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Abstract: Changes to ice cover on lakes throughout the northern landscape has been established
as an indicator of climate change and variability, expected to have implications for both human
and environmental systems. Monitoring lake ice cover is also required to enable more reliable
weather forecasting across lake-rich northern latitudes. Currently, the Canadian Ice Service (CIS)
monitors lakes using synthetic aperture radar (SAR) and optical imagery through visual interpretation,
with total lake ice cover reported weekly as a fraction out of ten. An automated method of
classification would allow for more detailed records to be delivered operationally. In this research,
we present an automatic ice-mapping approach which integrates unsupervised segmentation from
the Iterative Region Growing using Semantics (IRGS) algorithm with supervised random forest
(RF) labeling. IRGS first locally segments homogeneous regions in an image, then merges similar
regions into classes across the entire scene. Recently, these output regions were manually labeled by
the user to generate ice maps, or were labeled using a Support Vector Machine (SVM) classifier.
Here, three labeling methods (Manual, SVM, and RF) are applied after IRGS segmentation to
perform ice-water classification on 36 RADARSAT-2 scenes of Great Bear Lake (Canada). SVM and
RF classifiers are also tested without integration with IRGS. An accuracy assessment has been
performed on the results, comparing outcomes with author-generated reference data, as well as the
reported ice fraction from CIS. The IRGS-RF average classification accuracy for this dataset is 95.8%,
demonstrating the potential of this automated method to provide detailed and reliable lake ice cover
information operationally.

Keywords: classification; gray-level co-occurrence matrix (GLCM); iterative region growing using
semantics (IRGS); RADARSAT-2; lake ice; random forest (RF); support vector machine (SVM)

1. Introduction

Seasonal ice on lakes represents a significant component of the cryosphere and plays a role in
many biologic, ecologic and socio-economic processes [1]. A movement towards later freeze-up and
earlier break-up dates on northern lakes since the middle of the last century is well documented and
predicted to continue [2–4]. This alteration to the state of lake ice cover is expected to have implications
for both human and environmental systems, making it imperative to monitor in the face of climate
change [5]. The inclusion of lakes and lake ice in weather forecasting and climate models has also been
advocated, as many climate simulations do not account for the multitude of small lakes across Canada.
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Simulations that account for these lakes have presented more accurate results when compared with
real-world observations [6]. The advancement and launch of many earth observing synthetic aperture
radar (SAR) satellite systems allows detailed lake ice monitoring to take place, especially across large
and inaccessible expanses. However, despite the proven importance of lake ice phenology in the
context of climate change, these detailed records have yet to be created operationally.

Currently, the Canadian Ice Service (CIS) monitors ice cover on a weekly basis for over 130 lakes
across North America using a combination of SAR and optical imagery. This data is used in a numerical
weather prediction system operated at Environment and Climate Change Canada [7]. Scenes are
visually interpreted, and ice cover is reported as a fraction out of ten on a weekly basis for each
lake [8,9]. More detailed information including percent coverage, position, and extent of the lake
ice is not available operationally as it would be time consuming and thus costly if produced in the
existing manner. If an unsupervised method of classification were made operational, detailed records
of ice extent on these lakes could be provided at high spatial and temporal resolutions. The need for
such a method has become crucial considering the wealth of SAR data becoming available from new
satellite missions such as Sentinel 1 A/B and RADARSAT Constellation Mission.

SAR systems are particularly well suited for sea ice and lake ice monitoring as they are unaffected
by cloud cover and can acquire images overnight and during polar darkness. However, ice-water
classification becomes complicated as backscatter signatures of ice and water vary significantly
throughout and across scenes, where several signatures can be observed for each class depending on the
age, type, or thickness of ice, presence of wind, and incidence angle of the sensor [8]. This classification
challenge has motivated a library of work over the past three decades, mostly focusing on sea ice with
some applications to freshwater lakes and rivers. Many approaches have been presented including
the use of gray-level thresholds [10,11], cluster analysis [12,13], watershed segmentation [14,15],
maximum likelihood (ML) [16], neural networks (NN) [17], Support Vector Machines (SVM) [18–20],
random forest (RF) [21,22] and others, with researchers often combining several methods and/or data
sources into a multi-step workflow.

For example, the Advanced Reasoning using Knowledge for Typing of Sea ice (ARKTOS) system
incorporated local thresholding, unsupervised clustering, and watershed merging for segmentation,
as well as class labeling through a rule-based module [23]. MAp-Guided Ice Classification
(MAGIC) [24] employed ice charts from CIS in addition to SAR data to produce pixel-based ice
maps, and Kim et al. [25] mapped landfast sea ice in the Antarctic using seven satellite-derived
products. An overview of data-based SAR sea ice classification is provided by Zakhvatikina et al. [26].

Random Forest classification has recently proved successful in ice type and ice-water classification.
The previously mentioned work by Kim et al. [25] tested decision trees (DT) and RF classification to
map landfast sea ice and concluded that RF achieved better performance both visually and numerically.
DT and RF models were also applied to classify melt ponds on ice in the Chukchi Sea in TerraSAR-X
SAR imagery, similarly showing that the RF method outperformed DT [27]. Later, an RF model was
used to produce a sea ice map of the Chukchi Sea based on KOMPSAT-5 SAR imagery with 99.2%
accuracy [21]. Six models including convolutional neural network (CNN), Bayesian, SVM, and RF were
compared by Shen et al. [22] for sea ice type and open water classification using Cryosat-2 Altimeter
data. The authors found that RF combined with an optimal feature assembly resulted in a mean
accuracy of 91.5%, a 9% improvement over the other methods.

