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Abstract: Hyperspectral image (HSI) classification accuracy has been greatly improved by employing
deep learning. The current research mainly focuses on how to build a deep network to improve the
accuracy. However, these networks tend to be more complex and have more parameters, which makes
the model difficult to train and easy to overfit. Therefore, we present a lightweight deep convolutional
neural network (CNN) model called S2FEF-CNN. In this model, three S2FEF blocks are used for the
joint spectral-spatial features extraction. Each S2FEF block uses 1D spectral convolution to extract
spectral features and 2D spatial convolution to extract spatial features, respectively, and then fuses
spectral and spatial features by multiplication. Instead of using the full connected layer, two pooling
layers follow three blocks for dimension reduction, which further reduces the training parameters.
We compared our method with some state-of-the-art HSI classification methods based on deep
network on three commonly used hyperspectral datasets. The results show that our network can
achieve a comparable classification accuracy with significantly reduced parameters compared to the
above deep networks, which reflects its potential advantages in HSI classification.

Keywords: hyperspectral image classification; spectral-spatial feature extraction and fusion;
deep learning; convolutional neural network

1. Introduction

Hyperspectral remote sensing technology is a focus in the remote sensing field, which has been
applied for crop management, image segmentation, object recognition, etc. [1-4]. Hyperspectral image
classification often plays the most important role of these applications. In HSI, each pixel is always
considered as a high-dimensional vector. So, the classification of HSI is essentially to predict a specific
category for each pixel according to its characteristics [5].

According to the way in which hyperspectral image features are acquired, we classify the
hyperspectral image (HSI) classification methods into two categories: one is the method that extracts
the HSI features manually, while the other is the method that extracts the HSI features automatically.

The traditional HSI classification methods belong to the first category, most of which analyze the
HSIs and extract their shallow features for classification. The most prominent feature of HSI is the
rich spectral information. Early researches concentrated on acquiring accurate and efficient spectrum
characteristics [6-10]. For example, the authors of [6] and [7] used spectral angle or spectral divergence
for pixel matching. In addition, the authors of [8-10] used another kind of method based on statistics,
completed the classification by learning from the labeled samples. In [11], a more accurate feature
extraction based on Principal Components Analysis (PCA) was used. However, the HSI data includes
not only spectral features of each pixel but also the spatial relationship between these pixels. Only using
the spectral information for classification leads to low accuracy. Therefore, current research on HSI
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classification mostly uses the spectral-spatial features for classification [12-19]. In [16], a controlled
random sampling strategy was used to get a more accurate training set and testing set. In [17],
the spectrum was first partitioned into several groups and then band-specific spectral-spatial features
were extracted by a convolutional neural network (CNN). In [18], the Gabor features were stacked
through Gabor filters with spectral features for classification. All of this research has proven that using
spectral-spatial joint features for HSI classification can effectively improve classification accuracy.

CNN is a representative deep learning model [20-23]. The task of HSI classification, according to
the different features processed by CNN, falls into three categories. The first category is 1D-CNN based
on spectral features only. In 2015, Wei et al. [24] applied a five-layer CNN to HSI classification and
proposed the 1D-CNN network to extract spectral features. Li et al. [14] proposed the idea of pixel pairs,
learning the spectral features of a pair of pixels, and predicted the final classification results by voting.
Yue [25] used preprocessing before feature extraction. Mei et al. [26] preprocessed each pixel with the
mean and standard deviation from its neighborhood. The second category is a spatial feature-based
method called 2D-CNN. The authors of [15] introduced L2 regularization and virtual samples. In [27],
the Bayesian method was introduced. In [28], spatial features were expressed by sparse representation.
The authors of [29] proposed a classification network on specific scenes. The last category is the
spectral-spatial feature based method. In this case, there are two different ways of feature processing.
One is 3D-CNN. Three-dimensional convolution was first used for video processing, and is now widely
used in HSI classification [30-34]. The other is hybrid CNN. Various different applications have been
proposed [35-38]. For example, different hybrid ways of using 1D-CNN and 2D-CNN were presented
in [35-37]. While the authors of [38] proposed a hybrid network of 3D-CNN and 2D-CNN.

