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Abstract: Crop species separation is essential for a wide range of agricultural applications—in
particular, when seasonal information is needed. In general, remote sensing can provide such
information with high accuracy, but in small structured agricultural areas, very high spatial resolution
data (VHR) are required. We present a study involving spectral and textural features derived from
near-infrared (NIR) Red Green Blue (NIR-RGB) band datasets, acquired using an unmanned aerial
vehicle (UAV), and an imaging spectroscopy (IS) dataset acquired by the Airborne Prism EXperiment
(APEX). Both the single usage and combination of these datasets were analyzed using a random
forest-based method for crop separability. In addition, different band reduction methods based
on feature factor loading were analyzed. The most accurate crop separation results were achieved
using both the IS dataset and the two combined datasets with an average accuracy (AA) of >92%.
In addition, we conclude that, in the case of a reduced number of IS features (i.e., wavelengths),
the accuracy can be compensated by using additional NIR-RGB texture features (AA > 90%).

Keywords: crop separability; imaging spectroscopy; multispectral drone data; random forest;
band reduction

1. Introduction

The accurate quantification of crop species in agricultural areas is crucial for various tasks such as
decision-making and monitoring [1–3]. Many of these tasks require up-to-date information on current
crop presences. However, official data are often only available at the end of or after the season, and
when this is the case, they are usually aggregated by administrative units [4,5]. Remote sensing has
therefore proved to be a viable alternative to human observations in the field [6,7].

Many studies of this kind are, however, conducted with satellite data [8,9], but the spatial
resolution of the majority of these data is too low to provide accurate results at the field level in
highly fragmented agricultural areas with small field plots [6,10,11]. Although satellite data with high
spatial resolutions exist, they are often too expensive. Therefore, lower flying platforms are an option
capable of collecting data at very high spatial resolutions. Using remote sensing, such studies for crop
separation have been conducted with unmanned aerial vehicles (UAVs) [12–14] or airborne imaging
spectrometers (IS) [15,16].

An UAV typically carries lightweight sensors, which often only contain a few spectral bands [17,18].
In addition, precise spectral calibration requires additional effort, which is subject to appropriate
expertise [19]. Many UAVs carry a consumer-grade RGB camera to record data. These cameras may be
modified to enable an additional near-infrared (NIR) channel to be acquired. NIR-RGB datasets with
spatially very high resolutions (VHRs) can be generated from such platforms. However, additional
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texture features are required to at least partially compensate for the lack of spectral information.
Alternatively, imaging sensors with several bands are available, but they are costly [18].

Although IS sensors to be deployed on UAVs exist, more sophisticated sensors with very high
signal-to-noise ratios are mainly operated from airborne platforms [19]. IS datasets are used in a range
of applications in agriculture, i.e., biophysical properties [20,21], soil mapping [22], and, in particular,
for crop separation [15,23]. Yet, the combined usage of IS and VHR datasets has so far been applied
mainly in land cover studies in urban areas [24].

This study aims at evaluating the improvement of crop separation accuracy in very fragmented
agricultural landscapes by combining VHR drone data and airborne imaging spectroscopy data.
More specifically, the added value of the concurrent exploitation of spectral/textural features of VHR
multispectral drone data and spectrally highly resolved imaging spectroscopy data is investigated and
compared to single-usage scenarios of the two data sources.

Besides, this study assesses (i) the influence of feature reduction, as well as (ii) the effect of a
model to fit the number of trees in the random forest (RF) model on the accuracy of crop separation.

2. Materials and Methods

2.1. Study Area

The study area is located in the Swiss Plateau next to Mönchaltorf (47.312 ◦N, 8.733 ◦E), and
it is structured into numerous small plots (Figure 1). The fields have an average size of 1.3 ha
(between 0.03 ha and 7.4 ha). Their lengths vary between 140 m and 200 m for a single field, and
their widths between 23 m and 180 m. Cereals (winter barley, spelt, and winter wheat); rapeseed;
grassland (permanent and temporary, including clover); maize; and sugar beet were included in the
crop separation study. The field observations took place on 24 and 25 June 2015, corresponding to
1342 accumulated growing degree days (AGDD) and 1362 AGDD, respectively. Based on the scale of the
Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH) [25], the phenological
stage of a single reference field for maize (BBCH 33), rapeseed (BBCH 80), sugar beets (BBCH 39),
and winter wheat (BBCH 75, representing cereal) were recorded at the time of observation.