Since ice and water can have similar backscatter signatures within or across SAR scenes,
pixel intensity alone is not always sufficient for accurate classification. The use of Gray-Level
Co-occurrence Matrices (GLCM) or other statistical methods to determine texture features has been
investigated and shown to be effective. Backscatter thresholds for both HH and HV bands were
statistically determined based on gray-level metrics and were used with a threshold technique to
discriminate between melting lake ice and open water in Radarsat-2 SAR images of small, shallow lakes
in the Old Crow Flats region, Yukon [28]. Zakhvatkina et al. [17] investigated which GLCM SAR texture
features were optimal for discriminating between sea ice types in ENVISAT ASAR imagery. The authors
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calculated nine texture features and used them to train a neural network classifier which was tested on
20 images, resulting in average classification accuracy greater than 80%. Later, texture features were
used with an SVM classification approach to distinguish sea ice and open water with average accuracy
of 91 ± 4% [20]. The Iterative Region Growing using Semantics (IRGS) algorithm was used with an
SVM classifier trained on 28 GLCM features resulting in 96.42% average accuracy [18]. Liu et al. [29]
also implemented SVM for labeling after extracting GLCM features with good results. GLCM features
were chosen to train the classifier in this research because of the considerable results obtained in
these studies.

The IRGS algorithm has been created to perform segmentation of SAR ice imagery in an automated
and reliable way. This technique incorporates ‘high detail local’ and ‘large scale global’ information
and is further explained in Section 3 [18]. Both automated and manual labeling techniques have been
employed in combination with IRGS for ice classification. Ochilov & Clausi [30] presented a novel
unsupervised sea ice labeling technique which uses neighborhood information in a Markov random
field framework. In this approach, no training samples were required but an ice analyst provided
metadata about each polygon to be used during labeling. IRGS segmentation was later employed with
a SVM model to assign ice-water labels with high accuracy, as previously mentioned [18]. Li et al. [31]
used some properties of IRGS in a semi-supervised approach for ice-water classification based on
self-training. Most recently, IRGS segmentation was combined with manual ice-water labeling on
26 RADARSAT-2 scenes of Lake Erie attaining 90.4% average accuracy [32].

Here, we present the “IRGS-RF” classification approach which combines IRGS segmentation
with random forest supervised labeling. This fully automated approach has achieved 95.8% average
accuracy in the classification of ice and water in 36 RADARSAT-2 SAR images of Great Bear Lake
(Canada). The approach combines the IRGS segmentation methodology with an RF classification model
incorporating GLCM features. The efficacy of this method is demonstrated here and compared with
four other methods. These include a second integrated approach which instead applies supervised
SVM labeling with IRGS, similar to that presented by Leigh et al. [18] (hereafter “IRGS-SVM”),
a semi-automated approach combining IRGS segmentation with manual labeling as described by
Wang et al. [32] (“IRGS-Manual”), and pixel-based RF and SVM classification methods without the
use of IRGS (“RF” and “SVM” respectively). The accuracy of these five methods are tested against
14,400 randomly sampled reference pixels across the 36 scenes used.

2. Data

The images used in this study are captured over Great Bear Lake (GBL), shown in Figure 1.
This large, deep lake is located within the Mackenzie River Basin, Northwest Territories, Canada.
It spans 31,000 km2 with a mean depth of 76 m and a maximum depth of 446 m. It is described to be ice
covered from November to July [9]. Mean monthly temperatures at Déline (located on the South-West
shore) range from 13.3 to −25.2 ◦C, remaining below 0 ◦C from October to April.
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Figure 1. Location of Great Bear Lake within Canada. Footprints of the 36 RADARSAT-2 scenes used
in this work are shown in yellow.

2.1. Synthetic Aperture Radar Data

Thirty-six RADARSAT-2 scenes of GBL are used in this study spanning three ice cover seasons
from 2013–2016 as outlined in Table 1. All images are dual-polarized HH and HV images in ScanSAR
wide beam mode. Each image covers a swath width of 500 by 500 km, with a nominal spatial resolution
of 100 m. Each image is originally approximately 10,000 by 10,000 pixels with 50 m by 50 m pixel
spacing; however the images have been downsampled using a 4 × 4 block average to minimize
computation time. Images were acquired in both ascending and descending passes, with incidence
angles ranging from 20–49 degrees [33]. Areas of land were excluded from segmentation using
a vector-based mask with a 250 m buffer between the lake and its shorelines to minimize the inclusion
of land pixels in classification results. Only scenes that included 70% or more of the lake were used so
that classification outcomes could be compared to the weekly fraction reported by CIS. The chosen
image set represents a suitable sample for this study as it offers a range of backscatter signatures and
incidence angles for ice and water at varying points throughout the ice freeze-up and break-up process.



Remote Sens. 2020, 12, 1425 5 of 21

Table 1. List of SAR scenes used in this work. Highlighted scenes indicate ice freeze-up period while
non-highlighted indicate ice break-up period.

