stations in Germany. The NRFI outperforms the Normalized Difference Yellow Index (NDYI)
in identifying the peak flowering dates from Landsat 8. The derived medians of peak flowering
dates by NRFI, NDYI (Sentinel-2), and VH are similar, while a systematic delay is observed by NDYI
(Landsat 8). The method with the spectrum and backscattering coefficients will be a potential tool to
identify crop flowering dynamics and map crop planting area.

Keywords: peak flowering dates; rapeseed; spectral index; backscattering coefficients

1. Introduction

Rapeseed (Brassica napus L.) is a staple oil crop used for cooking, high-quality animal
feed, etc. [1]. It is cultivated widely in the world (e.g., Europe, Canada, China, India, and
Australia) [2–5]. The global rapeseed production has grown rapidly in recent years [6]. The
timing and intensity of flowering are closely related to the final yield of rapeseed [2,7–9]
and highly sensitive to temperature [2,10], as other crops [11–13]. For instance, sclerotinia
stem rot can cause a 50% yield loss when the rapeseed is in bloom [14]. Additionally, the
accurate flowering dates are key information to map rapeseed planting areas [15,16]. The
peak flowering period is highly informative for monitoring growth status and predicting
yield [2,17]. Therefore, it is of vital importance to accurately identify the flowering dates
of rapeseed. Given the high spatial heterogeneities of cultivars, farmers’ management
practices, climate, and soil conditions, it is still challenging to detect the peak flowering
dates of rapeseed timely and soundly [18].

Remote sensing data (e.g., optical and radar images) have become a powerful tool
to derive biophysical parameters including crop phenological information in the last
decades [18–23]. Among other things, optical data have prevailed to analyze the re-
lationship between the photosynthetic and properties of crops, mostly via the conven-
tional Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation
Index (EVI) when an unprecedented amount of free satellite data become available [24,25].
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The previous works have proved that rapeseed flowering dates can be detected by op-
tical remote sensing [5]. For example, Sulik et al. [18] showed spectral information on
optical data may improve rapeseed flowering identification. Later, a new index called
the Normalized Difference Yellowness Index (NDYI) was proposed, whose performance
was better than NDVI for monitoring the peak flowering period of rapeseed [17]. Us-
ing NDYI from Sentinel-2, Andrimont et al. [2] had successfully detected rapeseed peak
flowering dates in Germany. Sentinel-2 is an earth observation mission from the Coper-
nicus Programme [22], which is being operated by the European Space Agency (ESA).
Sentinel-2 was first launched in 2015 (https://sentinel.esa.int/web/sentinel/home) so
no Sentinel-2 images are available for monitoring the flowering phenology of rapeseed
before 2015. The Landsat was first launched in 1972 and is the longest-running en-
terprise to better understand global environmental change and agricultural practices
(https://www.nasa.gov/mission_pages/landsat/overview/index.html). Landsat 8 was
launched in 2013 [23]. Therefore, compared with Sentinel-2, Landsat is a better source
for monitoring historical agricultural practices, although Landsat has a lower capability
(e.g., lower ground resolution). However, the applicability of the existing Sentinel-2 based
method for detecting rapeseed flowering phenology to Landsat still needs to be explored.

The traditional approaches based on the optical data show some limitations to de-
tecting the flowering dates of rapeseed during cloudy days [14,26,27]. Compared with
optical remote sensing, synthetic aperture radar (SAR) data is not affected by clouds.
The time trajectory of many crops from SAR can be explained with various frequencies
and incidence angles based on electromagnetic modeling [10,16,28,29]. Recently, many
studies have proved that the backscatter coefficients (VV, VH, and VV/VH) of various
crops would change with their phenological development, suggesting that the changes of
backscatters with phenology should be mainly driven by the structural changes during
crop growth [14,16,21,30–33]. Given the different structures of crop canopies, it would be
easily concluded that rapeseed in the field can be detected by the three backscatters of
C-band sensors [2,32,34]. Many studies have found several radar features will change as
rapeseed grows [2,14–16,31,32]. Moreover, the previous study has substantiated that the
scattering coefficient VV can detect the peak flowering of rapeseed [2].

However, our understanding of the spatiotemporal dynamics of rapeseed flowering
dates has been very limited so far due to very few observation data available. Most of
the existing yellowness indices (e.g., NDYI) require hyperspectral data or an unmanned
aerial vehicle [35–37], which constrain their wide application. Thus, a novel and widely
accepted method to detect rapeseed flowering dynamics is highly required. Understanding
the effects of specific flowering stages on the structural and spectral properties of rapeseed
flowering may provide ideas for developing effective methods to detect rapeseed flowering
dynamics [2,38].