Bare soil
Grassland
Cereals
Sugar beet
Maize
Rapeseed0 0.5 1 k m

Figure 1. Mosaic of the study area (near Mönchaltorf, Switzerland; see overview map, bottom left)
acquired on 25 June 2015 with an unmanned aerial vehicle (UAV)-mounted consumer-grade red green
blue (RGB) camera. The crop classification as inventoried on the same date is superimposed (see legend,
bottom right).
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2.2. Data

The eBee dataset was based on uncalibrated VHR data acquired on 25 June 2015 with
two consumer-grade cameras, i.e., an RGB and an NIR-GB, carried by an eBee-UAV (Sensefly,
Cheseaux-Lausanne, Switzerland). The flight parameters were chosen in a way that the lateral overlap
was 60%, and the longitudinal overlap 75%. The spatial resolution was 5 cm at a flight altitude of
150 m above the ground. Subsequently, an orthophotomosaic was built using a Pix4Dmapper Pro
(version 4.2.27, Pix4D S.A., Prilly, Switzerland), and the NIR band was stacked to the RGB mosaic.
This dataset was georeferenced to five ground control points (GCP), which were recorded with a
differential GPS device (dGPS). Finally, the VHR dataset was resampled to a spatial resolution of 0.5 m,
as this resolution proved to be the most promising spatial resolution for the investigated crops in our
study area [26].

The APEX dataset was acquired the day before (24 June 2015) with the Airborne Prism EXperiment
(APEX) sensor, an airborne imaging spectrometer (IS). A detailed description of the sensor properties
and preprocessing chain can be found in [27,28]. The dataset was atmospherically corrected and
orthorectified using a parametric geocoding approach [29]. The surface reflectance data cube contained
284 spectral bands in the range of 399–2431 nm at a spatial resolution of 2 m. Bands subject to
atmospheric water vapor (i.e., the spectral ranges of 691–737 nm, 753–771 nm, 790–839 nm, 900–1008 nm,
1097–1174 nm, 1300–1513 nm, and 1753–2.050 nm) were interpolated during preprocessing and,
subsequently, omitted, resulting in a dataset of 173 bands. The APEX dataset was co-registered to the
eBee dataset of 25 June.

2.3. Methods

The chosen methodology of this study consists of seven steps (Figure 2). First, the input features
for the random forest (RF) classifier were created on the basis of the two data sources. In the second
step, the features were arranged in three settings (single and combined settings). In the third step, the
dataset of each setting was split for training, validation, and testing. In the fourth step, the training
split was used to calculate the feature importance and perform feature selection. In the fifth step,
training of the RF model was performed. The free parameters for the RF model in the fifth step were
determined on the basis of the validation split. In the sixth step, the test split was used to test the
learned model from the fifth step. Finally, the crop separation accuracy was assessed. The individual
steps are described in detail in the following sections.

2.3.1. Feature Extraction

The inclusion of texture information from VHR data on top of spectral information is known to
improve classification results [26,30]. Therefore, first-order statistics (mean, standard deviation, range,
and entropy) and mathematical morphology (dilatation/erosion, opening/closing, opening/closing top
hat, opening/closing by reconstruction, and opening/closing by reconstruction top hat) were calculated
from the eBee dataset, based on a disc-shaped structuring element (SE), to remain rotationally invariant.
The SE has a diameter of 3 or 5 pixels. In order to form the final stack of features with the selected
APEX bands, all features of the eBee dataset were resampled to a spatial resolution of 2 m by averaging.

2.3.2. Creation of Feature Settings

In order to analyze the influence of features from the two data sources (i.e., UAV-based VHR data
and airborne IS data) on crop separation accuracy, three feature settings were created. The eBee setting
contains only the eBee features, the APEX setting only the APEX features, and the eBee & APEX setting
all eBee and APEX features.
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Figure 2. Data-processing scheme to assess crop separation accuracies from airborne imaging
spectroscopy (IS) data, UAV-based multispectral data, and their combined usage. RF: random forest.
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2.3.3. Splitting of Feature Settings

All three feature-setting datasets were divided class-wise into six splits. Two splits were selected
for the RF feature selection and model training and two for validating the parameters in the RF model.
In order to reduce the computational load, 1000 pixels were randomly selected for each crop class in
the training and validation splits. The remaining two splits were retained for testing the learned model,
resulting in a total of 15 permutations (so-called folds) [31].