Scene ID SAR Acquisition
Date (M/D/Y)

Acquisition Time UTC
(hh:mm:ss)

Ascending (A)/
Descending (D)

20131122_142937 11/22/2013 14:29:37 D
20131129_142532 11/29/2013 14:25:32 D
20131205_145035 12/05/2013 14:50:35 D
20131206_142120 12/06/2013 14:21:21 D
20131212_144618 12/12/2013 14:46:18 D
20131219_144152 12/19/2013 14:41:52 D
20140612_143755 06/12/2014 14:37:55 D
20140619_143342 06/19/2014 14:33:42 D
20140629_144205 06/19/2014 14:42:05 D
20140703_142514 07/03/2014 14:25:14 D
20140710_142114 07/10/2014 14:21:14 D
20141031_142522 10/31/2014 14:25:22 D
20141106_145027 11/06/2014 14:50:27 D
20141107_142115 11/07/2014 14:21:15 D
20141112_013553 11/12/2014 01:35:53 A
20141120_144206 11/20/2014 14:42:06 D
20141127_143745 11/27/2014 14:37:45 D
20141203_012332 12/03/2014 01:23:32 A
20150528_142923 05/28/2015 14:29:23 D
20150606_012716 06/06/2015 01:27:16 A
20150611_142104 06/11/2015 14:21:04 D
20150618_141641 06/18/2015 14:16:41 D
20150701_143743 07/01/2015 14:37:43 D
20151029_143745 10/29/2015 14:37:45 D
20151105_143336 11/05/2015 14:33:36 D
20151112_142917 11/12/2015 14:29:17 D
20151119_142512 11/19/2015 14:25:12 D
20151126_142102 11/26/2015 14:21:02 D
20151202_144602 12/02/2015 14:46:02 D
20151209_144152 12/09/2015 14:41:52 D
20160518_144544 05/18/2016 14:45:44 D
20160525_144140 05/25/2016 14:41:40 D
20160610_013545 06/10/2016 01:35:45 A
20160617_013133 06/17/2016 01:31:33 A
20160630_015219 06/30/2016 01:52:19 A
20160706_141626 07/06/2016 14:16:26 D

2.2. Reference Data

To assess the accuracy of the classification outcomes, reference information was generated for
comparison. A random sample of 400 pixels within the lake were selected for each scene and labeled as
either ice or water based on visual interpretation of morphology, texture, and backscatter. This data was
created in the MAp-Guided Ice Classification (MAGIC) System [24], further detailed in Appendix A.
A CIS ice analyst provided training to the authors and advised the use of an RGB visualization of SAR
bands (HH/HH/HV in the R/G/B channels) to help discriminate between classes. MODIS optical
imagery was also used during this process to create the most accurate reference data possible.

Weekly ice concentration fractions are recorded by CIS for two sections (north and south) of GBL.
In this work, north and south fractions have been averaged to simplify reporting. These fractions are
compared to the total ice concentration produced by the tested classification methods.
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3. Methodology

3.1. IRGS Segmentation

The IRGS algorithm has been specifically tailored to deal with the unique segmentation challenges
present in SAR scenes of ice and water. The steps involved in IRGS segmentation are shown in
Figure 2 and described by Leigh et al. [18]. The MAGIC system detailed in Appendix A is used to
implement IRGS in this study. When employing IRGS the lake is first divided using a watershed
algorithm into several sub-regions called ‘autopolygons’ which follow the natural structure of the
image [24,34]. This step (shown in Figure 2c) is carried out using only the HV image because it
shows less backscatter variation as a result of strong wind roughness or incidence angle effects [32].
The creation of autopolygons decreases errors caused by these effects across the image as each one is
segmented individually in the following steps, negating the need for incidence angle normalization.

(a) (b)

(c) (d)

Figure 2. Steps of the IRGS segmentation approach for the scene from 2 December 2015. (a) HH
polarization SAR image, (b) HV polarization SAR scene with brightness increased by 75%,
(c) Autopolygons; HV image after autopolygon segmentation, (d) Segmentation; all segments ‘glued’
into the final chosen number of classes.

Within each autopolygon, small uniform regions are again distinguished using a watershed
algorithm and both SAR bands [18]. Each region is then represented by a node in a region adjacency
graph and assigned an initial label. The subsequent segmentation is an iterative process which
involves merging and clustering regions towards an ideal configuration with fewer nodes [35].
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During this process edge strength between adjacent regions as well as neighborhood information is
considered, increasing segmentation accuracy [14]. This process ultimately divides each autopolygon
into homogeneous regions of ice or water. Once complete, an image wide ‘gluing’ step is performed,
wherein similar regions from any of the autopolygons are merged into a set number of final classes as
defined by the user (shown in Figure 2d) [18]. This is called the ‘glocal’ approach as it incorporates
‘high detail local’ and ‘large scale global’ information [18]. These final classes can then be labeled
manually by the user or labeled with the use of an automated technique. Both are described in the
following sections.

3.2. IRGS-Manual Semi-Automated Classification

For manual classification, the IRGS method as described above was implemented in MAGIC to
segment the image into multiple classes. Each autopolygon was segmented into five internal classes
based on both the HH and HV bands and then glued into 12 final arbitrary classes across the entire
scene. To complete the binary classification these classes were manually labeled as ice or water based
on visual interpretation. These 12 segmentation classes do not represent specific ice types, but instead
are necessary to prevent areas of ice and water from being merged. Preliminary testing through
trial-and-error was conducted to arrive at the most suitable parameters to be used for this process,
balancing the homogeneity of the final classes with the amount of time needed to label them. Gluing to
12 final classes adequately separated sections of ice and water, while remaining relatively quick to
label. This method was applied by Wang et al. [32] for ice-water classification, using eight classes in
the gluing step. The authors also used experimentation to arrive at optimal parameters for their study.