Thus, the objectives of this study are: (a) explore the reflectance values of rapeseed
during the growing period and develop a new index (Normalized Rapeseed Flowering
Index, later called as NRFI) to monitor the peak flowering dates, then compare its per-
formance with the NDYI; (b) demonstrate the ability of backscatter (VV, VH, VV/VH) to
characterize the critical rapeseed peak flowering parameters; (c) compare the consistency
of the detected peak flowering dates based on the spectral indexes and radar together with
the developed methods.

2. Materials and Methods
2.1. DWD Station and Study Area

Germany is a major rapeseed growing region in Europe. Germany’s national meteoro-
logical service (DWD) maintains a database of phenological observations [39]. The dataset
has been used in many previous studies, especially for advice for agriculture [39]. The
dataset contains field records of crop phenological stages following the BBCH (Biologische
Bundesantalt, Bundessortenamt, and Chemische Industrie) scale [40]. For rapeseed, the
start (i.e., BBCH61) and end (i.e., BBCH69) of flowering dates are available, while the
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peak flowering dates (i.e., BBCH65) are not. Each record associated with a DWD station
is considered to represent a crop within a maximum distance of five kilometers from its
location [2,40]. A total of 268 rapeseed observation sites with complete records were ob-
tained from the DWD phenology database in 2018. We analyzed the flowering start dates,
end dates, and flowering period recorded at all these stations (Figure 1). The flowering
of rapeseed starts usually around the 110th day and ends mainly around the 135th day of
the year in Germany. The flowering period lasts for mostly 20~30 days—a considerable
portion of the growing season [18]. Among these observation stations, 22 stations were
selected for further analyses (Figure 2a) because five L8 images and five S2 images were
available from April to June, which covered all these 22 stations.
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Figure 1. The start and end dates of flowering (a) and length of the flowering periods (flowering days) (b), for rapeseed
based on Germany’s national meteorological service (the Deutscher Wetterdienst, DWD) observations. The y-axis represents
the number of observation stations. The x-axis of (a,b) represent Julian day and flowering days, respectively.

2.2. Identifying the Rapeseed Parcels

Compared with other land-use types, rapeseed has unique spectral characteristics
during the flowering period. It appears green-yellow or yellow in the image of a combi-
nation of red, green, and blue bands. Thus, the visual interpretation of rapeseed parcels
is based on the specific spectral feature [3,32,35,41,42]. Rapeseed flowering dates vary by
location due to differences in climate, cultivars, and agricultural management [2] (Figure 1).
We extracted 718 parcels from a region (51◦17′00′′–50◦56′43′′ N, 14◦34′13′′ N–15◦8′10′′ E)
where the image quality of Sentinel-1/2 was good during the rapeseed growing season,
and rapeseed was widely cultivated as a winter crop (Figure 2b,c). The visual interpretation
was based on high-resolution Google earth images and Sentinel-2 images.

2.3. Satellite Data
2.3.1. Optical Satellite

All the available optical satellite data from Landsat 8 OLI and Sentinel-2 sensors at
the Google Earth Engine (GEE) platform in 2018 were used in this study. The spatial
resolutions of L8 true-color images and S2 images were 30 and 10 m, respectively. The
S2 top-of-atmosphere reflectance archived in the GEE was processed by radiometric and
geometric corrections including orthorectification and spatial registration on a global
reference system with sub-pixel accuracy [43–45]. The GEE asset addresses of L8 and S2 are
LANDSAT/LT08/C01/T1_SR and COPNERICUS/S2, respectively. We used a cloud-score
algorithm to remove the clouds, cloud shadows, and snow/ice pixels [2,46].
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2.3.2. SAR Satellite

We collected the Sentinel-1A/B C-band Synthetic Aperture Radar (SAR) data. Sentinel-
1A/B provides a series of SAR images. The period of S1 data ranges from 2 to 12 days due to
the differences in data types and regions all around the world [47]. For a denser time series,
the ascending and descending orbit observations were combined [2,47]. The temporal
resolution of S1 data in 2018 was two days, with a high spatial resolution (10× 10 m).
The interferometric Wide Swath (IW) instrument mode with VV and VH was also used
in the study [47]. The multi-temporal speckle filter at the GEE platform was applied to
remove the noise of the backscatter S1 images [48]. Finally, we analyzed the temporal
backscatter values of VV, VH, and VV/VH polarization over the rapeseed field during
different phenological stages of rapeseed.