In addition to CNN, other different deep models have been proposed and applied in HSI
classification, such as stacked autoencoder (SAE) [39], deep belief network (DBN) [40], deep restricted
Boltzmann machine (DRBM) [41], capsule networks [42], dense block [43], and others.

Current research of HSI classification based on deep learning mainly focuses on how to build
deep networks to improve accuracy. However, the more complex are these networks, the more training
parameters are there. For example, there are about 360,000 training parameters in the classification
network proposed in [31]. In [44], the proposed 3D-1D hybrid CNN method used a maximum of
61,949 parameters. The network in [38], a 3D-2D hybrid CNN, used 5,122,176 parameters. Using so
many training parameters makes the network difficult to train and easy to overfit.

In this paper, we present a lightweight spectral-spatial feature extraction and fusion convolutional
neural network (S2FEF-CNN). In this model, three S2FEF blocks are concatenated to provide the joint
spectral-spatial features. Each S2FEF block uses 1D and 2D convolution for spectral and spatial feature
extraction, respectively, and then fuses the spectral and spatial features by multiplication. Pooling
layers are used for dimension reduction and finally prediction of the classification results.

The main contributions of our work are as follows: 1) it proposes a lightweight end-to-end
network model for hyperspectral image classification. In comparison with several state-of-the-art HSI
classification methods based on deep networks, most of the time, our network can achieve comparable
classification accuracy using no more than 5% of the parameters of the above deep networks, 2) it
proposes a dual-channel feature extraction and feature fusion method of HSI classification, 3) without
using the fully connected (FC) layer and PCA, it also greatly reduces the network parameters.

The rest of this paper is organized as follows. Section 2 is a brief introduction of various related
CNN frameworks. The proposed S2FEF-CNN is illustrated in detail in Section 3. Experimental results
and analysis are given in Section 4. Section 5 presents conclusions.

2. Related Work

One-dimensional-CNN uses spectral features for classification, in which the data input is usually
a single pixel. The feature map extracted by 1D convolution reflects the characteristics of the spectrum.
A typical 1D convolution and 1D-CNN classification framework [24] are shown in Figure 1.
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Figure 1. (a) A typical 1D convolution; (b) 1D-CNN classification framework in [24]. In this framework,
there are several layers: 1D convolutional layer, pooling layer, fully-connected (FC) layer, and an output
layer. CNN: convolutional neural network.

Two-dimensional-CNN uses spatial features for classification. With spatial features extraction,
there is redundancy between spectrum bands. Therefore, this framework is usually combined with
PCA to reduce the spectral dimension before spatial feature extraction [18,36]. First, the HSIs are
preprocessed by PCA for dimension reduction. Then, diverse spatial features are extracted by 2D
convolution kernel. A typical 2D convolution and the classification framework of 2D-CNN [15] are
shown in Figure 2.
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Figure 2. (a) A typical 2D convolution; (b) 2D-CNN classification framework in [15]. After PCA for
dimension reduction, the framework contains two 2D convolutional layers, two pooling layers, and an
output layer.

As described above, in the current HSI classification research, there are two kinds of spectral-spatial
feature-based CNN classification methods: 3D-CNN and hybrid CNN. The 3D-CNN method extracts
features in the spectral and spatial dimensions simultaneously through 3D convolution. However the
hybrid CNN selects some of the above mentioned types of CNNs and fuse them in a sequential way or
in a multi-channel way. Figure 3 shows the schematic diagram of the above two classes.