3.3. Automated Classification

3.3.1. Features

Multiple studies (as mentioned in Section 1) have demonstrated the value of using GLCM features
to increase classification results. In this work, the following GLCM measures were used:

• Contrast Group: contrast (CON), dissimilarity (DIS), homogeneity (HOM)
• Orderliness Group: applied second moment (ASM), entropy (ENT), inverse moment (INV)
• Statistics Group: mean (MU), standard deviation (STD), correlation (COR)

Window size and step size of the sliding window are also important parameters for GLCM
features. Window size determines the perceptive area for textural features. For example, open water
areas are more easily captured by larger windows while smaller windows have good performance
detecting small individual ice floes. The step size of GLCM reflects the scale of repeating patterns.
The parameters used in this paper are shown in Table 2. All features were extracted from both
HH and HV images, resulting in 162 total features. Pixel intensity, local average, and maximum
pixel intensities in window sizes of 5 × 5 and 25 × 25 were also selected into the feature pool.
Recursive feature elimination with cross-validation [36] was adopted in this work for selecting the
best feature combination to reduce computation time and avoid overfitting. The initial feature set is
recursively pruned to eliminate features with less importance. This procedure is repeated based on
a cross-validation strategy until reaching the best classification result. In this work, feature selection
ran 36 times for cross-validation of each scene in the data set using a leave-one-out (LOO) method
to achieve the final feature ranking. For each loop in this procedure, the feature selection estimator
was trained on 35 scenes and tested on the remaining scene to determine feature importance. After all
36 scenes were cross validated, the importance rankings for each feature from each loop were summed
to provide the final feature rank. The selected 31 features from this process are listed in Table 3.
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Table 2. GLCM measures.

Window Size (Pixels) Step Size (Pixels)

5 by 5 1

11 by 11 1

25 by 25 1

25 by 25 5

51 by 51 5

51 by 51 10

51 by 51 20

101 by 101 10

101 by 101 20

Table 3. List of 31 GLCM and statistical features selected using recursive feature elimination and
cross-validation strategy. Window size and step size are shown in pixels.

Feature Rank Polarization Feature Name Window Size Step Size

1 HV GLCM ASM 25 by 25 1

2 HV GLCM COR 25 by 25 1

3 HV GLCM ASM 25 by 25 5

4 HV GLCM ENT 11 by 11 1

5 HV GLCM ASM 11 by 11 1

6 HH GLCM HOM 101 by 101 10

7 HH GLCM ASM 11 by 11 1

8 HH GLCM MU 51 by 51 20

9 HV GLCM ASM 51 by 51 5

10 HH GLCM COR 25 by 25 1

11 HH GLCM ASM 25 by 25 1

12 HV GLCM STD 25 by 25 5

13 HV GLCM STD 11 by 11 1

14 HH GLCM INV 101 by 101 10

15 HH GLCM MU 51 by 15 10

16 HH GLCM HOM 51 by 51 5

17 HH GLCM MU 51 by 51 5

18 HV GLCM ASM 51 by 51 10

19 HV GLCM HOM 25 by 25 5

20 HH GLCM ASM 25 by 25 5

21 HH GLCM MU 101 by 101 10

22 HH GLCM ASM 5 by 5 1

23 HH GLCM HOM 101 by 101 20

24 HH GLCM COR 11 by 11 1

25 HH GLCM MU 5 by 5 1

26 HH GLCM HOM 25 by 25 1

27 HH Pixel Average 25 by 25 1

28 HV GLCM ASM 101 by 101 10

29 HH GLCM ASM 51 by 51 5

30 HV GLCM INV 25 by 25 5

31 HH Pixel Average 5 by 5 1
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3.3.2. Classifiers

Support Vector Machine

A support vector machine (SVM) is a supervised classification method for binary cases. It computes
a linear decision hyperplane in a high-dimensional feature space using the subset of training samples,
which are called the support vectors, near the decision boundary to maximize margins. The SVM tries to
minimize the following risk function to determine the label for the test sample.

f (x) = ∑
∀i

yiαiK (xi, x) (1)

where yi are class labels ∈ {0, 1} for binary cases (0 is ice and 1 is water in this study), αi are weights
learned by training, K() is a kernel function, xi are the support vectors, and x is the sample to be
classified. There are different kernels for different tasks, such as linear, polynomial, radial basis
function (RBF), and sigmoid. Nonlinear kernels are widely used for classification since they map
features to high dimension space to solve nonlinear problems. The kernel function used in this study
is RBF with the form

K
(
ti, t

)
= exp

(
−γ

∣∣ti − t
∣∣2) (2)

where γ is a Gaussian scaling parameter.
∣∣ti − t

∣∣2 is the squared Euclidean distance (SED) between
two data points ti and ti. RBF measures the similarity between data samples and projects them to
a new feature space for better classification performance. To reduce overfitting and computational
cost, SVM is built on very few support vectors to determine the classification hyperplane. Moreover,
SVM provides more robust results compared to other conventional classifiers [37].