2.4. Developing a New Index—NRFI to Catch Flowering Dynamics

Reflectance values of green and red bands change considerably during flowering
stages of rapeseed according to previous studies [18,38]. The large changes in the two bands
are useful to catch their dynamics. We believe the green/red bands from L8 and S2 provide
valuable information to develop the NRFI. Most previous studies on rapeseed phenology
substantiated the values of visible light bands [2,3,10,14,15,17,18,34,38,42,49], very few
have focused on the rapeseed phenology characteristics of the short-wave infrared band
(SWIR). The SWIR is less influenced by the atmosphere and more sensitive to water content
in soil or plant [50]. Considering the potential different responses between green/red and
SWIR2 bands to the flowering processes of rapeseed, this paper constructed a novel index
to capture the flowering intensity of rapeseed—Normalized Difference Rapeseed Flower
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Index (NRFIr/NRFIg)—see Equations (1) and (2). The NRFIr and NRFIg are based on one
visible band (green/red) and one invisible band (SWIR2).

NRFIr =
ρred − ρswir2

ρred + ρswir2
(1)

NRFIg =
ρgreen − ρswir2

ρgreen + ρswir2
(2)

NDYI =
ρgreen − ρblue

ρgreen + ρblue
(3)

where ρred, ρgreen, ρblue, ρswir2 are blue (B2: 450–520/515 nm), green (B3: 520–600 nm), red
(B4: 630–690/680 nm), and short-wave infrared 2 (B7: 2100–2300 nm) bands of Landsat 8
OLI/ Sentinel-2 MSI imagery, respectively. NRFI is defined either for red bland-specific
(NRFIr) or green band-specific (NRFIg), which is determined after comparing their perfor-
mances in identifying the flowering period of rapeseed.

2.5. Detecting Peak Flowering Stages

The peak flowering dates of rapeseed were identified based on a time series of remote
sensing data. This study developed an approach to calculate the extrema of NRFI (Nor-
malized Difference Rapeseed Flowering Index), NDYI, and backscatter values. Different
smoothing methods could lead to large uncertainty in the retrieval of phenology [2,51]. The
Savitzky-Golay (S-G) filter were used to smooth the time series of VV, VH, and VV/VH for
each rapeseed parcel [52,53]. However, we didn’t apply the S-G filter to smooth L8 and
S2 time series due to their coarser temporal resolutions, and the filtering algorithm could
ignore local features and cause large uncertainties [52,53]. The peak flowering period was
then obtained through the local maximum of NDYI, NRFI, and VV/VH along with the
local minimum of VV and VH for all parcels during the expected flowering period (from
21 April to 30 May). The window size of the S-G filter was three and it was implemented
using the TIMESAT 3.1 software. For the specific implementation process, please refer to
reference [54].

2.6. Evaluating the Peak Flowering Stages Derived from the New Method

Although the starts and ends of the flowering stage were recorded in the DWD
observations, the peak flowering stages were not [39]. We verified the detected peak
flowering dates and the accuracy through two steps (Figure 3). First, we tested whether the
flowering peak dates identified by our proposed method were between the start dates and
the end dates recorded by the DWD stations. Second, the peak flowering dates identified
by the two NRFIs from L8 and S2, and VH and VV/VH from S1 were compared with those
detected by the two NDYIs from L8 and S2, and VV from S1. The previous study proved
the accuracy of S2 NDYI and S1 VV by identifying the peak flowering of rapeseed based
on a large amount of field survey data [2]. We used the Pearson correlation coefficient (r)
(Equation (4)) and symmetric index of agreement (λ) (Equation (5)) to quantitatively assess
the consistency of the peak flowering dates computed by L8, S1, and S2 time series [55,56].

r =
n−1

n
∑

i=1

(
Xi − X

)(
Yi −Y

)
σXσY

(4)

where X and Y denote the mean values of X and Y, respectively. σX and σY represent the
standard deviations of X and Y, respectively. The metric r is dimensionless, with a range
from −1 to 1. A value of zero indicates there is no linear dependence between the two
variables, while a value close to 1 indicates significantly positive.
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λ = 1−
n−1

n
∑

i=1
(Xi −Yi)