2.3.4. Calculation of Feature Importance

In order to reduce the number of features in the RF model, the features were ordered into an
ordered feature stack based on the sum of the factor loading of each crop class. Then, all features with
higher correlation than a given correlation threshold between the first feature in the ordered feature
stack and the remaining investigated features were excluded. This procedure was repeated with each
remaining feature of the ordered feature stack until all features that correlate up to the threshold were
excluded from the feature stack. Eleven evenly distributed threshold values between 0% and 100%
were evaluated.

2.3.5. Training of RF Model

Two RF models were tested in our study. In the simple one, called 500-trees, 500 trees were used
to train the model with all data from the training and validation split that were selected from the
feature stack based on the respective correlation threshold. In the second model, called fitted-trees, the
appropriate number of trees was determined by building models with 20 logarithmically distributed
grid points between 10 and 1000 trees. The trained models predicted the crop classes from the validation
split. This procedure was repeated five times to obtain stable results. The resulting overall accuracy
(OA) values were fitted by a curve, and the number of trees was determined, such that the loss in
accuracy was less than 0.1% compared to the maximum accuracy of the fitted curve [26]. However,
a minimum of 100 trees was set. In both models, the minimal leaf size was set to 3 to avoid overfitting.
Default values were kept for the other parameters of the TreeBagger function in MATLAB (2018a).

2.3.6. Crop Separation

To test the previously trained model, the test data split was predicted for each of the 15 folds.

2.3.7. Accuracy Assessment

Based on the confusion matrix of the predicted test split, the average accuracy (AA) was calculated
as the average AA over all folds. This allowed verifying the accuracy of crop separation of the different
settings against each other for significant differences (p < 0.05). For this purpose, the Wilcoxon signed
rank test was used. The results for the overall accuracy (OA), Kappa coefficient, and average reliability
(AR) are contained in the Supplementary Materials (Tables S1–S3).

3. Results

The AA of crop separation depends on (i) the correlation threshold between the investigated
features in the ordered feature stack, (ii) the RF model, and (iii) the feature setting. The results section
is divided into three parts. First, the accuracy for crop separation is shown in relation to the correlation
threshold. In the second part, the effects of the two evaluated RF models are highlighted, and in the
third part, the differences between the three tested feature settings are presented. The exact p-values of
the significance tests can be found in Tables S4–S9.

3.1. Feature Selection

All in all, crop separation in datasets with the eBee setting are less accurate than from settings
also containing APEX data (Figure 3). The accuracy with the eBee setting ranges from an AA value of
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80.8% for a correlation threshold between the investigated features of 90% to 43.5% for a correlation
threshold of 0% in the fitted-trees model (Table 1). The individual AA values in this setting usually differ
significantly (Table S4). Only the accuracies with a correlation threshold of 80% and 100% show no
significant difference to each other, and the AA with a correlation threshold of 60% shows no significant
difference to the ones with a correlation threshold of 30% or 40% (Table S4). With a correlation threshold
of 90%, the amount of features can be reduced by more than 50% to an average of 56.3 features across
all folds (Table 2), compared to a maximum of 116 features (correlation threshold of 100%). In addition,
the reduced number of features leads to a significantly higher degree of crop separation. The complete
list of selected features can be found in the Supplementary Materials (Table S10).
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Figure 3. Average accuracy (AA) for the eBee, Airborne Prism EXperiment (APEX) and eBee & APEX
settings for all evaluated correlation thresholds between the investigated features classified with the
fitted-trees model. Clusters of similar values are marked in green.

Table 1. Average accuracy (AA) for all investigated settings, random forest (RF) models, and correlation
thresholds between the investigated features. APEX: Airborne Prism Experiment.