Remote Sens. 2020, 12, 1395 40f17

Cl1 Ccz2 F1
» []
S ; Fully ;
roluti convolution y s
JDcony ?_lmlon i connected & classification
operation i operation i il layer s
Kernels e Kernels E3 > :
2@k} % Kl x K} 4@K7 x K x K3
.'- _.'
SXS XL °
Feature 1 Feature 2 Feature 3 Category
(a)
Spectral Feature Learning Spatial Feature Learning

Feature 5

MxNxB Neighbourhood Feature 6

Extraction  OXXB

Hyperspectral Image

(b)

Spectral Channel

Softmax
Input EJ ® A A Output
: ; Y T .
= Ol - . o) - . g e - |
e @ class 1
hl e
S— S, spectral i
- conv 11 pool 11 conv 12 pool 12 conv 13 }l:;:u':'ﬂ | # o class 2
n : .
. E(s) :
. Spatial Channel :
: ' = = = g lass C
-
spatial conv 21 pool 21 conv 22  pool22 conv2i joint
neighborhood spatial spectral-
BQ feature spatial
F,(P) feature
F,

n

(0)

Figure 3. Two categories of spectral-spatial feature-based CNN classification methods. (a) 3D-CNN
classification framework [30]; (b) a sequential 3D-2D hybrid CNN framework [38]; (c) a multi-channel
1D-2D hybrid CNN framework [37].

In summary, 1D-CNN makes full use of the spectral features of the HSI, but lacks the spatial
features. Two-dimensional-CNN has to deal with high spectral dimension problems before extracting
spatial features. PCA is often used for reducing spectral dimension. It simplifies the process but
brings information loss and destruction of the internal structure of the data. Three-dimensional-CNN
can make the process of feature extraction and fusion easier, but the prominent problem is that the
model suffers from heavy network parameters. If only the number of network parameters is taken into
account, the dual-channel hybrid CNN method in Figure 3¢ seems to be more suitable and effective.
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3. Proposed Methodology

In this section, we first illustrate the structure of the elementary block of our model, and then
show in detail how the block extracts and fuses the features. Finally, we elaborate on the architecture
of the S2FEF-CNN.

3.1. S2FEF Block
Details of the basic S2FEF block are demonstrated in Figure 4.
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Figure 4. Details of the proposed S2FEF block. EWM is element-wise multiplication, and BN is
batch- normalization.

The S2FEF block contains two stages: one is for feature extraction and the other is for feature fusion.
In the first stage, spectral and spatial features are extracted by 1D/2D convolutional kernels in
spectral and spatial channels, respectively. This step is formulated as follow:

fo(xl) = Wixl +b], 1)

1
fo(x]) = Wi xl + by, @)

where xl]. denotes the input HSI data, i =1, ... ,I (Iis the input number), Wgt and bét / W;t and b,]Zt are the
weights and bias of spectral/spatial kernel ¢ in layer j, respectively, t =1, ... , Kx (K is the number of
kernels), j represents the layer index, f is the features extractor, and subscript e and a represent spectral
and spatial, respectively.

In the following stage, fJ, (xzj) and f} (xf ) are fused in three steps.

(1) Features from two channels are fused by element-wise multiplication.

EWM(x]) = {f], () x ] (x])} @)

m:l,...,Kk

After the former feature extraction, we directly fuse the spectral features and spatial features by
element-wise multiplication (EWM). Compared with feature concatenation, the EWM will not increase
the feature dimension but will adjust the spectral features by spatial information to a certain extent.

(2) The maximum element in different feature cubes are selected to produce the final feature cube.

Max(x]) = max(EWM(x])) )
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(3) The maximal feature cube selected by Equation (5) is added to the original input cube xf to

form a more accurate output cube xl], H. Finally, rectified linear unit (Relu) is exploited for activation.

xf“ = max(0, x{ + Max(xf)) (5)

The above process is summarized in Algorithm 1.