2

σ2
X + σ2

Y +
(
X−Y

)2
+ k

(5)

k =


0, i f r > 0

2
∣∣∣∣ n

∑
i=1

(
Xi − X

)(
Yi −Y

)∣∣∣∣, otherwise (6)

The advantage of the symmetric index of the agreement is that the index indicates
how similar the values of the series are in magnitude [38,56].
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Figure 3. Workflow of monitoring rapeseed flowering phenology in this study. Major modules
include (1) data (Landsat 8 and Sentinel-1/2) preprocessing, (2) the extractions of time series of
rapeseed reflectance, vegetation index (VI) and backscatter coefficients, (3) rapeseed flowering
monitoring, (4) validation based on the field observation from DWD stations, and (5) the consistency
analysis of rapeseed flowering phenology monitored by different indicators.

3. Results
3.1. Spectral Properties and NDVI Phenological Characteristics of Rapeseed

Three different canopy morphologies are in the sequence indicated with the devel-
opment of rapeseed, which is characterized by leaves, yellow flowers, and pods, respec-
tively [35]. Rapeseed will appear yellowish-green on the image when it begins flowering.
The color becomes yellow when rapeseed is approaching peak flowering (Figure 4a–e).
Corresponding to the true color images above, the time series of spectral reflectance is
shown in Figure 4f,g, which represents the mean values of 718 rapeseed parcels in four
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bands including blue, green, red, and SWIR2. The red and green bands increase as rapeseed
begins flowering, peak at the medium flowering dates, and then decrease until the end of
flowering for both L8 (Figure 4f) and S2 (Figure 4g). Moreover, their green bands display
the highest reflectance, and the blue bands the lowest, with the red and SWIR2 bands
in the middle, during the flowering period (Figure 4f,g). Reflectance values of the green
and red bands in S2 changed from 0.11 and 0.079 (on Julian day 99) to 0.154 and 0.13
(on Julian day 109), respectively. While reflectance values of the green and red bands in
L8 changed from 0.0695 and 0.05031 (on Julian day 99) to 0.1338 and 0.1177 (on Julian day
109), respectively. Previous research indicates that yellow flowers could increase red re-
flectance [57]. For rapeseed, the most distinguishable spectral difference between flowering
and non-flowering can be identified by the green and red bands, which is consistent with
previous studies [2,18,35,38,49,57]. The yellow rapeseed petals (e.g., carotene) increase the
reflectivity of the red and green bands [17,18]. Thus, the red and green bands of rapeseed
reach a local maximum during the peak flowering period (Figure 4f,g).
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SWIR2 bands of L8; (g) the time series of the blue, green, red and SWIR2 bands of S2; (h) the time series of L8 the normalized
difference vegetation index (NDVI); (i) S2 NDVI. The gray area indicates the flowering dates recorded by the DWD stations.
Means are indicated by dots and standard deviations by error bars.
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Comparing with the “inverse V” curves of green and red values from L8 and S2
(Figure 4f,g), their NDVI values show a completely different “V” shape (Figure 4h,i). The
NDVI values are high at the start and end of the flowering period, but low at the peak
flowering stage, and reach the minimum at ripening [10]. NDVI values of L8 and S2 reduce
from 0.78 and 0.66 to about 0.64 and 0.59 at the peak flowering stage, respectively, and
then increase to the maximums (0.83 and 0.75) at the end of flowering. During the ripening
stage, both NDVI decline to around 0.25. The NDVI dynamics are consistent with many
previous studies [2,3,5,38,49]. For example, Pan et al. [35] indicated a decrease in NDVI
values during the flowering period (BBCH65) up to 0.35, which was caused by the increase
in red reflectance. For other crops such as wheat and corn, NDVI values do not change
significantly during the flowering period [14]. Therefore, the unique spectral characteristics
of rapeseed during the flowering period would provide a strong signal to identify and
monitor the rapeseed flowering stage [5,14,38].