Random Forest

RF classifiers consist of many classification and regression trees. The training data for each decision
tree is bootstrap sampled from the whole data set, and for each node in a decision tree, the training
data is sampled without replacement from the whole data set. This bootstrap sampling strategy helps
to suppress overfitting. After all the decision trees have been trained, each produces a classification
label and a vote for the final label, which is determined using majority voting. This procedure increases
the robustness of RF and reduces running time as decision trees are trained in parallel. Unlike SVM,
it is unnecessary to select features for RF since a Gini index is employed to assign importance to each
feature. Because of these properties, RF is easy to implement and has better generalization ability [38].

In this paper, RF is selected for three reasons. First, it is less affected by outliers and noise in a data
set, which is of great importance for SAR image interpretation as SAR images are degraded by speckle
noise. Second, RF can deal with many input features and will not be trapped in overfitting to the data
set. This is necessary for this work as nearly two hundred GLCM features were calculated. Finally,
RF can determine the importance of each input feature by measuring the degradation in classification
accuracy when randomly altering one of the input features while keeping the rest constant.

3.4. Integration of Segmentation and Labeling

For the SVM and RF methods, each pixel was assigned an ice or water label. For the IRGS-SVM and
the proposed IRGS-RF method, class labels were assigned regionally based on the IRGS segmentation
output. A flow chart of the proposed IRGS-RF automated ice-water classification method is shown
in Figure 3. The input is composed of the HH and HV images, landmask, and pre-trained classifier.
The classifier is trained based on the selected features in Table 3 and the same features are extracted
from HH and HV images for supervised labeling. The segmentation results generated by IRGS contain
hundreds of simply connected homogeneous regions, as gluing into a low number of final classes is
not needed to expedite manual labeling. To assign labels the pixel-wise classifier is adopted to generate
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a ‘rough’ classification within each segment. Inspired by the mechanism of RF, majority voting is
introduced to label each segmented region, where the dominant class from the pixel-wise classification
result is assigned to the whole segment. Training and testing for the labeling step are also done using
a LOO method similar to the one employed in Section 3.3.1 wherein models are trained on 35 scenes
and tested on the single remaining scene. This process is repeated until all scenes have been evaluated.

Figure 3. Flowchart of ice-water classification system. Inputs are images, landmask, and trained
classifier (SVM or RF). The left block is unsupervised segmentation using IRGS, while right block is
supervised pixel-based labeling. The final classification result is the combination of segmentation and
labeling based on majority voting.

4. Results

In this work, five classification methods were tested on 36 RADARSAT-2 scenes of GBL and
validated against 400 reference pixels per scene. The IRGS-Manual, RF, and IRGS-RF methods
performed very well overall, each with average accuracy over 90%. The IRGS-RF approach had
the highest agreement with reference data, resulting in an average accuracy of 95.8%. For this
method, the highest accuracy for a single scene was 100% and the lowest was 85%. Table 4 details
the classification accuracy for each scene and method. The SVM methods performed nominally well
overall, with average accuracy at 74.7% and 81.1% for the SVM and IRGS-SVM approaches, respectively.
However, visual inspection reveals that the pixel-based SVM method often produced noisy results
which did not accurately represent ice and water. In some cases both SVM methods performed very
poorly, erroneously classifying large swaths of open water as ice with accuracy as low as 3.8%.
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Table 4. Classification accuracy results of each tested method for all 36 scenes (shown in percent).
Accuracy and error totals may not add to 100% due to rounding.

