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Abstract: It is well-documented in the visible and near-infrared reflectance spectroscopy (VNIRS)
studies that soil moisture content (SMC) negatively affects the prediction accuracy of soil attributes.
This work was undertaken to remove the negative effect of SMC on the on-line prediction of soil
organic carbon (SOC). A mobile VNIR spectrophotometer with a spectral range of 305–1700 nm and
spectral resolution of 1 nm (CompactSpec, Tec5 Technology, Germany) was used for the spectral
measurements at four farms in Flanders, Belgium. A total of 381 fresh soil samples were collected
and divided into a calibration set (264) and a validation set (117). The validation samples were
processed (air-dried and grind) and scanned with the same spectrophotometer in the laboratory.
Three SMC correction methods, namely, external parameter orthogonalization (EPO), piecewise
direct standardization (PDS), and orthogonal signal correction (OSC) were used to correct the on-line
fresh spectra based-on its corresponding laboratory spectra. Then, the Cubist machine learning
method was used to develop calibration models of SOC using the on-line spectra (after correction)
of the calibration set. Results indicated that the EPO-Cubist outperformed the PDS-Cubist and
the OSC-Cubist, with considerable improvements in the prediction results of SOC (coefficient of
determination (R2) = 0.76, ratio of performance to deviation (RPD) = 2.08, and root mean square
error of prediction (RMSEP) = 0.12%), compared with the corresponding uncorrected on-line spectra
(R2 = 0.55, RPD = 1.24, and RMSEP = 0.20%). It can be concluded that SOC can be accurately predicted
on-line using the Cubist machine learning method, after removing the negative effect of SMC with
the EPO method.

Keywords: on-line measurement; VNIR spectroscopy; Cubist; external parameters; spectral correction
methods; soil organic carbon

1. Introduction

Organic matter and consequentially soil organic carbon (SOC) are key components of soil
that affect its physicochemical properties such as soil structure, water holding capacity, and cation
exchange capacity (CEC) [1], in addition to its direct influence on soil resistance to erosion [2].
Therefore, the spatial measurement of SOC content is essential for a wide range of environmental
and agricultural applications [3]. Traditional laboratory procedures for determining SOC is costly,
destructive, and time-consuming. Therefore, there is an increasing need for rapid, cost-effective,
nondestructive, and sufficiently accurate approaches for predicting SOC under field conditions using
either portable or on-line sensing infrastructure [4,5].

Visible and near infrared reflectance spectroscopy (VNIRS) is reported to be a promising technology
for soil analysis [4,6]. Due to the availability of robust and portable detectors, VNIRS has been widely
used for the in situ off-line and on-line predictions of various soil properties [7–9] including SOC [10,11].
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SOC is indeed a key parameter widely used for soil quality assessment and is considered as one of
the most commonly and successfully predicted parameters using VNIRS due not only to the direct
spectral response SOC has in the NIR spectral range, but changes in the soil color that are associated
with changes in the soil organic matter content detectable in the visible (VIS) range [4,12,13]. Once the
spectral features have been calibrated for SOC prediction using chemometrics or machine learning
techniques, VNIRS can provide a rapid and cost-effective estimation of SOC in field conditions.

It is important to note that under field conditions, external parameters such as soil moisture
content (SMC), temperature, and texture greatly but negatively affect the VNIRS prediction accuracy.
The negative influence of SMC on the VNIRS has been reported by several researchers [14–16].
Variability in SMC during field measurement can be of significant effect, while under laboratory
scanning conditions, the effect of SMC can be diminished by means of scanning soil samples after
standard laboratory pretreatments including air drying, grinding, and sieving. Several studies
reported a successful VNIRS measurement of SOC using fresh soil samples, or on-line collected soil
spectra [5,10,11]. However, researchers admitted that the variability of SMC in the field reduces the
prediction accuracy of SOC by VNIRS [17], suggesting the need for methods to remove this negative
effect [12].

To eliminate the negative influence of SMC, the external parameter orthogonalization (EPO)
method was implemented by several research groups [15,16,18,19], reporting improved prediction
results for SOC, when EPO was coupled with the partial least squares regression (PLSR) method [15],
support vector machine (SVM), and artificial neural network (ANN) [18]. Substantial improvement in
clay content estimation has also been reported with EPO and PLSR [16,20]. The direct standardization
(DS) method introduced by Wang et al. [21] was successfully used to remove the effects of SMC,
resulting in the improved prediction accuracy of SOC [22]. Piecewise direct standardization (PDS; [21])
is a similar method to DS in that it correlates the spectral data (absorbance) measured under laboratory
conditions to their corresponding spectra measured under field conditions with the same model
structure. However, DS uses the entire spectrum, while PDS utilizes selected wavelengths and their
neighbors that are within a predefined window size [22]. Orthogonal signal correction (OSC) is another
optimization method, proposed by Wold et al. [23], which enables removing systematic variation from
field spectra that is orthogonal, to the reference data (concentrations). However, OSC does not require
to establish a laboratory or transfer sample set [24].

The non-linear relationship between SOC and soil spectral data was reported to induce prediction
errors [25]. Machine learning techniques such as random forest (RF), artificial neural network (ANN),
and Cubist can help explain the nonlinear spectral characteristics and provide robust models for SOC
prediction [5,26–29]. Cubist produces rule-based predictive models [30], by fitting a linear regression
model to each subset of the data after sub-setting it by rules connected to the predictor variables [31].
Using the relative importance of the model variables, Cubist can be easily interpreted [32]. Cubist has
been successfully applied for the prediction of SOC with promising results [25,29,33–36]. However,
the combination of Cubist with the above discussed methods to remove the effect of SMC from the
VNIR spectra based-on on-line collected soil spectra was not reported in the literature for the prediction
of SOC.

This paper investigates the influence of removing SMC effect from the on-line VNIRS measurement
and its impacts on the prediction accuracy of SOC using the Cubist method. The ultimate goal is to
improve the prediction of SOC content after removing the influence of SMC from the on-line spectra.
Therefore, the main objective of this study is to compare the prediction accuracy of the Cubist models
for SOC derived from on-line VNIRS measurements before and after using the three spectral correction
methods, namely, EPO, PDS, and OSC.
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2. Materials and Methods

2.1. Study Area

The study area comprised of four farms with a total area of 105 ha at Melle (50◦59′6′′ N, 3◦49′8′′ E),
Veurne (51◦1′18′′ N, 2◦35′10′′ E), Huldenberg (50◦48′38′′ N, 4◦34′47′′ E), and Landen (50◦45′7′′ N,
5◦6′4′′ E) in Flanders, Belgium (Figure 1). The study area is characterized by a temperate maritime
climate with a mean annual temperature that ranged between 6 to 10 ◦C and annual precipitation
that ranged between 750 and 1000 mm. The Melle farm included one field of about 6 ha, which was
flat and elevation ranged between 4 to 5 m asl, and the soil texture varied between clay to clay loam.
The Veurne farm had three fields with a total area of about 20 ha, elevation ranged between 2 to 3 m asl,
and soil texture varied between clay to clay loam. This farm is affected by salinity as it is located very
close to the North Sea that affects the soil with salt-water intrusion. The Huldenberg farm (35 ha) had
four fields with a relatively large elevation variation of 85 to 90 m asl, and soil texture varied between
sandy loam to loam. The Landen farm included three fields of about 44 ha that were almost flat except
the smallest field where the elevation is higher in the middle part of the field. The texture of this farm
varies between sandy loam to loam. All farms are cultivated with wheat (or barley), maize, and potato
crops in rotation.
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2.2. On-line Vis-NIR Measurements and Soil Sampling