3.2. NRFI Better Characterize the Flowering Intensity

At peak flowering stages, the reflectance values of the green and red bands have
a considerable increase, however, the values of SWIR2 are lower than those of the two
visible bands (Figure 4f,g), which can provide valuable information to identify the rapeseed
flowering period. The time series of spectral indices are extracted and averaged for the
718 rapeseed parcels (Figure 5). The flowering intensity signals are captured well by
NRFIr from L8 (Figure 5a) and S2 (Figure 5b), with NRFIr showing a typical “reverse
V” shape during the flowering period. Moreover, such a “reverse V” signature is also
characterized by NDYI of S2, with NDYI showing a peak between the start and end of
flowering stages recorded at DWD stations. However, two similar flattened peaks of
NDYI and NRFIg from L8 (Figure 5a) and one lagged peak of NRFIg (Figure 5b) were
also observed, which suggests the peak signals for flowering identified by the indexes
have fallen beyond their actual flowering stages. Nevertheless, all values beyond the
flowering stages were consistently lower than those within flowering stages during the
whole growing period of rapeseed. Moreover, compared with the other two indexes,
NRFIr performed best to capture the real signal of flowering dynamics from L8. The good
performance of NRFIr is consistent with NDYI from S2, substantiated by several previous
studies focused on field survey data [2,17]. The different curves of the indexes between
L8 and S2 may ascribe to their different wavelengths [58,59]. Based on the comprehensive
analysis of 718 rapeseed parcels, NRFIr is a reliable indicator to monitor the flowering
intensity of rapeseed. Therefore, we will focus on NRFIr in the analyses hereafter, and all
NRFI hereafter means NRFIr.
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3.3. Radar Polarization Characteristics of Rapeseed

The canopy structure changed dramatically as the rapeseed developed buds, flowers,
and formed pods [32,35]. The backscatter and randomness in scattering changed with the
processes of plant growth and was indicated morphologically by the change in canopy
structure [32]. Thus, the time series of VV, VH, and VV/VH will inform us more on
rapeseed growth states (Figure 6). VV backscatter values decrease sharply from the start
of flowering, then reach a minimum in the middle of flowering, and increase sharply
again till the end of flowering (Figure 6a). VH behaved similarly with VV but more gently,
which was indicated by a more flat “V” curve (Figure 6b). This finding is supported by
Wiseman et al. [60] based on RADARSAT-2 data [60]. As for S1, the backscatter values of
the VV and VH changed from 0.11 and 0.079 (on Julian day 99) to 0.154 and 0.13 (on Julian
day 109), respectively. Our findings are consistent with in-situ observations conducted
by d’Andrimont et al. [2], which showed that the VV of S1 reached a local minimum
during the peak flowering period of rapeseed. Moreover, the specific canopy structure
of rapeseed might also contribute to the “V” shape during the flowering period. 1) The
leaves and pods from neighboring plants are often intertwined to form a dense, randomly
oriented canopy structure [14,15,31,32]. 2) As a strong back-scatter signal, stems, and pods
of rapeseed, especially leaves, have characteristic sizes that are in the same order as the
incident microwave wavelength [2,15]. 3) The smaller structured buds and flowers create
a temporary layer of less effective scatters, which partly impedes the scattering of the
underlying canopy, resulting in a decrease in VV scattering [2,14,60,61].
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Furthermore, VV/VH increases as rapeseed enter the flowering stage and reach the
maximum at the full flowering stage (Figure 6c). Considering their different responses
during the stage (a sharp “V” in Figure 6a vs. a flat “V” in Figure 6b), rapeseed is randomly
organized without a strong vertical structure during the flowering period. Furthermore,
another advantage of selecting the ratio VV/VH as an index is that it can reduce the double-
bounce effect and probably reduce errors from the acquisition system (e.g., due to the
radiometric stability) or environmental factors (e.g., due to variations of soil moisture) [14].
Additionally, the VV/VH of the flowering period is the maximum during the whole
growth period, while VH and VV are the local minimums. Therefore, VV/VH might be a
more suitable indicator than VH or VV backscatter for monitoring the flowering period
of rapeseed.

3.4. Comparing the Different Indexes for Monitoring Peak Flowering

To determine whether the peak flowering dates identified from satellites are within the
ranges from the start to end of flowering observed at DWD stations, we further summarized
the results in Figure 7 for comparisons. The flowering peak dates obtained from NRFIr,
VV, VH, and NDYI (S2) fall within the ranges, but 59% of them from NDYI (L8) are
beyond the range (Figure 7). Also, the spatial distribution of the peak flowering dates of
rapeseed pixels based on NDYI (L8) and NRFIr (L8) shows that NRFIr (L8) is more accurate
(Figures A1 and A2). The same median dates of peak flowering are obtained by NRFIr (L8
and S2), NDYI (S2), and VH (S1), but with a systematic delay of one to two days by VV (S1)
than NDYI (S2) [2]. Therefore, in identifying the peak flowering dates, NRFIr performs
better than NDYI in terms of spectral monitoring (L8), and VH does better than VV in
terms of morphological monitoring (S1).
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Figure 7. Comparing the peak flowering dates of rapeseed identified by different indexes with the
flowering starts (BBCH61) and ends (BBCH69) observed at DWD stations.

