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Soil moisture is a key parameter when it comes to understanding the processes related to the
water cycle on continental surfaces (infiltration, evapotranspiration, runoff, etc.). In addition, it plays a
major role in the management of irrigation and the monitoring of extreme events (floods, drought).
In this context, over the last 30 years, many scientific studies have proposed a variety of methods,
which can be used to estimate the Surface Soil Moisture (SSM). These are based on the remote sensing
of optical or microwave signals, from which the soil moisture content can be estimated at regular
time intervals, and at spatial scales ranging from a few meters to a few kilometers. For a long time,
satellite observations provided the scientific community with data recorded either at relatively high
temporal resolutions and low spatial resolutions, which are well adapted to global climatic studies, or
at low temporal resolutions (typically several days) and high spatial resolutions. The latter class of
observation is achieved mainly with SAR (Synthetic Aperture Radar) instruments.

In recent years, considerable technical progress has been achieved in this field, and has been
accompanied by an upswing in proposals for the development of new remote sensing missions. In
particular, synthetic aperture radar missions have made substantial progress, with the arrival of
the Sentinel-1 constellation from the European Copernicus program, the development of various
spaceborne missions based on the use of Global Navigation Satellite System Reflectometry (GNSS-R)
and, increasingly, the development of long time series observations relying on low-resolution sensors
(ASCAT (Advanced SCAT terometer), SMAP(Advanced SCATterometer), SMOS (Soil Moisture and
Ocean Salinity), etc.).

In this context, the current special issue focuses on progress made with these technologies, in
terms of sensors, and of the algorithms used to retrieve SSM. Eleven studies, which we have organized
into three distinct groups, have been published on this topic. The first of these discusses developments
based on the interpretation of SAR data, in particular those obtained with the Sentinel-1 mission. The
second group of papers relates to applications making use of ASCAT scatterometer data, and the third
group of studies is related to the development of new sensors designed for GNSS-R applications.

Edokossi et al. [1] reviewed the use of microwave remote sensing techniques for soil moisture
estimations, providing details of the three main technologies associated with this type of application:
passive microwave, radar and, finally, GNSS-R. Applications making use of the soil moisture parameter
are presented.

Several authors [2–6] are developing techniques that allow SAR data to be applied to the estimation
of soil moisture. They have also proposed various applications that can be used to interpret soil
moisture patterns (for example irrigation mapping). Ezzahar et al. [2] studied several different surface
scattering models, leading to the development of a Sentinel-1 inversion method, based on the SVM
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machine learning technique, which can be used to map soil moisture. Bousbih et al. [3] also proposed a
method based on the use of Sentinel-1 data for the estimation of soil moisture. This approach relies
on the inversion of the semi-empirical Water Cloud Model (WCM), and combines radar data with
multispectral (visible and near infrared) Sentinel-2 data, in order to characterize the radar scattering
properties of the vegetation cover. A somewhat similar approach was proposed by [4], in which the
modified Water Cloud model (MWCM) is used to analyze soils planted with wheat and soybean crops,
thus allowing RADARSAT-2 data to be inverted and the SSM to be estimated. These various approaches
to the remote measurement of soil moisture have accuracies better than 6.5 vol.%. Benninga et al. [5]
investigated the influence of radiometric uncertainties and weather-related surface conditions (frozen
ground, snow and intercepted rain) in the context of soil moisture retrieval from Sentinel-1 data.

Bousbih et al. [3] and Gao et al. [6] investigated the use of radar remote sensing data for irrigation
mapping applications. In [3], this involves the statistical analysis of the soil moisture product and
normalized difference vegetation index (NDVI) time series. In Gao et al. [6], the authors directly
analyze the statistics of the Sentinel-1 radar time series. In both of these studies, different statistical
parameters are used, in order to distinguish between irrigated and non-irrigated agricultural fields.

Camps et al. [7] authored a sensitivity study based on TechDemosat GNSS-R satellite data, in an
effort to measure surface soil moisture at different scales (global and regional). Several observables
extracted from the Delay Doppler Map are tested, and the influence of surface parameters and
instrument configurations are discussed.

Calabia et al. [8] proposed an inversion approach to the retrieval of surface soil moisture, using
data provided by the CYGNSS(Cyclone Global Navigation Satellite System) GNSS-R satellite mission.
Their algorithm is based on a reflectivity observable derived from the coherent component of the
GNSS-R signal, which is modelled as a function of the Fresnel coefficient, the roughness contribution
and the attenuation produced by the vegetation. The synergetic combination of ICEsat-2 and SMAP
data is used to correct for the influence of roughness and Vegetation Optical Depth (VOD).

References [9–11] investigated the improvements to the retrieval of soil moisture and vegetation
information from the backscattered radar signals (σ◦) provided by the Advanced Scatterometer
(ASCAT). Shamambo et al. [9] analyzed the extent to which soil moisture and vegetation density
information can be extracted from the ASCAT variable σ◦, in the context of Data Assimilation (DA). DA
can be applied only to observations simulated by land surface models. Biophysical level 2 and level 3
satellite products (e.g., surface soil moisture derived from ASCAT data) can in general be simulated by
land surface models. These products are derived from level 1 products, such as brightness temperature,
radiance, reflectance and radar backscattering (σ◦). Whereas level 1 products are closely related to
the physical observations recorded by spaceborne sensors, higher level products are derived from
level 1 measurements. This process results in a cascade of uncertainties, which in some cases can be
difficult to quantify in the context of DA. Nevertheless, they show that the Water Cloud Model (WCM),
relying on surface soil moisture and vegetation information produced by a land surface model, could
be used as an observation operator for the assimilation of ASCAT σ◦ observations. Pfeil et al. [10]
investigated the adjustment of vegetation characteristics derived from global parameters, as a function
of regional conditions, and tested the validity of this approach in terms of improvements to the seasonal
representation of soil moisture and VOD. These authors confirmed that in a temperate climate zone, it
can be advantageous to optimize the parameters of the model according to regional conditions. Finally,
Quast et al. [11] developed a generic, semi-empirical first-order radiative transfer model to retrieve soil-
and vegetation-related parameters from ASCAT σ◦ observations. This study shows that angular and
temporal variations in ASCAT σ◦ data can be represented by modelling the scattering characteristics of
the soil-surface, as well as the coverage of the vegetation-layer, through the use of linear combinations
of idealized distribution functions.

Together, these papers constitute a subset of the numerous and diverse approaches that could
be used to interpret microwave remote sensing data. In particular, SAR, GNSS-R and scatterometer
data are being used to retrieve soil moisture content, whereas physical and semi-empirical models,
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satellite time series, the synergetic combination of multi-sensor data and multi-resolution observations
are all key components that contribute to our improved understanding of the complex spatio-temporal
patterns of surface soil moisture distributions.
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