An on-line spectral survey was carried out using the on-line soil sensing platform developed by
Mouazen [37]. It consists of a medium-deep subsoiler, attached to a metal frame, a differential global
positioning system (DGPS), and a rugged computer. The description of this sensing platform can be
found in Mouazen et al. [7] and Nawar and Mouazen [9]. The spectral survey was performed using
a CompactSpec mobile, fibre type, VNIR spectrophotometer (305–1700 nm) with a sampling interval
of 1 nm (Tec5 Technology, Germany). A 50-watt halogen lamb was used as a light source. Light was
transferred to the soil by means of a dual optical fibre, while the diffuse reflected light was collected
back by the same fibre. An optical probe containing a lens holder and protected by a mild steel was
appended to the back of the subsoiler chisel. The soil spectra were collected in a diffuse reflectance
mode from the smoothed bottom of the trench (15–25 cm deep), made by the subsoiler itself, due to
downwards vertical forces acting on the chisel. The subsoiler retrofitted optical probe was attached to
a frame, which was mounted onto the three-point linkage of a tractor (Figure 2). A white Spectralon
disc with about 98% reflectance was used for calibration once every 30 min. The positions of the spectra
were recorded using a differential global positioning system (DGPS) (Trimble AG25, USA).
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Figure 2. The on-line visible and near infrared (vis-NIR) spectroscopy sensor developed by Mouazen [37],
showing the main components (right) and the on-line spectral data acquisition (left).

Soil spectra together with GPS data were logged through a rugged laptop computer using
a standard data acquisition system. The on-line sensing for all farms was carried out using 12 m apart
parallel transects and a travel speed of around 3.5 km/h. The soil scanning was carried out in summer
(August to October) 2018, when the weather conditions were extremely warm and relatively dry.

2.3. Soil Samples and the Experiment

The fresh samples (381) were divided into a calibration dataset (264 samples), whose samples were
collected from Huldenberg, Veurne, and Melle, and the remaining samples, collected from Landen
were considered as the independent validation set (117) (Table 1). The fresh samples were mixed
and reduced in size to 300 g per sample, using the quartering method. The non-soil substances such
as stone/gravel, grass, roots, and other non-soil materials were manually removed. The same fresh
samples of the validation set were ground, air-dried, and passed through a 2 mm sieve, after which
they were scanned in the laboratory with the same spectrophotometer. Three Petri dishes of 5 cm
in diameter and 2 cm deep were used for each soil sample. After the samples were placed into the
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dishes, the soil was levelled with a spatula to ensure a smooth surface; and therefore, maximum light
reflection, and a large signal-to-noise ratio.

Table 1. Summary of statistical description for the soil organic carbon (SOC) and soil moisture content
(SMC) for the samples collected from Huldenberg, Veurne, Melle, and Landen Farms, Belgium.

Farm Property (%) No Min. 1Q Med. Mean 3Q Max. SD

Huldenberg SOC 155 0.86 1.02 1.24 1.31 1.50 2.40 0.37
SMC 155 2.20 4.64 6.95 7.56 9.40 19.0 3.25

Veurne
SOC 84 0.85 1.15 1.24 1.31 1.44 2.40 0.29
SMC 84 12.29 16.42 18.90 18.64 20.88 24.59 2.80

Melle
SOC 25 1.20 1.50 1.64 1.61 1.72 1.90 0.17
SMC 25 11.27 13.03 15.05 14.64 15.92 17.64 1.91

Landen
SOC 117 0.96 1.15 1.27 1.33 1.49 2.04 0.25
SMC 117 11.27 16.62 20.29 19.40 21.79 25.03 3.25

The SOC was determined in the laboratory using the dry combustion method, following the
Dumas principle (ISO 10694; CMA/2/II/A.7; BOC). For the determination of the SOC content, total
inorganic carbon (TIC) compounds were in advance removed by treating the soil samples with
hydrochloric acid.

2.4. Spectra Pretreatments

The three datasets (calibration, validation, the transfer set (e.g., wet and dry)) were subjected to the
same spectral pretreatment, which started with cutting the noisy part of the spectra at the two far ends,
withholding the spectral range of 400–1675 nm for the spectral analysis and modeling. In the next step,
the absorbance (log 1/reflectance) was calculated followed by smoothing based-on the Savitzky–Golay
algorithm (providing the best predictions) [38] with a window size of 23 and a polynomial of order
2. Afterwards, the standard normal variate (snv) transformation [39] was employed to remove the
baseline influences and compose spectra into a common and comparable scale, where each spectrum
was normalized.

Figure 3 depicts the flow chart of steps taken during the model calibration and validation in this
study. First, the fresh datasets of both the calibration and the on-line validation were treated similarly
and used to calibrate and validate the Cubist model for SOC prediction without correction for SMC.
The results were referred to as noncorrected prediction of SOC. Then, the three correction methods for
removing SMC, namely, EPO, PDS, and OSC were used to develop the transformation matrices based-on
the on-line fresh spectra and its corresponding dry samples (e.g., 117 samples). The transformation
matrices had been applied then to the fresh calibration and on-line validation spectra, before the
EPO-Cubist, PDS-Cubist, and OSC-Cubist models were developed and then validated. The output of
these models was referred to as corrected SOC prediction. In order to evaluate the performance of the
corrected models, their results were finally compared to the noncorrected Cubist model.
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2.5. Algorithms to Eliminate the Effect of Soil Moisture Content from the Spectra

2.5.1. External Parameter Orthogonalization (EPO)

The concept of the EPO algorithm to eliminate the effects of external parameters is to project the
spectral data onto the orthogonal to space, where changes generated by these parameter variations
occur [19]. The mathematical description of EPO can be found in the literature [15,19]. In EPO,
the spectra matrix X can be disintegrated into three components: a valuable component (XP) related to
the chemical response, a parasitic component (XQ) that is formed by the external parameters, and N
the spectral noise, as shown in Equation (1).