Setting Model
Correlation Threshold (%)

0 10 20 30 40 50 60 70 80 90 100

eBee 500-trees 44.1 57.1 58.2 68.9 69.9 66.4 68.7 75.5 79.6 80.9 79.9
eBee fitted-trees 44.1 57.1 58.2 68.9 69.9 66.5 68.7 75.5 79.7 80.8 80.0

APEX 500-trees 80.3 81.0 87.2 87.3 80.4 87.3 83.3 91.5 91.8 91.9 92.2
APEX fitted-trees 80.3 80.9 87.2 87.3 80.5 87.3 83.3 91.4 91.7 91.9 92.2

eBee & APEX 500-trees 82.6 83.6 90.8 90.6 89.3 91.2 90.6 92.0 91.8 91.8 92.8
eBee & APEX fitted-trees 82.6 83.7 90.7 90.5 89.2 91.1 90.5 91.9 91.8 91.6 92.7

Table 2. Number of features for all investigated settings and correlation thresholds between the
investigated features.

Setting
Correlation Threshold (%)

0 10 20 30 40 50 60 70 80 90 100

eBee 4.6 6.5 7.7 9.4 12.7 16.2 19.0 24.5 30.1 56.3 116
APEX 3.0 3.1 3.6 3.6 3.1 3.7 4.4 7.1 7.5 9.5 173

eBee & APEX 4.1 7.5 9.9 12.0 16.5 19.5 23.9 31.3 38.1 65.9 289

Concerning the APEX setting, AA values for different correlation thresholds between investigated
features may be clustered into three distinct groups of AA, i.e., 0%–10%, 20%–50%, and 70%–100%, on
the basis of significant differences between these groups and visual structures (Figure 3). Exceptions
are the correlation thresholds of 40% and 60%, which do not fit into the pattern of a decreasing accuracy
with a decreasing correlation threshold. The cluster of low AA values with correlation thresholds of
0%–10% differs significantly from the other two clusters. The middle cluster with correlation thresholds
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of 20%–50% shows AA values about 4% lower than the high cluster with correlation thresholds of
70%–100%. However, the AA values in the middle cluster do not differ significantly from the AA
values at a correlation threshold of 70% and 80% (Table S5). The AA values in the high cluster all lie
between 91.4% and 92.2% (Table 1). Nevertheless, some of them differ significantly from each other,
i.e., the AA values for a correlation threshold of 70% and 80%, 80% and 90%, and 90% and 100% differ
significantly in each case from the other two values in the high cluster (Table S5). Finally, the AA
for a correlation threshold of 40% fits into the first cluster from 0% to 10%, and the AA for the 60%
threshold only exhibits insignificant differences with the AA values with a correlation threshold of 20%
(Table S5).

The total amount of APEX features of 173 will be reduced to 9.5 on average, with a correlation
threshold between investigated features of 90% (Table 2). The amount of features is not always an
integer, as the number of features selected for different training splits may vary in different folds. With
a correlation threshold of 0%, the average number of APEX features is reduced to three (although the
AA remains 80.3% (Table 1)). Selected features in the case of APEX are wavelength bands (Table 3).

Table 3. Selected APEX features (i.e., wavelengths) for different correlation thresholds between the
investigated features in the APEX setting. The numbers in the table correspond to the frequency at
which a given feature was selected in a fold per the correlation threshold.

Wavelength (nm)
Correlation Threshold (%)

0 10 20 30 40 50 60 70 80 90

399 1 15 15
413 9 15
427 15
490 1 2
509 2
553 15 15 15 15 15 15 15
581 15
594 5
681 15 15 15 15 15 15
684 9 15 15 15 15
688 9 1 15 15 15
785 1

1051 15 15 15 15 2
1261 1 15
1521 1
1549 1
1567 1
1666 15 15 15 15 15 9 2 15 15 15
2057 1 9 15 15
2356 15
2388 15
2419 15 15
2432 2

In the combined setting, i.e., eBee & APEX, four clusters of AA values could be defined based on a
combined visual and statistical assessment (Figure 3). The first, with correlation thresholds between 0%
and 10%, contains AA values that are significantly lower than the others (Table S6). The AA values in
the second cluster with correlation thresholds of 20%–60% are between 90.5% and 91.1% (Table 1) and
do not differ significantly from each other. In the third cluster, with correlation thresholds of 70%–90%,
the AA values are between 91.6% and 91.9% (Table 1) and, again, do not differ significantly from each
other. The highest AA value in this cluster is 91.9 % with a correlation threshold of 70%. The fourth
cluster contains only the highest AA value (92.7%) with a correlation threshold of 100%, which also
differs significantly from the other AA values. Again, the AA value for a correlation threshold of 40%
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is significantly lower than the others in the second cluster of 20%–60% but significantly higher than in
the first cluster of 0%–10%. Furthermore, there are no significant differences between the AA values
for a correlation threshold of 20% and 80%, 20% and 90%, and 50% and 90%.