Algorithm 1: Feature Extraction with S2FEF Block

Input: A joint spectral-spatial feature map F,
Spectral/Spatial kernel size Spe/Spa and kernel number k.
Output: A new joint spectral-spatial feature map F’.
1. begin
2. Extract spectral/spatial features fspe/fspa with k spectral/spatial kernel (size 1 X 1 X Spe/Spa X Spa X 1).
3. Fuse the spectral and spatial features together by element-wise multiplication (fspe X fspa) to get the joint
features fioint-
4. Select the max value from the corresponding pixel in fjoin; to form a special feature F'.
5. Return F'.
6. end

3.2. S2FEF-CNN Architecture

The proposed network mainly consists of three steps:

(1) Step 1: extracting spectral-spatial joint features by three S2FEF blocks;

(2) Step 2: reducing spectral and spatial dimensions of the joint features by two pooling layers;

(3) Step 3: determining the pixel label via a softmax layer after flattening the joint features from
Step 2 into a vector.

The architecture of the proposed S2FEF-CNN is shown in Figure 5.

g 2
| S2FEF | | S2FEF | | S2FEF | g g softmax
Blockl | | Block2 | | Block3 ol
[ <
> =
Input HSI Output Figure

Figure 5. Architecture of the S2FEF-CNN. The two pooling layers are used in the spectral and spatial
dimensions, respectively.

Define x; € R™>*™>N1 (j = 1,2, ... K) as the input HSI cube and #; as the output label of x;.

The process is defined as follow:
gi= s (0p (S2FEF (x:))) (6)

where S2FEF denotes the operator of the proposed spectral-spatial feature extraction and fusion,
0p denotes two max pooling operators, and 6s denotes the softmax classification.

Most of the commonly used 2D-CNN classification methods use PCA to preprocess HSIs for
dimension reduction, but PCA introduces the problem of spectral information loss. In our architecture,
we abandoned PCA and used the full spectrum of HSIs as input, and two pooling layers were used for
feature dimension reduction.

CNN-based classification frameworks usually have one or two FC layers to integrate the features
before the final classification. However, the FC layer is a heavily weighted layer, which may account
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for 80% of the parameters of a network. Hence, we also dropped the FC layer in our architecture for
network parameter reduction.

Improvements of the architecture make our proposed network light. Experimental results show
that even with only a few thousand parameters, our network can achieve comparative classification
accuracy as those state-of-the-art deep networks with heavy weight.

The above steps are summarized in Algorithm 2.

Algorithm 2: S2FEF-CNN Classification

Input: Hyperspectral image cube size m, S2FEF block number K.

Output: The class label L of each pixel.

begin

Create input data set I in which each pixel input cube is size m X m X N (N is the spectrum band number).
For each pixel in training set from I.

Extract spectral-spatial features by Ky S2FEF blocks.

The joint feature is pooled by two max pooling layers after which the feature size is m’ X m” x N".
Flatten the feature into a vector v.

Computing the softmax output L.

Return L.

end

O 0NN

4. Experimental Results

4.1. Datasets

We evaluated our work on three public hyperspectral datasets, Indian Pines (IP), Salinas (SA),
and Pavia University (PU), captured by two different sensors: AVIRIS and ROSIS-03. AVIRIS can
provide HSI with 224 contiguous spectral bands, covering wavelengths from 0.4 to 2.5 ym and with a
spatial resolution of 20 m/pixel, while ROSIS-03 delivers HSI in 115 bands with a spectral coverage
ranging from 0.43 to 0.86 um and with a spatial resolution of 1.3 m/pixel. Indian Pines (IP) and Salinas
(SA) are two commonly used datasets by AVIRIS. IP is captured in Northwestern Indiana and is
145 x 145 pixels in size, and Salinas is recorded over Salinas Valley and includes 512 x 217 pixels.
They both consist of 16 ground-truth classes. The scene of PU is captured by ROSIS-03 with a size of
610 x 340 pixels and contains nine different classes. In our experiments, we use a corrected version
with 200/204 bands for IP and SA, and 103 bands for PU in experiments after removing the noisy bands
and a blank strip.