X = XP + XQ + N (1)

The process is to isolate the useful component XP through the spectra matrix D, which can
be calculated as the difference between the spectra matrix with external effect (on-line spectra) and
without the external effect (dry spectra). P and Q are the projection matrices of the useful and parasitic
components of the spectra, respectively. Q can be calculated through a singular value decomposition
(SVD) of D, and the projection matrix P is then calculated from P = I − Q; I is the identity matrix.
The number of EPO components g is an essential parameter that should be defined during EPO
development [15,19]. This component can be determined by means of the cross-validation that resulted
from PLSR on transformed spectra. In this research, the optimal value of g was defined based on the
PLSR cross-validation using 1 to 6 latent variables (LVs).
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2.5.2. The Piecewise Direct Standardization Algorithm (PDS)

The piecewise direct standardization (PDS) [21] is a common method to relate each wavelength
in master spectra (e.g., dry spectra) and those of secondary spectra (e.g., field spectra). PDS has
two advantages of using a small number of samples in the transfer set, and its multivariate nature
allowing a noise-filtering effect. The transfer parameters of the PDS were determined in this study
by establishing a linear relationship between the transferred samples (dry) and the corresponding
on-line fresh samples (validation). The absorbance of the dry spectra measured at each wavelength
was related to the wavelengths located in a predefined small window around the same wavelength
measured on the on-line spectra [40]. On the on-line spectra, both of the calibration and validation
sets were then standardized using the PDS parameters that allowed a direct comparison with the dry
spectra. The optimal number of PLSR LVs and the size of the wavelengths window (SW) are required
to apply PDS. More details about the PDS algorithm can be found in the literature [21,22]. PDS with
a different size of the wavelength window (SW = 3, 5, 11, 21, 31, 41) and the optimal number of PLSR
LVs (NF = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) has been tested in this work.

2.5.3. Orthogonal Signal Correction (OSC)

Orthogonal signal correction intends to correct a signal by removing information from the spectral
data that is irrelevant to the targeted response variable [23]. Therefore, the spectral information
orthogonal to the response variable is removed [41]. The optimal number of OSC components to be
eliminated is normally defined based on PLSR cross-validation, whereas the matrices X and Y are
disintegrated based on the nonlinear iterative partial least squares (NIPLS) algorithm with minimization
the calibration errors criteria. The samples used to develop OSC models (the transfer set) comprise
samples measured under various conditions (e.g., different moisture content), for which one aims
to carry out the correction. In this work, the optimal number of OSC components to be eliminated
was defined based-on the PLSR cross-validation using the maximum number of 5 LVs. The transfer
samples of the dry validation set were utilized to develop the OSC models that consisted of samples
measured under laboratory (dry spectra) and field (fresh on-line spectra) conditions.

2.6. Principal Component Analysis (PCA)

The principal component analysis (PCA) was used to explore the difference between the three
data sets that resulted from the three corrections methods. PCA concentrates the total variation in the
dataset in only a few principal components (PCs) and each obtained PC presents decreasing amounts
of the variance. This analysis made possible the identification of spectral variations due to the effect of
SMC, while preserving the majority of information that originated from the spectral data. The PCA
similarity maps of PC1 and PC2 were used to show differences between the dry samples and the
corresponding fresh samples after corrections.

2.7. Modeling with Cubist

The spectral measurements obtained during the on-line and laboratory (dry) scanning modes were
used to build predictive models before and after spectral corrections with EPO, PDS, and OSC using
Cubist [30]. In principle, the Cubist algorithm constructs a regression tree, where intermediate linear
models provide the prediction at each step. The original data is divided by the algorithm into subsets
of identical samples and develops multilinear regression rules by choosing the optimal predictor
variables among all of the spectral variables to be used in the regression. These rules are connected and
each rule takes a form of condition sequence: ‘’if [condition is true] then [regress rule], and else [apply
the next rule]”. If a condition is being true, then calculate the next prediction value. If not, the sequence
of if, then, and else is repeated [42]. In this study, it is assumed that the Cubist algorithm is capable of
recognizing the effective spectral features for constructing a robust multivariate regression model to
predict SOC. Cubist available at the caret R-package [43] with the most likely two hyper-parameters
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(the committees and neighbors) having the largest effect on the final performance tuning of the Cubist
model was used.

To evaluate the model’s performance, four parameters were used: the root mean squared error
(RMSE); the coefficient of determination (R2); the ratio of performance to deviation (RPD); and the
ratio of performance to the inter-quartile range (RPIQ); [44]. The spectral data processing and the
modeling were performed using the R-packages: pls [45]; prospectr [46]; and caret [43].

3. Results

3.1. Spectral Data and Correction Methods

Table 2 shows the summary statistics of SOC and SMC in the calibration and the on-line prediction
datasets. The SOC ranged between 0.86% and 2.40% for the calibration set and between 0.96% and
2.04% for the validation set, with median and mean values of 1.28% and 1.34% and 1.27% and 1.33%,
respectively. The standard deviation (SD) values were 0.33 for the calibration set and 0.25 for the
validation set. This data confirms that the range of SOC content of the validation set is smaller than
that the calibration set, which is necessary to ensure the model validity for the studied range in the
validation set.

SMC for the calibration set ranged between 2.28% to 24.59% with a mean and median of 12.28%
and 13.03%, respectively. The SMC of the on-line validation set ranged between 11.27% and 25.03%
with a mean and median of 19.40% and 20.29%, respectively. Indeed, SMC was relatively high at the
time of on-line measurement (Table 2).

Figure 4 shows the spectral data of the three datasets before (Figure 4a) and after the three spectra
correction methods (Figure 4b–d) for the SMC effect. The notable minor difference is observable for
spectra after the EPO originated from subtracting the spectra of dry samples from the corresponding
spectra of on-line fresh samples (Figure 4b), where the effect of SMC has been completely removed.
In the PDS and OSC methods (Figure 4c,d, respectively), soil moisture in both cases has not been
completely eliminated in particular for the OSC, where the variation between the three spectra is clear,
compared to the results of EPO, and PDS to some extent.

Table 2. Summary of statistical description for the soil organic carbon (SOC) and soil moisture content
(SMC) for the calibration and validation datasets.

No Min. 1Q Med. Mean 3Q Max. SD

SOC (%) Cal set (on-line fresh) 264 0.86 1.09 1.28 1.34 1.53 2.40 0.33
Val set (dry and on-line fresh) 117 0.96 1.15 1.27 1.33 1.49 2.04 0.25

SMC (%) Cal set (on-line fresh) 264 2.28 6.92 13.03 12.28 17.06 24.59 6.01
Val set (on-line set fresh) 117 11.27 16.62 20.29 19.40 21.79 25.03 3.25
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the three datasets (Figure 5b), the three groups of spectra overlap now, indicating that the SMC effect 
has been indeed eliminated from the corrected spectra.  

Figure 4. The spectral curve for mean representative spectrum in the on-line (fresh) calibration set
(on-line Cal), on-line (fresh) validation set (on-line Val), and its corresponding laboratory dry set
(lab dry):(a) before spectral correction (b) after external parameter orthogonalization (EPO), (c) piecewise
direct standardization (PDS), and (d) orthogonal signal correction (OSC) methods.

3.2. Principal Component Space of EPO, PDS, and OSC Datasets

Figure 5 compares the principal component similarity maps of the first two principal components
(PC1 and PC2), derived from the PCA carried out on the on-line calibration spectra and laboratory
dry and on-line validation spectra. These components accounted for 55.3% and 35.5%, respectively,
of the total variation presented in the calibration set of the uncorrected data (Figure 5a). The influence
of SMC on grouping and separation of the three sets, namely, the fresh on-line calibration, the fresh
on-line validation, and the dry laboratory validation spectra can be clearly observed. The separation
is particularly clear for the dry validation spectra, with a minor overlap with the calibration spectra.
After correcting for the effect of SMC, e.g., by applying the EPO for all the three datasets (Figure 5b),
the three groups of spectra overlap now, indicating that the SMC effect has been indeed eliminated
from the corrected spectra.
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Figure 5. Score plots of principle components 1 (PC1) and 2 (PC2) of the fresh on-line (fresh) calibration
(on-line Cal), dry laboratory (lab dry), and on-line (fresh) validation (on-line Val) spectra, resulted from
the principal component analysis applied on (a) uncorrected spectra, and (b) corrected spectra with
external parameter orthogonalization (EPO), shown as an example.