The number of features for a correlation threshold of 70% is reduced to 31.3 on average (Table 1).
Compared to a total of 289 features (173 APEX features and 116 eBee features), this relates to a reduction
by more than 90%. The number of APEX features will be reduced by up to three features (with a
correlation threshold of 10%), with only one APEX feature being selected in that case (Table 2 and Table
S12). Only with correlation thresholds of 60% and 90% will additional APEX features be chosen in
comparison to the APEX setting (Table 2 and Table S12). In the case of correlation thresholds of 60%,
this amounts to 1.3 features and, at 90%, to 7.8 features (Table 2 and Table S12). The complete list of
selected features in the eBee & APEX setting can be found in the Supplementary Materials (Tables S11
and S12).

3.2. RF Model

The estimated number of trees with the fitted-trees model is about 500 trees for the APEX setting
and the eBee & APEX setting and 770 for the eBee setting (Table 4). The difference in the number of
trees is large between the 15 folds in all three settings, and for all correlation thresholds between the
investigated features, and ranges from 100 trees (the set minimum) to about 900 trees (Figure S1).

Table 4. Number of trees in the fitted-trees model for all investigated settings and correlation thresholds
between the investigated features.

Setting
Correlation Threshold (%)

0 10 20 30 40 50 60 70 80 90 100

eBee 776 893 749 886 824 754 794 791 732 490 785
APEX 350 436 413 630 406 467 403 414 414 559 440

eBee & APEX 578 334 502 654 545 466 625 494 529 500 567

There is no significant difference in the eBee setting between the mean AA values of the 500-trees
model and the fitted-trees model (Table S7). In general, the fitted-trees model leads to equal or higher
AA values, except for a correlation threshold of 90%, where the AA value for the 500-trees model is
0.14% higher.

There are no significant differences between the two RF models in the case of the APEX setting,
either (Table S7). With correlation thresholds of 40% and 90%, the AA values are 0.04% and 0.05% higher
for the fitted-trees model, respectively. For the eBee & APEX setting, significantly different AA values are
observed for the correlation thresholds of 30%, 40%, and 90%, with AA differences amounting to 0.10%,
0.13%, and 0.14%, respectively (Table 1). Nevertheless, the differences in the AA values between the
two RF models are less than 0.15%.

3.3. Sensor Data Combination

Since the AA values differ only slightly between the two RF models, only the results for the
fitted-trees model are compared here. AA values of the APEX setting are significantly higher than the
ones of the eBee setting for all corresponding correlation thresholds between the investigated features
(Table S8). AA values of the APEX setting with low correlation thresholds, i.e., 0%, 10%, and 40%,
are not significantly different from AA values of the eBee setting with high correlation thresholds, i.e.,
80%–100%.

The AA values of the eBee & APEX setting are always significantly higher than those of the eBee
setting. Compared to the APEX setting, AA values of the eBee & APEX setting are significantly higher,
with corresponding correlation thresholds of 0% and 60% between the investigated features (Table S9).
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4. Discussion

4.1. Feature Selection

Overall, we observe a decrease in AA values with decreasing correlation thresholds between the
investigated features (Figure 3). Nevertheless, depending on the datasets, reduction of the amount of
features, as investigated in our study, is a reasonable approach, even with the RF algorithm known to
be resistant to the curse of dimensionality (Hughes’ phenomenon) [32] and, therefore, able to handle
large feature sets, as there is no significant decrease in AA values with decreased amounts of features.

In particular, reducing the number of features for the eBee setting leads to the most accurate crop
separation, with a correlation threshold of 90% (AA significantly different from AA with a correlation
threshold of 100%, Table 1). In a previous study, we examined in detail the effects of differing spatial
resolutions of an eBee dataset. We concluded that a spatial resolution of 0.5 m leads to the highest
accuracy in crop separation [26]. It was further found that average accuracies remained the same
whether texture features were used that were calculated directly from the data with a spatial resolution
of 0.5 m or aggregated to a 2-m resolution (see Section 2.3.1). In the case of the APEX setting, in contrast,
crop separation does not improve with lower correlation thresholds (i.e., fewer features). However, the
accuracy does not significantly decrease with a correlation threshold of 90% compared to 100%. Hence,
the number of APEX features can be reduced by over 95%, i.e., corresponding to a reduction from 173
to 9.5 features (Table 2).