4.2. Parameters Setting

In our network, three S2FEF blocks were used for all the three datasets. In each block, the number
and size of convolutional kernels were the same for 1D convolution and 2D convolution. We empirically
set the parameters just as the other networks do. The spectral kernel size was 1x3, the spatial kernel
size was 3 X 3, and the kernel number was 4.

The input HSI cube size was set differently for each dataset. Unlike some networks that use a
small size input, we wanted the original input cube to contain enough spatial information, and then chose
a big size input. For the IP dataset, the size was 19 X 19 X N (i.e., m = 19), where N represented the band
number. For the PU dataset, the size was 15 X 15 X N, while for the SA dataset, the size was 21 x 21.

We compared our experimental results with four well-performed deep network based HSI
classification methods: SAE [39], 1D-CNN [24], 3D-CNN [30], and DC-CNN [36]. First, we compare
the number of parameters in Section 4.3, and the results of classification accuracy are described in
Sections 4.4—4.7.
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4.3. Comparison of Parameter Numbers

In our S2FEF-CNN architecture, the parameters are contained in the S2FEF block and in the final
output layer. Detailed analysis results are given in Tables 1 and 2, respectively.

Table 1. Number of parameters in convolutional layers of each S2FEF block.

Layer/Operation Input Kernel Size Kernel Number Output Parameters
Spectral channel 15x15xNx1 1x3 4 15x15x N x 4 16
Spatial channel 15x15xNx1 3x3 4 15 x15x N x 4 40
EWM 15 x15x N x 4 - - 15 x15x N x 4 0
Batch normalization 15X 15 x N x 4 - - 15x15x N x4 8
Relu 15x15x N x4 15x15xNx1 0
Total 64

Table 2. Number of parameters in the S2FEF-CNN architecture for different datasets.

Layer/Operation Indian Pines Salinas Pavia University
S2FEF Block1 64 64 64
S2FEF Block2 64 64 64
S2FEF Block3 64 64 64
Max Pooling layers 0 0 0
Softmax layer 5776 5792 1629
Total 5968 5984 1821

Each S2FEF block has the same number of parameters. For the entire network, a large number of
parameters are in the softmax layers, depending on the characteristics of the dataset. For Indian Pines
and Salinas datasets, they have more input spectral bands and more ground truth classes, so they have
more parameters. Pavia University has fewer bands and fewer classes, so it has fewer parameters.

For SAE, 1D-CNN, 3D-CNN, and DC-CNN, we used the same architecture and the same parameter
settings as in their papers. For those settings that are not explicitly given in the paper, we adopted the
commonly used values in HSI classification (e.g., the pooling stride was 2).

Table 3 shows the comparison results in detail. Table 4 gives the parameter percentage of
S2FEF-CNN compared with other networks.

Table 3. The total parameters of the different networks on different datasets.

Dataset SAE 1D-CNN 3D-CNN DC-CNN S2FEF-CNN
P 129,856 81,408 199,040 278,552 5968
PU 129,856 61,249 111,129 153,117 1821
SA 123,609 82,216 199,040 278,552 5984

Table 4. The parameter percentage of different networks.

Dataset S2FEF-CNN/SAE S2FEF-CNN/1D-CNN S2FEF-CNN/3D-CNN S2FEF-CNN/DC-CNN
1P 4.60% 7.33% 3.00% 2.14%
PU 1.40% 2.97% 1.64% 1.19%
SA 4.84% 7.27% 3.01% 2.14%

Obviously, our proposed network works well with the fewest parameters, most of which are no
more than 5% of the parameters used by the other deep networks, and the highest percentage is no
more than 8%. It seems to be a potentially feasible way to solve the problem of heavy weights while
training a deep network.
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4.4. Results of the Indian Pines Dataset

This dataset is a bit different from the other datasets. The most notable characteristic is that there
are not enough samples in some classes, a few of which have less than 20 labeled data. Therefore,
we adopted the method of [30] to split the labeled data in a 1:1 ratio for training and testing.