The projection of calibration and validation sets in PC space showed different patterns according to
the correction method applied. Without correction, different convex hulls between the fresh (of both the
calibration and online validation sets) and the dry (laboratory validation) sets is noticeable (Figure 6a).
When projecting the fresh and dry spectra of EPO in PC space, the convex hulls of the on-line and
laboratory validation sets coincided with each other, with both deviating from that of the on-line
calibration set by almost 90◦. The centroids of convex hulls for the on-line validation (fresh) spectra
overlay with that of the laboratory dry spectra (Figure 6b), whereas the centroids of the calibration
set deviated from both validation centroids. With the PDS correction, the convex hulls of the three
sets coincide well, with a small deviation observed for the on-line calibration set (Figure 6c). Indeed,
the centroids of convex hulls for the three datasets were almost overlaid (Figure 6c). The results of
the OSC correction method were the worst, as exhibited by the deviation between the convex hulls
of the three sets. Here, the centroids of convex hulls of the three datasets did not match (Figure 6d),
in a similar fashion to the uncorrected spectra, as shown in (Figure 6a).
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Figure 6. Mean spectra from on-line (fresh) calibration set (on-line Cal), dry laboratory set (lab dry),
and on-line (fresh) validation set (on-line Val) (a) before spectra correction and after spectra correction
using (b) external parameter orthogonalization (EPO), (c) piecewise direct standardization (PDS),
and (d) orthogonal signal correction (OSC) transformation projected on principal component 1 (PC1)
vs. principal component 1 (PC2) space. The convex hulls and centroids of each dataset are represented
by dashed lines and crosses, respectively.

3.3. Cubist Modeling Results

3.3.1. Cubist Modeling without Spectral Correction

Table 3 and Figure 7a show that the Cubist cross-validation resulted in a good performance with
RMSE, R2, RPD, and RPIQ of 0.15%, 0.74, 1.99, and 3.23, respectively. The on-line prediction yielded
a less good prediction performance (RMSE = 0.20%, R2 = 0.55, RPD = 1.24, and RPIQ = 1.69).

Table 3. Quality of prediction models of soil organic carbon (SOC) obtained from the Cubist modeling
for uncorrected (Cubist) and corrected spectra for soil moisture content (SMC) using external parameter
orthogonalization (EPO-Cubist), piecewise direct standardization (PDS-Cubist), and orthogonal signal
correction (OSC-Cubist).

Cross-Validation On-Line Prediction

RMSE R2 RPD RPIQ RMSEP R2 RPD RPIQ

(%) (%)

Cubist 0.151 0.74 1.99 3.23 0.203 0.55 1.24 1.69
EPO-Cubist 0.112 0.89 2.95 3.93 0.120 0.76 2.08 2.83
PDS-Cubist 0.121 0.87 2.73 3.64 0.141 0.70 1.77 2.41
OSC-Cubist 0.124 0.84 2.66 3.55 0.161 0.67 1.55 2.11
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3.3.2. Cubist Modeling after Spectral Correction

Both the cross-validation and prediction of the EPO-Cubist model outperformed both of the
PDS-Cubist and OSC-Cubist models. For the cross-validation, the EPO-Cubist showed a modest
improvement compared to the Cubist without spectral correction with RMSE, R2, RPD, and RPIQ
of 0.11%, 0.89, 2.95, and 3.393, respectively (Table 3 and Figure 7b). The PDS showed a smaller
improvement in prediction (RMSE = 0.12%, R2 = 0.87, RPD = 2.73, and RPIQ = 3.64) than that of the
EPO, but a slightly better performance than that of the OSC (RMSE = 0.12%, R2 = 0.84, RPD = 2.66,
and RPIQ = 3.55) (Table 3; Figure 7c,d).

The same trend of performance can be observed for the on-line prediction with the best performance
obtained with the EPO (RMSE = 0.12%, R2 = 0.76, RPD = 2.08, and RPIQ = 2.83), followed successively
by the PDS (RMSE = 0.14%, R2 = 0.70, RPD = 1.77, and RPIQ = 2.41) and OSC (RMSE = 0.16%, R2 = 0.67,
RPD = 1.55, and RPIQ = 2.11).

3.4. Variable Importance before and after Spectra Correction

The heat map of the variable importance analysis indicates the same important variables for
the developed models in the current research (Figure 8). The spectral regions at 406–436, 566–576,
656–666, 786–836, 1026–1036, 1406–1456, 1498–1536, and 1576–1606 nm are the most important bands
for predicting SOC. In the VIS range, the bands of 406–436, 566–576, and 656–666 nm are located
between the red absorption band (680 nm) and the blue band (450 nm) and are attributed to the electron
transition associated with soil colour [47]. In the NIR range, the 786–836 band is associated with the
C–H bond at 825, and the 1026–1036 band is near the absorption feature at 1035 nm, associated with the
aromatic hydrocarbon (C–H) bond [26]. The band at 1406–1426 is relative to the absorption peak near
the 1400 nm and that is related to the second overtone of O–H absorption at 1450 nm [48]. The bands
at 1498–1536 and 1576–1606 nm are related to the first overtone of C–H, O–H, and N–H bonds [47].
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4. Discussion

4.1. Soil and Spectral Data Analysis

Table 1 indicated that SD and the range of SOC are comparable for the calibration and validation
sets. The concentration range or SD of the target soil property can influence the model prediction
accuracy [48]. For good prediction, the range of the validation set should be within the range of the
calibration set [5]. However, larger range or SD will introduce not only higher R2 and RPD, but higher
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RMSEP too [48]. Indeed, the narrow range of SOC of both the validation and calibration sets (0.68 to
2.40 %) influenced the prediction accuracy obtained in this study.

SMC was relatively high, particularly in the on-line validation. Consequently, the effect of SMC on
spectra is potentially high. Although alterations in soil reflectance can be related to variations in SMC,
SOC, and texture [49], acquisition of the on-line data can induce the spectral variability due to machine
vibration, ambient light, and variation of sensor-to-soil distance and angle [7]. The effect of SMC on
soil VNIR spectra has been well reported in earlier studies [15,50,51], findings that are consistent with
our results. Figure 4 demonstrates that the albedo of the on-line spectrum is generally lower than that
of the laboratory spectrum, although the absorption peak in the second OH overtone at 1450 nm is
larger. The lower albedo of the on-line spectrum might be attributed to the illumination conditions,
plant debris, and variation in the sensor-to-soil distance and inclination [52–54]. Therefore, the main
difference noticed between the uncorrected spectra (on-line and laboratory) can be attributed to the
spectral intensity and not to a spectral signature. This difference is indeed due to the different SMC
and other ambient conditions encountered during on-line measurement. Therefore, it was assumed
that the on-line data have sufficient quality for further spectral analysis.