Scene ID IRGS-Manual SVM RF IRGS-SVM IRGS-RF

20131122_142937 81.9 68.3 87.8 83.5 88.8

20131129_142532 86.8 63.3 87.8 61.9 89.7

20131205_145035 98.8 85.8 97.8 98.5 98.0

20131206_142120 97.5 90.0 97.3 97.7 97.7

20131212_144618 100.0 91.8 97.3 99.3 100.0

20131219_144152 100.0 91.3 96.8 100.0 100.0

20140612_143755 99.5 90.5 98.8 99.5 99.5

20140619_143342 98.5 87.8 98.8 95.8 99.3

20140629_144205 92.3 68.8 85.8 64.3 85.0

20140703_142514 93.3 76.5 90.5 90.0 92.8

20140710_142114 99.2 78.0 99.2 87.4 99.7

20141031_142522 98.3 61.5 93.8 89.0 97.5

20141106_145027 92.0 33.5 95.8 27.3 95.0

20141107_142115 86.1 55.8 91.5 61.5 90.0

20141112_013553 88.5 54.0 93.8 54.3 93.8

20141120_144206 84.8 83.8 94.50 85.5 92.5

20141127_143745 86.0 81.0 94.3 84.8 98.5

20141203_012332 93.0 92.8 98.4 99.7 99.5

20150528_142923 98.8 88.6 99.5 100.0 100.0

20150606_012716 99.7 81.8 90.0 84.4 99.5

20150611_142104 98.5 97.5 99.3 97.8 99.5

20150618_141641 99.5 94.5 98.3 93.5 98.8

20150701_143743 87.5 10.3 89.0 3.8 92.8

20151029_143745 96.5 58.0 94.5 60.8 97.5

20151105_143336 96.0 74.0 92.5 80.1 95.2

20151112_142917 88.3 73.3 90.3 92.0 91.0

20151119_142512 88.3 75.8 87.3 90.5 93.8

20151126_142102 77.3 77.3 93.3 91.6 91.0

20151202_144602 84.0 82.8 98.0 96.3 98.8

20151209_144152 100.0 89.5 98.0 100.0 100.0

20160518_144544 100.0 84.3 72.3 99.0 95.5

20160525_144140 100.0 76.5 70.0 78.3 88.3

20160610_013545 97.5 87.8 99.0 91.2 98.5

20160617_013133 95.0 79.3 94.5 75.0 94.8

20160630_015219 93.3 28.0 96.8 27.5 99.0

20160706_141626 98.8 77.0 97.8 76.8 99.0

Overall Accuracy 93.8 74.7 93.3 81.1 95.8

Ice Error 2.6 6.3 3.3 2.3 1.9

Open Water Error 3.7 19.0 3.5 16.7 2.2
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The majority of overall error in the SVM and IRGS-SVM results are from water error, which is
19.0% and 16.7% respectively, and examples of this phenomenon are found during both the freeze-up
and break-up periods. In scenes from 6 November 2014, 1 July 2015, and 30 June 2016 these two
methods label most of the lake as ice covered when the opposite is true, resulting in 33.5% accuracy or
less in these three cases.

Ice error and water error for all tested methods is also reported in Table 4. The IRGS-Manual
method has slightly more open water error (3.7%) than ice error (2.6%), meaning this method more
often overestimated the amount of ice present on the lake. The IRGS-RF method has nearly equal
amounts ice error and water error at 1.9% and 2.2% respectively.

Box plots showing the spread of accuracy values for the tested methods by period and overall
are included in Figure 4. The low minimum accuracy results from the SVM and IRGS-SVM methods
are clearly shown here as outlier values. The scene from 1 July 2015 is the most extreme case, where
the accuracy for each is 10.3% and 3.8% respectively. Two outliers also exist in the RF results from
18 and 25 May of 2016 where accuracy is 72.3% and 70.0% respectively. The IRGS-Manual approach
performed slightly better during ice break-up period, with an average accuracy of 97.0% compared to
91.2% during freeze-up. This is likely due to the higher contrast in backscatter between classes which
is visibly noticeable during that time. The IRGS-RF approach outperformed the other methods tested
and had a consistently high level of agreement with reference data independent of period, with only
one percent difference between freeze-up and break-up accuracy. Examples of classification outcomes
for all tested methods are shown in Figures 5–7 and 9, and are discussed in the following section.

Figure 4. Box and whisker plots showing the distribution of classification accuracy values resulting
from each method for the tested scenes overall (36 scenes) and by period (20 and 16 for freeze-up and
break-up respectively). Mean is represented by “x”. Outliers which exceed a value of 1.5 times below
the first quartile are represented by dots.

5. Discussion

The proposed IRGS-RF method achieved better performance compared with the other methods
in general according to the numerical results, as well as upon further visual inspection. The scene
of 27 November 2014, which is shown in Figure 5, serves as a good example of performance for the
methods tested during freeze-up, when multiple signatures of ice and water are present. Figure 5a
shows a complex HH polarized scene from GBL. Three main areas of open water are present, each with
similarly high backscattering and texture present. In this case the IRGS-RF result has 98.5% agreement
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with reference data, adequately capturing the three main areas of open water. The pixel-based RF
method also performed well, but produced small ice errors on sections of black ice in the northwest arm.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Ice-water classification of 27 November 2014 scene (scene ID: 20141127_143745). Ice is shown
in yellow and water in blue. (a) HH image. (b) IRGS-Manual with accuracy of 86.0%. (c) SVM pixel-wise
classification with accuracy of 81.0%. (d) IRGS-SVM; IRGS segmentation labeled by SVM with accuracy
of 84.8%. (e) RF pixel-wise classification with accuracy of 94.3%. (f) IRGS-RF; IRGS segmentation
labeled by RF with accuracy of 98.5%.

The IRGS-Manual approach performed below average for this scene with 86% accuracy.
A common flaw in this method arises during the gluing step when homogeneous segments from
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each autopolygon are merged across the entire scene to create the final class outputs. These segments
should remain homogeneous after gluing; however, ice and water segments from the autopolygons
sometimes become merged. This gluing step is necessary to ease manual classification as the user only
needs to label a handful of segments instead of the hundreds present before this step. This flaw often
forces the user to choose a single label for a segment they know to be heterogeneous based on which
label accounts for more of the segment, as is the case in Figure 5b and several other scenes during
freeze-up, likely contributing to the lower average freeze-up accuracy of this method. An advantage of
the IRGS-SVM and IRGS-RF automated methods is that gluing into a low number of final classes is not
needed, and each segment within and across all autopolygons can be labeled individually since time
consuming manual labeling is no longer required.

An example from the ice break-up period acquired on 25 May 2016 is shown in Figure 6
where a small amount of open water has begun to appear in the southern arm of GBL. Most of
the lake has a solid ice cover with relatively low backscatter when compared to earlier images,
likely resulting from internal ice melt, melt water ponds, or melting snow cover lowering the reflected
radar signal [39]. A narrow range of backscatter values can still be observed, with ice in the south arms
of the lake appearing brighter than that in the central basin. Some unique ice textures are also present.
IRGS-Manual performs near perfectly (as the user can simply label all segments as ice), but misses the
small area of open water. Conversely, all the automated methods produce ice error in multiple regions.