The classification results are shown in Figures 6 and 7.

—— SAE
—— IDCNN
—— 3D-CNN
---- DC-CNN
—— S3FEF-CNN

Accuracy Comparision of different Networks

1.00

0.96

0.92

0.88

Test Accuracy

Classes of Inidan Pines dataset N

Figure 6. Overall accuracy on Indian Pines (IP) of different networks. It is clear that overall accuracy
(OA) curve of S2FEF-CNN is much flatter than the others.

Alfalfa

Corn-notill
Corn-mintill

Corn

Grass-pasture
Grass-trees
Grass-pasture-mowed
Hay-windrowed

Oats

Soybean-notill
Soybean-mintill
Soybean-clean

Wheat

Woods
Buildings-Grass-Trees-
Drives
Stone-Steel-Towers

(@) (b) (©
(d) (e) ()
Figure 7. The classification map for Indian Pines dataset of different networks. (a) ground truth;

(b) SAE (OA: 96.02%); (c) ID-CNN (OA: 88.34%); (d) 3D-CNN (OA: 95.52%); (e) DC-CNN (OA: 99.11%);
(f) S2FEF-CNN (OA: 97.43%).
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In this paper, three commonly-used metrics were adopted to evaluate the classification performance,
which are the overall accuracy (OA), the average accuracy (AA), and the Kappa coefficient. Figure 6
shows the OA curves with the visualized line diagram clearly.

From the results listed above, we can find that the S2FEF-CNN works well even with only a few
thousand parameters. For all these methods, the OAs of 16 classes vary widely. For example, the class
Oats has significantly lower OA because it has fewer labeled samples than the other categories.

4.5. Results of the Pavia University Dataset

In this dataset, there are enough labeled samples, so we set the split ratio to 2:8 for training
and testing. The results are shown in Figures 8-10, where Figure 9 shows the training accuracy and
loss curves.
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Figure 8. Overall accuracy on the Pavia University (PU) dataset of different networks. S2FEF-CNN
works as well as it did on the IP dataset.
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Figure 9. (a) Training accuracy curves on the PU dataset of different networks; (b) Loss curves on the
PU dataset of different networks.
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Figure 10. The classification map for the Pavia University dataset of different networks. (a) ground
truth; (b) SAE (OA: 94.18%); (c) ID-CNN (OA: 92.06%); (d) 3D-CNN (OA: 98.20%); (e) DC-CNN (OA:
99.66%); (f) S2FEF-CNN (OA: 98.04%).

As can be seen from Figure 8, S2FEF-CNN also performs well on the PU dataset, and it has a good
classification ability for all nine classes. The accuracy of each class is more than 94%. There is little
difference in the OA value between categories.

Figure 9 shows the dynamic changing of training on the PU dataset. All the methods converged
after 100 epochs. DC-CNN and SAE are the fastest convergence methods. The curve of S2FEF-CNN
oscillated a bity during the test.

4.6. Results of the Salinas Dataset

The portion of training set and test set of Salinas is the same as that of PU. Figures 11 and 12 show
the results.

The performance of S2FEF-CNN on the SA dataset was similar to that on the IP and PU
datasets, and the OA curve also looks stable. Several methods did not produce high results on the
Grapes_untrained and Vinyard_untrained classes, and most of them were misclassified. From Figure 12
we can see that the two classes are very close geographically. In addition, the spectral lines of the two
classes are also very similar. This may be the cause of the misclassification.
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Figure 11. Overall accuracy on the Salinas dataset for different networks.
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Figure 12. The classification map for the Salinas dataset of different networks. (a) ground truth;
(b) SAE (OA: 99.29%); (c) 1ID-CNN (OA: 94.46%); (d) 3D-CNN (OA: 92.87%); (e) DC-CNN (OA: 99.89%);
(f) S2FEF-CNN (OA: 98.26%).
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4.7. Parameter Influence