4.2. The Performance of EPO, PDS, and OSC for Spectral Correction

The results of spectral correction indicating that EPO outperformed both PDS and OSC.
EPO showed a high performance of removing the variation of soil absorbance that originated by
moisture, since EPO has resulted in identical spectra to those of the dry sample after EPO transformation
(Figure 4). The PC projection plot confirmed the best performance of EPO, as the centroids of convex
hulls for the on-line validation set surrounded with the convex hulls of their corresponding dry
spectra. The convex hulls of both the on-line and laboratory dry spectra coincided well over each other,
with minor deviation (Figure 6). These results are in line with the findings of Chakraborty et al. [20]
for EPO. Similarly, PDS was shown as a capable algorithm to correct the spectra for the moisture
effect, although it performed less well compared to EPO. Examining the PC projection, a notable
match between the three convex hulls can be observed with only slight deviations, which might be
attributed to the noise at the two ends of the transformed spectra (Figure 4c), as PDS works with
a moving window of data [22]. The poor match between the convex hulls between the laboratory dry
and the on-line spectra with the on-line spectra corrected by OSC, as shown in Figure 6d, explains
the poorest results of OSC in predicting SOC. In this case, the centroids of convex hulls of the three
datasets dispersed without any matching tendency. This confirms that the EPO transformation has
successfully corrected the spectra for the moisture effect, indicating the potential of EPO to result in the
best Cubist model prediction accuracy for SOC.

4.3. Performance of Cubist Models before Moisture Correction

The predictive performance of the Cubist model without spectral correction in this research is
considered poor (Table 3). A larger RMSEP of 0.31% (0.203% in the present work) was reported by
Nawar and Mouazen [9] for the on-line measurement of SOC, using 529 samples combined with
multivariate adaptive regression splines (MARS). Kuang and Mouazen [55] estimated SOC with a PLSR
model, using a European dataset (425 soil samples) spiked with local samples that provided a similar
result (RMSEP = 0.19%) to that reported in the present work. The poor prediction performance of
Cubist in this research can be attributed to the effect of SMC on the VNIR spectra [51,56], which is
in agreement with the literature stating that the prediction of SOC from field fresh spectra without
appropriate correction is inaccurate [15,22,55]. This is indeed supported by the similarity map of
PC1 and PC2 in Figure 5a, showing a clear separation between the validation and calibration sets.
The laboratory spectra occupied a separate spectral space than the corresponding on-line spectra
without any overlap observed. Another reason might be that the on-line spectra are influenced by
other external factors (e.g., noise due to vibration, sensor-to-soil distance variation, ambient light) in
addition to SMC.
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In general, the variability range of SOC is a fundamental factor that affects model prediction
performance [48]. Thus, with large soil heterogeneity in a target soil attribute, regression can be
more successful compared with small variability. The reason for the rather poor performance of
estimating SOC based-on the Cubist method in this study may be the narrow range of SOC in the
calibration (1.54%) and prediction (1.08%) datasets (Table 2). However, the obtained RMSE values
in the current study are not substantially higher compared with the literature, e.g., using random
forest [5]. The predictive performance of the current work is of similar accuracy to that reported by
Kuang and Mouazen [55] for on-line prediction of SOC at the farm-scale using the PLSR technique,
with 0.12–0.96 R2 and 1.07–4.95 RPD. However, numerous studies reported similar results for SOC
prediction to our results [57–59], with R2 values ranging from 0.55 to 0.79 and RPD from 1.80 to 2.01.
The exposed large differences in the accuracy of the SOC estimates may be related to the high SOC
variability and SMC effect. Although the calibration set in the present study is based-on the on-line
collected spectra, that is highly affected by SMC and is of narrow variability range of SOC, prediction
accuracies are reasonable, which can be attributed to the capability of Cubist to handle the nonlinearity
between the SOC concentration and spectra.

The most effective bands in the VIS range were 406–436 and 656–666 nm, which are located,
respectively, around the blue band (450 nm) [17] and the red band (680 nm) associated with electron
transition. It is well-documented that the darker the soil color, the larger the SOC content [47]. In the
NIR range, the most effective bands were 786–836, 1026–1036, 1406–1456, 1498–1536, and 1576–1606 nm.
The 786–836 nm band is characterized with a broad region around 825 nm, which is associated with
aromatic (C–H) and organic matter [26]. The band 956–1036 nm is associated with the third overtone of
O–H (950 nm) [26]. The band 1406–1456 nm is associated with the second overtone of water absorption
band around 1450 nm [7,60]. The 1498–1536, and 1576–1606 nm bands are associated with the first
overtone of C–H, O–H, and N–H bonds [47], and are consequently related to the concentration of the
SOC in the samples.

For SOC estimation in this work there was no rule for the best fitting of the data, and the prediction
was based on the whole VNIR spectral range. It can be clearly observed in the heat map shown in
Figure 8, that the NIR spectral range has contributed more to the prediction of SOC than those of the
VIS spectral region. This result is in line with previous findings, e.g. [60], who reported that the NIR
spectral range provided considerably better predictions of SOC than the VIS range. The prediction
accuracy of SOC using the whole VNIR spectral range was better than the corresponding accuracy
reported for the NIR spectral range only [7].

4.4. Performance of the Cubist Models after Correction for Moisture

The algorithms used to eliminate the effect of SMC from spectral data enhanced the performance
of SOC models. EPO-Cubist yielded 40% reductions in RMSE for the on-line prediction, which is in
agreement with a finding by Ackerson et al. [61], who obtained an error reduction of 63% using fresh
field spectra. Ge et al. [55] using rewetted samples reported an error reduction of 60%. However,
the smaller improvement of the on-line prediction of SOC achieved in this work, compared to that
reported elsewhere can be attributed to the smaller difference in SMC between the on-line validation
set and that of the on-line calibration set (Figure 5a). However, the correction methods, in particular
EPO, provided reasonable accuracy for the on-line scanned dataset, to be recommended for future
research on the on-line measurement, not only for SOC, but also on other soil properties.

The EPO-Cubist modelling found in this work as the best method to predict SOC suggests that
it is not obligatory to use air-dried legacy samples for developing the calibration models, which
is an important conclusion to ultimately reduce the laboratory time-consuming processing efforts.
Instead, the on-line collected fresh spectra having a wide range of SMC can be used, after the correction
of SMC effect to estimate SOC [60]. Both Ackerson et al. [16] and Wijewardane et al. [62] demonstrated
that the utilization of EPO-based in situ spectra is essential for generating the initial EPO. Our results
of EPO correction proposed that the projection matrix based-on the on-line spectra and corresponding
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air-dry spectra, when applied to the on-line spectral library with a varied moisture content can
decrease logistical necessities by efficiently removing the effect of SMC from the spectra and, therefore,
improving the prediction accuracy of SOC. The results of this research should be further tested in
terms of applicability for moisture correction for the on-line prediction of other soil properties having
direct or indirect spectral responses in the VNIRS spectroscopy.