Although SVM has been proven as a powerful method for binary classification, it has some
limitations. First, it requires several well-tuned key parameters to achieve a satisfactory result. Second,
SVM projects features to a high-dimensional space, which demands significant computational power
and may lead to overfitting. Figures 5c and 6c display noticeable noise-like errors typical to many
classification results from the pixel-based SVM method. This method failed to properly label ice
and water in several cases including scenes from 6 November 2014, 1 July 2015 and 30 June 2016,
where agreement with reference data was as low as 10.3%. IRGS-SVM also failed in these cases,
as IRGS-SVM labeling uses the SVM result for segment-wise majority voting.

These issues are not common in the in the pixel-based RF or IRGS-RF results. Bootstrap
aggregating, which is the principle idea of RF, suppresses overfitting by limiting the features and
samples for training. In addition, RF does not require feature selection as it determines importance
for each feature [36]. Despite these advantages, the RF and IRGS-RF methods both perform relatively
poorly in the classification of the 25 May 2016 scene (Figure 6e,f) when compared to other results from
these methods, though both showed better overall performance than the SVM methods.

Although the RF and IRGS-RF results shown in Figure 6 were poorer than average, the integration
with IRGS improved the classification, with final accuracy from IRGS-RF increased to 88.3% from 70.0%
without IRGS. It is possible that surface melt conditions may have contributed to the high amount
of ice error in this case. In other scenes from spring break-up the IRGS-RF method classified total ice
cover with perfect or near perfect accuracy (for example scenes 20150528_142923, 20150606_012716,
and 20160518_144544 shown in Figure 7f).

An automated classification method must be able to characterize key events in the ice phenology
cycle including full ice cover, the beginning of melt onset, and when the lake is clear of ice, as these
metrics are commonly used to quantify ice cover change in long term studies [2,3]. Figure 7 shows the
results of RF and IRGS-RF from 10 July 2014 and 18 May 2016 when the lake is fully open water and
completely ice covered. In Figure 7a, the surface appears dark with some slightly brighter patches
caused by wind roughness. Both the pixel-based RF and IRGS-RF methods perform well at 99.2%
and 99.7% respectively, proving them to be robust enough to characterize open water when surface
roughness from wind is present. Figure 7b shows GBL totally ice covered, with a narrow range of
backscatter characteristics similar to those seen in Figure 6a from later that month. Pixel-based RF
achieved 72.3% classification accuracy with ice error present in much of the southern and eastern
basins. In the IRGS-RF result, most of these errors are removed and accuracy is improved to 95.5%.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Ice-water classification of 25 May 2016 scene (scene ID: 20160525_144140). Ice is shown in
yellow and water in blue. (a) HH image. (b) IRGS-Manual with accuracy of 100.0%. (c) SVM pixel-wise
classification with accuracy of 76.5%. (d) IRGS-SVM; IRGS segmentation labeled by SVM with accuracy
of 78.3%. (e) RF pixel-wise classification with accuracy of 70.0%. (f) IRGS-RF; IRGS segmentation
labeled by RF with accuracy of 88.3%.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Ice-water classification of scenes where GBL is fully open water and fully ice covered.
Ice is shown in yellow and water in blue. Left: classification results of 10 July 2014 with full open
water. From top to bottom: (a) HH image, (c) RF pixel-wise classification with accuracy of 99.2%,
and (e) IRGS-RF; IRGS segmentation labeled by RF with accuracy of 99.7%. Right: classification results
of 18 May 2016, with full ice cover. From top to bottom: (b) HH image, (d) RF pixel-wise classification
with accuracy of 72.3%, and (f) IRGS-RF; IRGS segmentation labeled by RF with accuracy of 95.5%.
IRGS-RF and CIS ice cover fractions are shown in windows (e,f) for comparison.
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Figure 8 displays the amount of ice cover on GBL resulting from pixel-based RF and IRGS-RF
classification (as a fraction out of ten) in comparison to the ice cover reported by CIS. Both methods
closely follow the reported ice fraction from CIS, varying by 1/10th or less in 26 and 27 of the 36 scenes
for RF and IRGS-RF, respectively. The largest discrepancy in ice cover occurs in the scene from 1 July
2015 where the RF and IRGS-RF classifications resulted in total ice coverage of 1.0/10 and 0.7/10 while
the recorded fraction from CIS was 5.5/10. Upon visual inspection the IRGS-RF result most correctly
represents the ice conditions present in the scene, with accuracy at 92.8%. Although the ice fraction for
the RF result is closer to the CIS reported fraction, several areas of open water error are present in the
central and southern basin of the lake. These errors are likely caused by increased backscatter from
wind roughness which is visible in the HH polarization.

The classification improvement in scenes with high ice cover by integrating IRGS with RF is
further visualized in Figure 8. IRGS-RF results from 6 June 2015, as well as the previously mentioned
scenes from 18 and 25 May 2016, are all shown to follow the reported ice fraction from CIS more closely
than the RF results. Examples are given in Figures 7e,f, and 9e,f, where the ice cover fraction and
results from IRGS-RF classification are displayed along with the fraction reported by CIS, showing
that the proposed method adequately captures ice cover and is comparable with the CIS fraction.