Elaborating on the physical background of the selected features in an RF model, the relevant
APEX features (Table 3) are situated in spectral ranges which are sensitive to (i) pigments (413 nm,
553 nm, and 594 nm); (ii) biophysical traits (684 nm, 688 nm, and 1051 nm); (iii) plant water (2057 nm);
or (iv) lignin; cellulose; or senescent material (1549 nm, 1666 nm, and 2388 nm) [20,21]. It is worth
noting that selected features are considered important for low correlation thresholds (e.g., 0%–40% for
a feature at 553 nm in Table 3), while they are not important for higher correlation thresholds (e.g.,
50%–60%). Table 3 indicates that APEX features at a wavelength of 681 nm are important for separating
the present crops. Therefore, a significant decrease of the AA value with a correlation threshold of
40% compared to 30% can be observed. At a correlation threshold of 60%, the excluded feature at a
wavelength of 1666 nm leads most likely to a drop in the AA value compared to AA values with higher
or lower correlation thresholds.

Three main categories of eBee features in our study are based on first-order statistics, morphology,
or spectral bands (Table S10). Remarkably, all original spectral bands are excluded in the feature
selection for all correlation thresholds from 0% to 90%. Among the top 20 features (most used over
all correlation thresholds), morphological features are much more common than first-order statistical
features. Spectral bands used to calculate textural features were most frequently the NIR, followed by
the green and red bands. The blue band occurs to be the least relevant band (selected only once). Both
structuring element (SE) sizes occur almost equally frequently.

4.2. RF Model

The proposed fitted-trees model to estimate the appropriate number of trees in the RF classifier
leads only to small differences in the AA compared to the 500-trees model. The average number of
trees is close to 500 trees, or even considerably higher, in the case of the eBee setting. However, the
accurate determination of the number of trees in a preliminary estimation with the 500-trees model
requires additional effort (user input), whereas the fitted-trees model can automatically determine the
number of trees for the RF model.

4.3. Comparison of Sensor Data Settings

Crop separation based on the eBee setting results in the lowest observed AA values for the present
crops. The methodology in its current state only includes the original bands and texture features,
i.e., the eBee features. However, implementing additional information on field boundaries would
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most likely increase the AA values by about 10% [26]. This result would be consistent with another
multispectral study that achieves an OA of 91.5% (AA 90.7%) for a separation of 10 different classes
based on an object-based RF approach [33].

Separation of crops based on the APEX setting results in significantly better AA values compared
to the eBee setting (Table 1). Only the low cluster of AA values for the APEX setting with correlation
thresholds of 0%–10% leads to similar AA values as the eBee setting with correlation thresholds
of 80%–100%. Therefore, it is possible to obtain similar crop separation results on the basis of
a multispectral dataset obtained with consumer-grade cameras, compared to an IS dataset being
drastically reduced to a few bands.

A recent study based on Hyperion data, which used up to 30 best-performing bands to classify
maize, cotton, rice, soybeans, and winter wheat in different images, achieved an OA of over 90%
for distinguishing two individual crops using a support-vector machine (SVM) based approach [15].
However, for three or more crops, the OA fell below 89%. Therefore, our approach presented here
with the APEX setting may yield a more precise separation of crops. Reasons for these differences
may include differences in the investigated crops, as well as differing sensor characteristics. Besides a
different number of bands and center wavelengths, the Hyperion sensor has two independent optical
paths for the visible and near-infrared (VNIR) and short-wavelength infrared (SWIR) spectral ranges
and a spatial resolution of 30 m, compared to a single optical path and a resolution of 2 m in the case of
the APEX spectrometer.