5. Conclusions

This study investigated the use of the Cubist algorithm combined with spectral correction
algorithms to remove the effect of soil moisture content (SMC) from on-line collected visible and near
infrared (VNIR) spectra and improve the soil organic carbon (SOC) prediction accuracy of spectra
collected from multiple fields in Belgium. Three correction methods, namely, external parameter
orthogonalization (EPO), piecewise direct standardization (PDS), and orthogonal signal correction
(OSC) were used to correct the spectral data for the removal of SMC from the on-line samples.
The results showed that the EPO method outperformed both the PDS and OSC methods in eliminating
the influence of differential moisture on soil VINR spectra. The EPO-Cubist model provided the best
SOC prediction accuracy. It can be concluded that the use of on-line scanned spectra for developing
calibration models for the prediction of SOC is possible and reliable, which reduces the effort related to
preprocessing of samples in the laboratory, e.g., drying, grinding, and sieving. As EPO was found
to be the best performing method, its projection matrix can be applied directly to effectively reduce
the influence of SMC from the on-line spectra, supporting the sensor-based variable rate applications,
and providing solutions to speed up the on-line soil mapping at field scale. Further work is suggested
to test if the success obtained in the present work can be extended to other soil properties, when using
the on-line data collection mode.

Author Contributions: Conceptualization and methodology, S.N. and M.A.M.; spectral measurement, M.A.M.;
data analysis and modeling, S.N.; original draft preparation, S.N.; review and editing, M.A.M., S.N., and A.M.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Research Foundation—Flanders (FWO) for the Odysseus I SiTeMan
Project (No. G0F9216N).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hoyle, F.C.; Baldock, J.A.; Murphy, D.V. Soil Organic Carbon—Role in Rainfed Farming Systems. In Rainfed
Farming Systems; Springer: Dordrecht, The Netherlands, 2011; pp. 339–361.

2. Bresson, L.M.; Koch, C.; Le Bissonnais, Y.; Barriuso, E.; Lecomte, V. Soil Surface Structure Stabilization by
Municipal Waste Compost Application. Soil Sci. Soc. Am. J. 2001, 65, 1804–1811. [CrossRef]

3. Wang, G.; Huang, Y.; Wang, E.; Yu, Y.; Zhang, W. Modeling Soil Organic Carbon Change across Australian
Wheat Growing Areas, 1960–2010. PLoS ONE 2013, 8, e63324. [CrossRef] [PubMed]

4. Kuang, B.; Mahmood, H.S.; Quraishi, M.Z.; Hoogmoed, W.B.; Mouazen, A.M.; van Henten, E.J. Sensing Soil
Properties in the Laboratory, In Situ, and On-Line. Adv. Agron. 2012, 114, 155–223.

5. Nawar, S.; Mouazen, A.M.M. On-line vis-NIR spectroscopy prediction of soil organic carbon using machine
learning. Soil Tillage Res. 2019, 190, 120–127. [CrossRef]

6. Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectroscopy
in Soil Science. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Burlington, NJ, USA, 2010;
Volume 107, pp. 163–215. [CrossRef]

7. Mouazen, A.M.; Maleki, M.R.; De Baerdemaeker, J.; Ramon, H. On-line measurement of some selected soil
properties using a VIS-NIR sensor. Soil Tillage Res. 2007, 93, 13–27. [CrossRef]

8. Viscarra Rossel, R.A.; Walvoort, D.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid
infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties.
Geoderma 2006, 131, 59–75. [CrossRef]

http://dx.doi.org/10.2136/sssaj2001.1804
http://dx.doi.org/10.1371/journal.pone.0063324
http://www.ncbi.nlm.nih.gov/pubmed/23696813
http://dx.doi.org/10.1016/j.still.2019.03.006
http://dx.doi.org/10.1016/S0065-2113(10)07005-7
http://dx.doi.org/10.1016/j.still.2006.03.009
http://dx.doi.org/10.1016/j.geoderma.2005.03.007


Remote Sens. 2020, 12, 1308 17 of 19

9. Nawar, S.; Mouazen, A.M. Comparison between random forests, artificial neural networks and gradient
boosted machines methods of on-line Vis-NIR spectroscopy measurements of soil total nitrogen and total
carbon. Sensors 2017, 17, 2428. [CrossRef]

10. Bricklemyer, R.S.; Brown, D.J. On-the-go VisNIR: Potential and limitations for mapping soil clay and organic
carbon. Comput. Electron. Agric. 2010, 70, 209–216. [CrossRef]

11. Christy, C.D. Real-time measurement of soil attributes using on-the-go near infrared reflectance spectroscopy.
Comput. Electron. Agric. 2008, 61, 10–19. [CrossRef]

12. Tekin, Y.; Tumsavas, Z.; Mouazen, A.M. Effect of Moisture Content on Prediction of Organic Carbon and pH
Using Visible and Near-Infrared Spectroscopy. Soil Sci. Soc. Am. J. 2012, 76, 188–198. [CrossRef]

13. Mouazen, A.M.; De Baerdemaeker, J.; Ramon, H. Effect of wavelength range on the measurement accuracy
of some selected soil constituents using visual-near infrared spectroscopy. J. Near Infrared Spectrosc. 2006, 14,
189–199. [CrossRef]

14. Bogrekci, I.; Lee, W.S. Spectral Soil Signatures and sensing Phosphorus. Biosyst. Eng. 2005, 92, 527–533.
[CrossRef]

15. Minasny, B.; Mcbratney, A.B.; Bellon-Maurel, V.; Roger, J.M.; Gobrecht, A.; Ferrand, L.; Joalland, S. Removing
the effect of soil moisture from NIR diffuse reflectance spectra for the prediction of soil organic carbon.
Geoderma 2011, 167–168, 118–124. [CrossRef]

16. Ackerson, J.P.; Morgan, C.L.S.; Ge, Y. Penetrometer-mounted VisNIR spectroscopy: Application of EPO-PLS
to in situ VisNIR spectra. Geoderma 2017, 286, 131–138. [CrossRef]

17. Morgan, C.L.S.; Waiser, T.H.; Brown, D.J.; Hallmark, C.T. Simulated in situ characterization of soil organic
and inorganic carbon with visible near-infrared diffuse reflectance spectroscopy. Geoderma 2009, 151, 249–256.
[CrossRef]

18. Wijewardane, N.K.; Ge, Y.; Morgan, C.L.S.S. Geoderma Moisture insensitive prediction of soil properties
from VNIR reflectance spectra based on external parameter orthogonalization. Geoderma 2016, 267, 92–101.
[CrossRef]

19. Roger, J.M.; Chauchard, F.; Bellon-Maurel, V. EPO-PLS external parameter orthogonalisation of PLS
application to temperature-independent measurement of sugar content of intact fruits. Chemom. Intell.
Lab. Syst. 2003, 66, 191–204. [CrossRef]

20. Chakraborty, S.; Li, B.; Weindorf, D.C.; Morgan, C.L.S. External parameter orthogonalisation of Eastern
European VisNIR-DRS soil spectra. Geoderma 2019, 337, 65–75. [CrossRef]

21. Wang, Y.; Veltkamp, D.J.; Kowalski, B.R. Multivariate Instrument Standardization. Anal. Chem. 1991, 63,
2750–2756. [CrossRef]