Figure 8. Ice cover fraction for GBL generated with IRGS-RF with comparison to the reported fraction
from CIS. The date of each SAR scene in this study is shown with the corresponding fraction; however
the date of reported ice cover from CIS may vary from this date by ±3 days.

In general, the addition of IRGS segmentation before RF labeling improved the accuracy of results,
and average accuracy increased by 2.5% from 93.3% for RF to 95.8% for IRGS-RF. Although this
is numerically a small improvement, the value of this addition cannot be demonstrated only by
numerical results. The IRGS step refines ice-water boundaries and suppresses ice error and water
error. This improvement is demonstrated in Figures 5f–7f, and is confirmed by the examples shown
in Figure 9. In Figure 9c from 6 June 2015, the pixel-based RF has erroneously labeled regions in the
northwest arm as open water. IRGS-RF was able to capture that the whole lake shares the same spatial
contextual information and overall accuracy improved to 99.5%. For the scene acquired on 2 December
2015 (Figure 9b) the numerical improvement from RF to IRGS-RF is only 0.8% but the improvement
is more noticeable when visually comparing the two results. Red circles in Figure 9d show regions
of ice error which were eliminated in the IRGS-RF result. In green circle 1 the pixel-based RF result
has lost detail at the ice-water boundary, where both classes have similar signatures. This detail is
preserved in the IRGS-RF result. Similarly, the ice error shown in green circle 2 is refined by the
proposed method. Based on the demonstrated improvements, integration of IRGS segmentation with
RF is valuable for minimizing classification error, especially considering this step adds less than one
minute to computation time.
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(a) (b)

(c)
h

(d)

(e) (f)

Figure 9. Ice-water classification accuracy improvement from pixel-based RF to IRGS-RF. Ice is shown
in yellow and water in blue. Left: classification results of 6 June 2015 (scene ID: 20150606_012716),
from top to bottom: (a) HH image, (c) RF pixel-wise classification with accuracy of 90.0%, and (e)
IRGS-RF; IRGS segmentation labeled by RF with accuracy of 99.5%. Right: classification results of 2
December 2015 (scene ID: 20151202_144602), from top to bottom: (b) HH image, (d) RF pixel-wise
classification with accuracy of 98.0%, and (f) IRGS-RF; IRGS segmentation labeled by RF with accuracy
of 98.8%. Red circles show ice error which is suppressed in IRGS-RF result, green circles demonstrate the
refinement of ice edge. IRGS-RF and CIS ice cover fractions are shown in windows (e,f) for comparison.

6. Conclusions

The robust and automated IRGS-RF method is proposed in this work to classify lake ice and open
water. This method combines IRGS segmentation and supervised pixel-wise RF labeling, both of which
are state-of-the-art methods in remote sensing. Five methods including the proposed approach were
tested on 36 RADARSAT-2 scenes of Great Bear Lake from 2013 to 2016. The results were validated
against a reference dataset created through human interpretation, which is currently the most common
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operational method for ice-water classification. Results from the proposed method were also compared
to the reported fraction from CIS at the time.

For pixel-wise classification algorithms, RF performed much better than SVM with overall
accuracy at 93.3% and 74.7% respectively. When combined with spatial context information provided
by IRGS segmentation, both methods increased in accuracy. The proposed IRGS-RF method achieved
overall accuracy of 95.8%, a slight improvement over the previously tested IRGS-Manual (93.8%
accuracy). IRGS-RF performed reliably well across both the freeze-up and break-up periods making it
a robust classification tool for operational use.

The value of IRGS segmentation integrated with RF labeling is not only captured in the
numerical results, but demonstrated through visual interpretation. Ice-water boundaries are refined,
and noise-like errors are suppressed. Although the proposed method achieved good results,
some limitations exist. First, processing time is longer than human interpretation due to GLCM
feature extraction. Second, some ice error and water error occur, especially in early spring. However,
IRGS-RF shows promise as an automated means of accurately processing SAR data for operational lake
ice monitoring. RF labeling minimizes the need for visual interpretation, an essential advancement
needed to process the vast amount of imagery becoming available from recently launched SAR
missions including Sentinel 1 A/B and the RADARSAT Constellation Mission (RCM).

It has been noted that supervised classification algorithms often only perform well on specific
geographic regions based on training data and thus cannot be widely applied without regional
validation [32]. Future work should test the IRGS-RF method on a larger dataset including multiple
lakes at several latitudes and locations, training and testing the model under a variety of scenarios.
This will further test the robustness of the method for operational use.
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Appendix A. Software and Hardware Specifications

Appendix A.1. Software

The IRGS-Manual results, as well as the GLCM features and IRGS segmentations for the
IRGS-SVM and IRGS-RF methods were acquired in MAGIC [24,40]. This guided user interface
was developed by The Vision and Image Processing Lab at the University of Waterloo and coordinates
data input/output, visualization, and operations to run the IRGS algorithm, GLCM feature extraction,
and other functions. The landmask and reference data produced for this work were also created in
MAGIC. Please contact the authors of this paper for a copy of the MAGIC executable. Pixel-based
SVM and RF results and feature selection were obtained using Scikit-learn [41].

Appendix A.2. Hardware

The computer configurations used to create the classification results compared in this study are
described below:

• For IRGS-Manual classification: Intel i7 4790 with 16 GB RAM
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• For RF, SVM, IRGS-RF and IRGS-SVM: Intel i7 6700K with 32 GB RAM
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