13 of 17

In this section, we discuss and show how the parameters influence the classification performance
as shown in Figures 13-15. Some vital hyperparameters such as kernel number, kernel size, and network
depth are discussed. We use the classification results of the Indian Pines dataset as an example.
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Figure 13 shows the influence of cube size on OA, AA, and Kappa. As expected, when the spatial size
of the cube increased from 7 X 7 to 19 x 19, the result increased significantly. Three-dimensional-CNN [30]
uses 3D cubes as the input and sets the spatial size to 5 X 5. As mentioned before, we need a big spatial
size of cube to extract sufficient features for the next classification. Of course, we made a tradeoff between
performance and cost as well, and finally set the size to 19 x 19.

Figure 14 shows the results of different network depths. In general, the deeper the network the
better, because a deeper network can extract more high-level features that are beneficial for classification.
However, our results are not proportional to the depth of the network. In other words, deeper is not better
in S2FEF architecture. Actually, networks with four or more blocks perform as well as that with three.
Considering the balance between performance and cost, we eventually set the network layer to 3.

Another important parameter is the convolutional kernel numbers. Although there is no universal
setting, 2" is preferred. Figure 15 shows the accuracy comparison of different kernel numbers in
each layer. We tried eight different combinations [2,2,2], [2,2,4], [2,4,4], [2,4,2], [4,2,2], [4/4,2], [4,2,4],
and [4,4,4] (notation [k, ky, k3] means k; kernels in layer 1, k; kernels in layer 2, k3 kernels in layer 3),
and the combination of [4,4,4] worked the best. Unexpectedly, the suboptimal combination was [2,2,2].

5. Discussion

From the above results, we can draw the following conclusions.

Firstly, it is obvious that the deep network using spectral-spatial features can achieve better classification
accuracy than those using only spectral features. The results strongly prove that spectral-spatial features
benefit HSI classification.

Secondly, deep learning performs outstandingly in some remote sensing fields. However, the trend
of making networks more complex and deeper brings a heavy load of parameters during training.
More parameters may give the model better classification ability. It can be seen from the above results
that DC-CNN shows the best accuracy. Sometimes we do not require high precision, but want to reduce
the network parameters, so we can make some tradeoffs within an acceptable error range. Therefore,
our method is a good attempt to simplify the network, such as with fewer kernels and/or fewer
convolutional layers. PCA is an effective preprocessing method for dimension-reduction, while the
fully connected layer is commonly used in CNN before classification, but these two common methods
are replaceable. Our experimental results indicate that even simple and shallow networks can work
well if we can come up with some effective strategies.

Finally, we have to talk about batch normalization, which is important for deep learning. Without
batch normalization, the network can still work, but converges slowly. The explicit use of batch
normalization forces the distribution of data to be more reasonable, which not only speeds up the
convergence rate, but also smooths the accuracy curves.

6. Conclusions

In this paper, we explored an effective and novel spectral-spatial feature extraction and fusion
block for HSI classification. Based on the block, we put forward a lightweight CNN-based network.
Compared to state-of-the-art deep networks, the most impressive advantage of the proposed network is
that it can obtain a considerable classification accuracy with very few parameters. This is a potentially
feasible way to simplify the network while maintaining the accuracy of classification. Inevitably,
we found various problems in training, e.g., convergence. Sometimes, bad initial variables led to very
slow convergence or even nonconvergence. Computation of multiplication is also troublesome.

Our future research will focus on the following two points: 1) We will concentrate on an efficient
fusion method of the spectral and spatial features to further reduce the computation; and 2) we will
study the semi-supervised method for HSI classification. There is a lot of unlabeled data in HSI that
may provide us with valuable features. The semi-supervised approach will look at how to make full
use of these unmarked samples, which is worth studying.
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