22. Ji, W.; Viscarra Rossel, R.A.; Shi, Z. Accounting for the effects of water and the environment on proximally
sensed vis-NIR soil spectra and their calibrations. Eur. J. Soil Sci. 2015, 66, 555–565. [CrossRef]

23. Wold, S.; Antti, H.; Lindgren, F.; Öhman, J. Orthogonal signal correction of near-infrared spectra.
Chemom. Intell. Lab. Syst. 1998, 44, 175–185. [CrossRef]

24. Woody, N.A.; Feudale, R.N.; Myles, A.J.; Brown, S.D. Transfer of Multivariate Calibrations between Four
Near-Infrared Spectrometers Using Orthogonal Signal Correction. Anal. Chem. 2004, 76, 2595–2600.
[CrossRef] [PubMed]

25. Stevens, A.; Nocita, M.; Tóth, G.; Montanarella, L.; van Wesemael, B. Prediction of Soil Organic Carbon
at the European Scale by Visible and Near InfraRed Reflectance Spectroscopy. PLoS ONE 2013, 8, e66409.
[CrossRef]

26. Viscarra Rossel, R.A.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra.
Geoderma 2010, 158, 46–54. [CrossRef]

27. Jaconi, A.; Don, A.; Freibauer, A. Prediction of soil organic carbon at the country scale: Stratification strategies
for near-infrared data. Eur. J. Soil Sci. 2017, 68, 919–929. [CrossRef]

28. Kuang, B.; Tekin, Y.; Mouazen, A.M. Comparison between artificial neural network and partial least squares
for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content.
Soil Tillage Res. 2015, 146, 243–252. [CrossRef]

29. Liu, S.; Shen, H.; Chen, S.; Zhao, X.; Biswas, A.; Jia, X.; Shi, Z.; Fang, J. Estimating forest soil organic
carbon content using vis-NIR spectroscopy: Implications for large-scale soil carbon spectroscopic assessment.
Geoderma 2019, 348, 37–44. [CrossRef]

http://dx.doi.org/10.3390/s17102428
http://dx.doi.org/10.1016/j.compag.2009.10.006
http://dx.doi.org/10.1016/j.compag.2007.02.010
http://dx.doi.org/10.2136/sssaj2011.0021
http://dx.doi.org/10.1255/jnirs.614
http://dx.doi.org/10.1016/j.biosystemseng.2005.09.001
http://dx.doi.org/10.1016/j.geoderma.2011.09.008
http://dx.doi.org/10.1016/j.geoderma.2016.10.018
http://dx.doi.org/10.1016/j.geoderma.2009.04.010
http://dx.doi.org/10.1016/j.geoderma.2015.12.014
http://dx.doi.org/10.1016/S0169-7439(03)00051-0
http://dx.doi.org/10.1016/j.geoderma.2018.09.015
http://dx.doi.org/10.1021/ac00023a016
http://dx.doi.org/10.1111/ejss.12239
http://dx.doi.org/10.1016/S0169-7439(98)00109-9
http://dx.doi.org/10.1021/ac035382g
http://www.ncbi.nlm.nih.gov/pubmed/15117203
http://dx.doi.org/10.1371/journal.pone.0066409
http://dx.doi.org/10.1016/j.geoderma.2009.12.025
http://dx.doi.org/10.1111/ejss.12485
http://dx.doi.org/10.1016/j.still.2014.11.002
http://dx.doi.org/10.1016/j.geoderma.2019.04.003


Remote Sens. 2020, 12, 1308 18 of 19

30. Quinlan, J.R. Combining Instance-Based and Model-Based Learning. In Machine Learning Proceedings 1993;
Morgan Kaufmann Publishers: San Francisco, FL, USA, 2014; pp. 236–243.

31. Appelhans, T.; Mwangomo, E.; Hardy, D.R.; Hemp, A.; Nauss, T. Evaluating machine learning approaches
for the interpolation of monthly air temperature at Mt. Kilimanjaro, Tanzania. Spat. Stat. 2015, 14, 91–113.
[CrossRef]

32. Walton, J.T. Subpixel urban land cover estimation: Comparing cubist, random forests, and support vector
regression. Photogramm. Eng. Remote Sensing 2008, 74, 1213–1222. [CrossRef]

33. Sorenson, P.T.; Underwood, A.; Sorenson, P.T.; Small, C.; Tappert, M.C.; Quideau, S.A.; Drozdowski, B.;
Underwood, A.; Janz, A. Monitoring organic carbon, total nitrogen and pH for field reclaimed soils using
reflectance spectroscopy. Can. J. Soil Sci. 2017, 97, 241–248. [CrossRef]

34. Peng, Y.; Xiong, X.; Adhikari, K.; Knadel, M.; Grunwald, S.; Greve, M.H. Modeling soil organic carbon at
regional scale by combining multi-spectral images with laboratory spectra. PLoS ONE 2015, 10. [CrossRef]
[PubMed]

35. Filippi, P.; Cattle, S.R.; Bishop, T.F.A.; Jones, E.J.; Minasny, B. Combining ancillary soil data with VisNIR
spectra to improve predictions of organic and inorganic carbon content of soils. MethodsX 2018, 5, 551–560.
[CrossRef] [PubMed]

36. Morellos, A.; Pantazi, X.-E.E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.;
Bill, R.; Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture
content by using VIS-NIR spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [CrossRef]

37. Mouazen, A.M. Soil sensing device. In International publication, Published under the Patent Cooperation Treaty
(PCT); World Intellectual Property Organization, International Bureau: Brussels, Belgium, International
Publication Number; W02006/015463; PCT/ BE 2005/000129; IPC: G01N21/00; GO1N21/00; 2006.

38. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures.
Anal. Chem. 1964, 36, 1627–1639. [CrossRef]

39. Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared
diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [CrossRef]

40. Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst.
2001, 58, 109–130. [CrossRef]

41. Boulet, J.C.; Roger, J.M. Pretreatments by means of orthogonal projections. Chemom. Intell. Lab. Syst. 2012,
117, 61–69. [CrossRef]

42. Viscarra Rossel, R.A.; Webster, R. Predicting soil properties from the Australian soil visible-near infrared
spectroscopic database. Eur. J. Soil Sci. 2012, 63, 848–860. [CrossRef]

43. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
44. Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.M.; McBratney, A. Critical review of

chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR
spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [CrossRef]

45. Mevik, B.-H.; Wehrens, R.; Liland, K.H. Partial Least Squares and Principal Component Regression [R Package
pls Version 2.7-1]. Available online: https://cran.r-project.org/web/packages/pls/index.html (accessed on
2 March 2020).

46. Stevens, A.; Ramirez Lopez, L.; Lopez, L.R. Package ‘prospectr’: Miscellaneous Functions for Processing and
Sample Selection of Spectroscopic Data. Available online: https://cran.r-project.org/web/packages/prospectr/
prospectr.pdf (accessed on 16 March 2020).