Since the peak flowering dates were not recorded at DWD stations, a strict validation of
them retrieved from satellites is impossible [39,62]. Alternatively, the r (Pearson correlation
coefficient) and λ (symmetry consistency index) are used to assess the new indexes (NRFIr,
VH, VV/VH) by comparing them with the indexes (NDYI and VV) used in a previous
study [2] (Figure 8). The L8 NDYI has the most insignificant relationship with other indexes,
further confirming its lower ability for identifying peak flowering (Figure 8a). Both NRFIr
from L8 and S2 have significant relationships with S2 NDYI and S1 VV. The relationships
among both morphological indexes are significant (r ≥ 0.7) (Figure 8a).

λ has a very similar pattern to that of r (Figure 8b). For example, there is a quite
weak agreement between L8 NDYI and other indexes as indicated by λ, but the highest
agreement between S2 NRFIr and S2 NDYI (λ = 0.9). The λ for all morphological indexes
(VH, VV/VH, and VV) is >0.7. Thus, NDYI from L8 does not perform as well as NRFIr
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from L8. Furthermore, VH and VV/VH also can be used to detect the rapeseed peak
flowering period.

From the differences in each combination of two indexes for identifying peak flowering
dates, we found the largest difference is caused by two NDYI from L8 and S2, with L8
NDYI around 13 days later than that of S2 NDYI (Figure 8c). Also, compared with VV, the
peak flowering dates derived from VH is earlier, but those derived from VV/VH have an
approximate zero to seven day delay.
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4. Discussion
4.1. The Good Performance of NRFI for Identifying Flowering Stages of Rapeseed

In this work, we constructed a novel spectral index—NRFI, which not only shows
high sensitivity to rapeseed petals during a vegetation canopy but also easily catches the
peak flowering dates. The results show that L8 NRFI outperforms the L8 NDYI in detecting
the flowering stages. NRFI is defined as the combination of red band and short-wave
infrared band-2 (SWIR2), while NDYI is the combination of green and blue bands. The
blue waveband is sensitive to atmospheric contamination and increasing uncertainty in
detecting flowering phenology of rapeseed [17]. Moreover, decreasing chlorophyll content
of rapeseed petals induces increased reflection in the red waveband [18,35,57]. A decrease
in water contents in soil and rapeseed during the flowering period will inevitably be
observed by SWIR2 [63–65]. Thus, the NRFI developed in our study can unsurprisingly
capture such features signature during the time series of the flowering period of rapeseed.

However, previous studies only focused on the visible light waveband (blue, green,
and red) and near-infrared waveband. Ignoring the characteristics of short-wave infrared
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changes (e.g., SWIR2) during rapeseed growth [2,3,5,10,15,17,18,34,38,49]. For example,
Siulk et al. [18] designed an index (including green and blue), similar to NDYI, to directly
exploit variation in flowering [18]. Plant photosynthesis decreases during rapeseed flower-
ing. They interpreted that the yellowness of rapeseed petals is caused by the carotenoid
pigments absorbing the blue light, but reflect a mix of green and red light [17,18].

Besides the above advantages, the NRFI can be further applied to extract the plots
cultivated by rapeseed. It has been reported that the phenological features of the crop
could be used to identify the planting areas, which has been applied in previous studies
although the accuracy varies by locations and methods [20,66]. We analyzed the pixels of
NRFIr in the studied areas and find that the NRFIr values of rapeseed during the flowering
period are distinctly different from those of other land use types (Figure 9). Comparing
with other methods (e.g., visual interpreting of high-resolution images and supervised
classifying by machine learning) to extract planting areas, the method based on NRFIr will
be a more potential and powerful way since others are either time-consuming or strongly
depend on training data collected in fields [2,3,26,27,67]. Therefore, NRFIr has the potential
for rapeseed planting area mapping.
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4.2. The Ancillary Function of Morphological Indexes for Identifying Flowering Stages of Rapeseed