The most accurate separation of crops can be achieved with the combined eBee & APEX setting
(Table 1). However, using all available features, there is no significant difference to the APEX setting
(with a correlation threshold of 100%), even if the AA value for the combined eBee & APEX setting is
slightly higher. Nevertheless, the eBee & APEX setting with a reduced number of features leads to more
accurate results than in the case of the APEX setting. In particular, crop separation with a correlation
threshold of 20% yields better results in the combined setting (AA of 90.7%), with only 9.9 features
being required (average over all folds), which is equivalent to the APEX setting with a correlation
threshold of 60% (AA of 83.3%). The number of features obtained by imaging spectroscopy (APEX
features) may be reduced to 1.7 on average (correlation threshold of 30%, Table S12), with an AA value
still remaining over 90% (AA of 90.5%). Therefore, eBee texture features based on NIR-RGB bands
can effectively compensate for a reduced number of APEX spectral features (narrow bands). This is
particularly important in the case of multispectral camera systems that only allow the selection of a
few, narrow preconfigured bands in addition to an RGB image. In addition, the operation of UAVs is
usually more cost-effective than using an aircraft [34,35]. Similarly, data acquisition is more flexible
in terms of weather conditions and flight planning [17,36], while fidelity and accuracy are usually
superior from less-frequent airborne data acquisition.

5. Conclusions

This study presents a methodology for separating crops in a highly fragmented landscape with
small structured plots, as in the Swiss Plateau, based on two different datasets. On the one hand,
a multispectral VHR dataset with red (R), green (G), blue (B) and near-infrared (NIR) bands and
texture features thereof, obtained with consumer-grade cameras, was investigated. On the other hand,
an airborne imaging spectroscopy (IS) dataset of 2-m spatial resolution and 173 spectral bands between
399 nm to 2431 nm was used.

The highest AA values of over 92% could be achieved with the IS features (the APEX setting)
and the combination of IS and VHR features (the eBee & APEX setting). Overall, we conclude that the
reduction of features based on factor loading (decreasing correlation thresholds) results in significantly
lower accuracies. Especially for the IS dataset (the APEX setting), the AA values will drop to almost 80%.
For the combined dataset (the eBee & APEX setting), the accuracy with less features is also significantly
lower but remains above 90%. With the VHR dataset (the eBee setting), the crops can be separated with
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a maximum accuracy of around 80%. The proposed automatic selection of RF parameters is as good as
the preliminary estimation.

In summary, this paper concludes that the accuracy of crop separation based on IS data exceeds
the accuracy based on an NIR-RGB dataset and its texture features. Nevertheless, if the number of
used IS features is reduced, additional NIR-RGB texture features (the morphological features of the
NIR G and R bands are most important) can compensate a decrease in crop separation accuracy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/8/1256/s1,
Figure S1. Boxplot of the number of trees in the fitted-trees model for the eBee setting (left), APEX setting (middle), and
eBee & APEX setting (right), Table S1. Overall accuracies (OA) for all settings, models, and correlation thresholds,
Table S2. Kappa coefficient for all settings, models, and correlation thresholds, Table S3. Average reliability (AR)
for all settings, models, and correlation thresholds, Table S4. The p-values of the significance test (p < 0.05) for the
eBee setting with all correlation thresholds, Table S5. The p-values of the significance test (p < 0.05) for the APEX
setting with all correlation thresholds, Table S6. The p-values of the significance test (p < 0.05) for the eBee & APEX
setting with all correlation thresholds, Table S7. The p-values of the significance test (p < 0.05) for the differences
between the 500-trees model and the fitted-trees model for each setting with all correlation thresholds, Table S8. The
p-values of the significance test (p < 0.05) for the comparison of the eBee setting versus the APEX setting with all
correlation thresholds, Table S9. The p-values of the significance test (p < 0.05) for the comparison of the eBee &
APEX setting versus the APEX setting with all correlation thresholds, Table S10. Selected eBee features for the
different correlation thresholds in the eBee setting. We report the frequency how many folds a feature was selected
for each correlation threshold. A feature is defined by its size of the structuring element (SE), feature type, and
spectral band of the eBee sensor, Table S11. Selected eBee features for different correlation thresholds in the eBee
& APEX setting. The numbers in the table give the frequency in how many folds of a feature were selected per
correlation threshold. A feature is defined through the size of the structuring element (SE), feature type, and band
of the eBee sensor, Table S12. Selected APEX features and the mean number of features per fold for different
correlation thresholds in the eBee & APEX setting. The numbers in the table give the frequency in how many folds
of a feature were selected per correlation threshold.
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