47. Viscarra Rossel, R.A.; Cattle, S.R.; Ortega, A.; Fouad, Y. In situ measurements of soil colour, mineral
composition and clay content by vis-NIR spectroscopy. Geoderma 2009, 150, 253–266. [CrossRef]

48. Kuang, B.; Mouazen, A.M. Calibration of visible and near infrared spectroscopy for soil analysis at the field
scale on three European farms. Eur. J. Soil Sci. 2011, 62, 629–636. [CrossRef]

49. Mouazen, A.M.; De Baerdemaeker, J.; Ramon, H.; Mounem, A.; De Baerdemaeker, J.; Ramon, H. Towards
development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil Tillage Res.
2005, 80, 171–183. [CrossRef]

50. Lobell, D.B.; Asner, G.P. Moisture Effects on Soil Reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722. [CrossRef]
51. Mouazen, A.M.; Ramon, H. Expanding implementation of an on-line measurement system of topsoil

compaction in loamy sand, loam, silt loam and silt soils. Soil Tillage Res. 2009, 103, 98–104. [CrossRef]

http://dx.doi.org/10.1016/j.spasta.2015.05.008
http://dx.doi.org/10.14358/PERS.74.10.1213
http://dx.doi.org/10.1139/cjss-2016-0116
http://dx.doi.org/10.1371/journal.pone.0142295
http://www.ncbi.nlm.nih.gov/pubmed/26555071
http://dx.doi.org/10.1016/j.mex.2018.05.019
http://www.ncbi.nlm.nih.gov/pubmed/30013943
http://dx.doi.org/10.1016/j.biosystemseng.2016.04.018
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1366/0003702894202201
http://dx.doi.org/10.1016/S0169-7439(01)00155-1
http://dx.doi.org/10.1016/j.chemolab.2012.02.002
http://dx.doi.org/10.1111/j.1365-2389.2012.01495.x
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.1016/j.trac.2010.05.006
https://cran.r-project.org/web/packages/pls/index.html
https://cran.r-project.org/web/packages/prospectr/prospectr.pdf
https://cran.r-project.org/web/packages/prospectr/prospectr.pdf
http://dx.doi.org/10.1016/j.geoderma.2009.01.025
http://dx.doi.org/10.1111/j.1365-2389.2011.01358.x
http://dx.doi.org/10.1016/j.still.2004.03.022
http://dx.doi.org/10.2136/sssaj2002.7220
http://dx.doi.org/10.1016/j.still.2008.09.012


Remote Sens. 2020, 12, 1308 19 of 19

52. Poggio, M.; Brown, D.J.; Bricklemyer, R.S. Laboratory-based evaluation of optical performance for a new
soil penetrometer visible and near-infrared (VisNIR) foreoptic. Comput. Electron. Agric. 2015, 115, 12–20.
[CrossRef]

53. Schirrmann, M.; Gebbers, R.; Kramer, E. Performance of Automated Near-Infrared Reflectance Spectrometry
for Continuous in Situ Mapping of Soil Fertility at Field Scale. Vadose Zo. J. 2013, 12, 1–14. [CrossRef]

54. Rodionov, A.; Pätzold, S.; Welp, G.; Pallares, R.C.; Damerow, L.; Amelung, W. Sensing of Soil Organic Carbon
Using Visible and Near-Infrared Spectroscopy at Variable Moisture and Surface Roughness. Soil Sci. Soc.
Am. J. 2014, 78, 949–957. [CrossRef]

55. Kuang, B.; Mouazen, A.M. Effect of spiking strategy and ratio on calibration of on-line visible and near
infrared soil sensor for measurement in European farms. Soil Tillage Res. 2013, 128, 125–136. [CrossRef]

56. Ge, Y.; Morgan, C.L.S.; Ackerson, J.P. VisNIR spectra of dried ground soils predict properties of soils scanned
moist and intact. Geoderma 2014, 221–222, 61–69. [CrossRef]

57. Summers, D.; Lewis, M.; Ostendorf, B.; Chittleborough, D. Visible near-infrared reflectance spectroscopy as
a predictive indicator of soil properties. Ecol. Indic. 2011, 11, 123–131. [CrossRef]

58. Fontán, J.M.; Calvache, S.; López-Bellido, R.J.; López-Bellido, L. Soil carbon measurement in clods and sieved
samples in a Mediterranean Vertisol by Visible and Near-Infrared Reflectance Spectroscopy. Geoderma 2010,
156, 93–98. [CrossRef]

59. Gao, Y.; Cui, L.; Lei, B.; Zhai, Y.; Shi, T.; Wang, J.; Chen, Y.; He, H.; Wu, G. Estimating soil organic carbon
content with visible-near infrared (Vis-NIR) spectroscopy. Appl. Spectrosc. 2015, 68, 712–722. [CrossRef]
[PubMed]

60. Sudduth, K.A.; Hummel, J.W. Portable, near-infrared spectrophotometer for rapid soil analysis. Trans. Am.
Soc. Agric. Eng. 1993, 36, 185–194. [CrossRef]

61. Ackerson, J.P.; Demattê, J.A.M.; Morgan, C.L.S. Predicting clay content on field-moist intact tropical soils
using a dried, ground VisNIR library with external parameter orthogonalization. Geoderma 2015, 259–260,
196–204. [CrossRef]

62. Wijewardane, N.K.; Hetrick, S.; Ackerson, J.; Morgan, C.L.S.; Ge, Y. VisNIR integrated multi-sensing
penetrometer for in situ high-resolution vertical soil sensing. Soil Tillage Res. 2020, 199, 104604. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compag.2015.05.002
http://dx.doi.org/10.2136/vzj2012.0199
http://dx.doi.org/10.2136/sssaj2013.07.0264
http://dx.doi.org/10.1016/j.still.2012.11.006
http://dx.doi.org/10.1016/j.geoderma.2014.01.011
http://dx.doi.org/10.1016/j.ecolind.2009.05.001
http://dx.doi.org/10.1016/j.geoderma.2010.02.001
http://dx.doi.org/10.1366/13-07031
http://www.ncbi.nlm.nih.gov/pubmed/25014837
http://dx.doi.org/10.13031/2013.28329
http://dx.doi.org/10.1016/j.geoderma.2015.06.002
http://dx.doi.org/10.1016/j.still.2020.104604
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	On-line Vis-NIR Measurements and Soil Sampling 
	Soil Samples and the Experiment 
	Spectra Pretreatments 
	Algorithms to Eliminate the Effect of Soil Moisture Content from the Spectra 
	External Parameter Orthogonalization (EPO) 
	The Piecewise Direct Standardization Algorithm (PDS) 
	Orthogonal Signal Correction (OSC) 

	Principal Component Analysis (PCA) 
	Modeling with Cubist 

	Results 
	Spectral Data and Correction Methods 
	Principal Component Space of EPO, PDS, and OSC Datasets 
	Cubist Modeling Results 
	Cubist Modeling without Spectral Correction 
	Cubist Modeling after Spectral Correction 

	Variable Importance before and after Spectra Correction 

	Discussion 
	Soil and Spectral Data Analysis 
	The Performance of EPO, PDS, and OSC for Spectral Correction 
	Performance of Cubist Models before Moisture Correction 
	Performance of the Cubist Models after Correction for Moisture 

	Conclusions 
	References