Compared to optical images, SAR images have two advantages: no interruption from
clouds and a shorter revisiting cycle. The “V” curves identified by VV and VH from S1 are
shown during flowering periods (Figure 6), simultaneously companying with the “reverse
V” shapes from optical images (Figure 5). Such changes in both VV and VH are mainly
affected by soil and canopy [2,16,68]. For example, VV is particularly sensitive to the water
content of vegetation [69]. Rapeseeds’ vertical transformation from a thick rosette of leaves to
a flowering stalk will attenuate VV polarization [34]. Moreover, VV and VH increase from the
development of fruit to the beginning of ripening because of the rise in the number and the
length of stems per plant [2,14,32,34]. Therefore, such changes identified by SAR will be bene-
ficial for characterizing crop phenology features on the other side of optical images [14,19,31].
The “V” changes of VV and VH during the flowering period provide opportunities for an
automatic, continuous, and accurate monitoring rapeseed flowering period.

A typical “reverse V” is identified by VV/VH during the rapeseed flowering period
(Figure 6), and such changes in VV/VH may be correlated more with fresh biomass than
photosynthetic activity [14,30,34]. Additionally, some previous studies have shown that the
fresh biomass of wheat and corn is associated with VV/VH [14,34]. Due to the typical changes
of VV/VH with the flowering processes, the VV/VH ratio will provide a potential way for
applying it for biophysical parameters retrieval into other crops and other regions in the future.

Our findings highlight a highly potential way to detect the flowering stage of rapeseed
using SAR data, particularly for VV/VH ratio, which has been rarely investigated in
previous studies. Moreover, the characteristic variations in scattering coefficients during
rapeseed growth are useful for mapping high-resolution cultivated areas of rapeseed. For
example, Singha et al. [68] drew a high-resolution rice map in cloud-prone Bangladesh
and Northeast India based on Sentinel-1 SAR backscatter coefficients during rice growth.
Additionally, such radar data may also be applied to fill eventual gaps in the optical data
series. Following the free availability of Sentinel data, it will eventually support near
real-time crop monitoring in the future [14]. Combining SAR with optical data should be
more accurate for monitoring the flowering period and planting areas of rapeseed [2,34],
which can also be applied to other crops and other regions.

4.3. Limitations and Perspectives

Despite the above findings, the revisit frequency of optical satellite surveys and the
number of high-quality images should be considered in characterizing the peak flowering
period. Cloud is one of the main limitations in the consistent and accurate detection of
flowering phenology of rapeseed. The new method with the indexes proposed in our
study will have great potential at high latitudes because of the increasing availability of
high-quality images [44,70], especially from Sentinel-1/2 satellites of Europe [58]. Further
research should be focused on standardizing a classifier based on the optical and mor-
phological indexes to map in more detail the phenology, growth, and planting areas for
rapeseed at a large spatial scale.

5. Conclusions

The Landsat satellite has longer time series historical images and is the main data
source for monitoring historical rapeseed flowering phenology. Sentinel-1/2 data have
higher temporal and spatial resolutions, which is conducive to monitoring rapeseed phe-
nology accurately. In this study, we integrated Landsat 8 and Sentinel-1/2 data to assess
the potential of satellites to detect rapeseed flowering dates. The time series of rapeseed’s
reflectance and polarized backscattering coefficients (VH, VV, and VV/VH) were analyzed.
The observations collected at different DWD stations were applied. We proposed L8 NRFI
and found that it outperforms L8 NDYI in monitoring rapeseed peak flowering. The
correlation (r) between L8 NDYI and other indices observed peak flowering dates less than
0.3. L8 NRFIr and other indices were higher correlated (r ≥ 0.5). Also, the results show
that VH and VV/VH have the potential to monitor the peak flowering stage of rapeseed.
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The relationships among both SAR indices are significant (r ≥ 0.7). The VV/VH signals are
more pronounced whereas detection by VV/VH is slightly delayed (zero to seven days)
relative to VV and VH. The symmetry consistency index (λ) between different indices has
a very similar pattern to that of r. The λ for all SAR indexes is ≥0.7. Our study showed that
a better understanding of temporal behaviors of spectral indices and backscatters during
rapeseed flowering season will benefit not only biophysical parameters monitoring but
also dynamic crop growth monitoring and planting area mapping.
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Figure A1. Flowering peak (Day of Year, DOY) as obtained by (a) NDYI and (b) NRFIr from Landsat-8
images in 2018 in the study area. Histogram depicts the numbers of pixels of rapeseed flowering peak.
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