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Abstract: Glossy buckthorn (Frangula alnus Mill.) is an alien species in Canada that is invading many
forested areas. Glossy buckthorn has impacts on the biodiversity and productivity of invaded forests.
Currently, we do not know much about the species’ ecology and no thorough study of its distribution
in temperate forests has been performed yet. As is often the case with invasive plant species, the
phenology of glossy buckthorn differs from that of other indigenous plant species found in invaded
communities. In the forests of eastern Canada, the main phenological difference is a delay in the
shedding of glossy buckthorn leaves, which occurs later in the fall than for other indigenous tree
species found in that region. Therefore, our objective was to use that phenological characteristic
to map the spatial distribution of glossy buckthorn over a portion of southern Québec, Canada,
using remote sensing-based approaches. We achieved this by applying a linear temporal unmixing
model to a time series of the normalized difference vegetation index (NDVI) derived from Landsat
8 Operational Land Imager (OLI) images to create a map of the probability of the occurrence of
glossy buckthorn for the study area. The map resulting from the temporal unmixing model shows
an agreement of 69% with field estimates of glossy buckthorn occurrence measured in 121 plots
distributed over the study area. Glossy buckthorn mapping accuracy was limited by evergreen
species and by the spectral and spatial resolution of the Landsat 8 OLI.

Keywords: remote sensing; phenology; glossy buckthorn; Rhamnus frangula L.; mixture models;
occurrence mapping; Landsat 8 OLI

1. Introduction

Biological invasions by alien species can alter biodiversity and ecosystem functioning [1], with
potential negative consequences on ecosystem services as well as on agricultural and forest resources [2].
The impacts of alien plants are observed at the species, community, and ecosystem levels [3]; for
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example, exotic species can modify soil microbial communities, reduce plant diversity, and affect the
water and nutrient availability or fire cycles [4,5].

Glossy buckthorn (Frangula alnus Mill., syn. Rhamnus frangula L.) is an alien plant species native
to Europe [6], Asia, and North Africa [7]. It was introduced in the United States of America in the
19th century, likely for horticultural purposes [8]. Later found in Ottawa and in southern Ontario in
Canada [9], glossy buckthorn continued to spread easterly in the early 20th century and is now common
in Québec, New Brunswick, and Nova Scotia [10]. Glossy buckthorn impedes the establishment and
growth of valuable native tree species [11,12] and reduces indigenous plant diversity [13]. Although
glossy buckthorn is considered a significant threat to ecosystem integrity and forest productivity in
Québec [14], a detailed knowledge of its spatial distribution is still lacking and relies mainly on the
occurrence of this species in various herbaria. Such knowledge is required to adequately monitor its
rate of spread, understand the anthropogenic, environmental, and climatic factors that promote site
invasion and, ultimately, to design effective mitigation strategies [15].

Remote sensing techniques have been developed and applied to detect, map, monitor, and
characterize invasive plant species in various environments [16–19]. For example, van Lier et al. [20]
have combined high and medium-resolution satellite imagery to map invasive ericaceous shrub
distribution in the boreal forest ecosystems of Québec. However, distinguishing alien target species
from indigenous vegetation can be challenging due to the mixing of spectral signatures [21]. The use
of hyperspectral [22] or multispectral [23] remote sensing images to characterize plant phenological
stages may help to discriminate alien from native plant species in the vegetation matrix. Invasive
alien plant species often have phenological onset dates (e.g., the bud burst, start, and end of the green
up period, flowering, leaf senescence) that differ from those of most native plants in the invaded
communities [24–26]. These phenological differences result in identifiable features or anomalies in
remote sensing-based phenological trajectories of pixels invaded by alien plants relative to those
containing native plants only. Anomalies in phenological trajectories can be used to detect target
alien species using time-series of remotely sensed images, thus increasing our ability to assess their
occurrence and evaluate their extent across the landscape [27]. Although spaceborne moderate spatial
resolution multispectral sensors such as Sentinel-2A and Landsat 8 Operational Land Imager (OLI)
provide a limited number of bands compared to hyperspectral sensors, such as EO-1 Hyperion, they
offer frequent and easily accessible images that can be combined with invasive species phenological
characteristics to map their occurrence and coverage [27–32].

In this context, our objective was to develop an approach to map the occurrence of glossy
buckthorn in a region of southern Québec using a time series of a phenology indicator derived from
free and readily available multispectral satellite data. We tested the hypothesis that glossy buckthorn
phenological trajectory, monitored using the normalized difference vegetation index (NDVI) [33],
allows one to discriminate glossy buckthorn from other co-occurring plant species. To achieve this, we
derived plot-level vegetation NDVI trajectories from time series of Landsat 8 OLI images and used
them as inputs to a linear temporal unmixing procedure. Endmember fractions from unmixing the
NDVI stack were used to map the probability of occurrence of glossy buckthorn over our study region.

2. Methods

2.1. Study Area

The study area was located in southern Québec, Canada (45◦33′17′′N, 71◦53′05′′W) (Figure 1A),
in the sugar maple (Acer saccharum Marsh.)-basswood (Tilia americana L.) bioclimatic domain [34].
The study area was divided into two zones, hereafter referred to as Richmond and Cookshire. Over the
last 50 years, monthly mean temperature and monthly mean precipitation in the study area ranged
from −6.2 to 18.6◦C and 96.3 to 165.4 mm, respectively [35]. Most of the study area was covered by
forest stands (75%) that were distributed among the following cover types: broadleaf deciduous (36%),
mixedwood (34%), evergreen needleleaf (17%), and regenerating stands (13%) [36]. Forest stands in
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the Richmond zone were mainly composed of broadleaf deciduous forest tree species, such as Betula
alleghaniensis Britt., Acer rubrum L., Acer saccharum, and Fagus grandifolia Ehrh. The Cookshire zone was
dominated by coniferous stands containing species such as Abies balsamea L., Pinus resinosa Ait., and
Pinus strobus L. In both zones, soils were dominated by poorly to well drained brunisols (occasionally
podzols) that developed on top of undifferentiated till (Soil Classification Working Group 1998).
The humus was generally acidic and was characterized by a slow mineralization process (moder).
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Figure 1. Study area (A) showing the two zones (B: Richmond; C: Cookshire). The black rectangle in the
upper right inset shows the location of the study area in southern Québec, Canada.

2.2. Field Sampling

During the summer of 2015, we assessed glossy buckthorn cover in 124 sample plots (30 × 30 m)
distributed over 45 private forest lots of the Richmond and Cookshire zones. A selection of candidate
forest stands for field sampling was made based on information on glossy buckthorn history and cover
obtained from the agency responsible for managing private forest land in the study region. Two criteria
were used for identifying candidate stands: firstly, glossy buckthorn had to cover at least 900 m2 of the
stand total area and, secondly, observations of its presence in the stand needed to go back to at least
three years prior to field sampling. These criteria ensured coherence between field measurements and
Landsat 8 images and also increased the likelihood of detecting glossy buckthorn in 30 × 30 m pixels.
From the set of candidate stands, we made the final selection with the objective of sampling the widest
possible range in glossy buckthorn cover, forest cover types, site conditions (e.g., soil drainage, surficial
deposit), and stand attributes. Site conditions and stand attributes (e.g., cover type, crown cover) were
extracted from a 1:20 k provincial forest map [37]. We also aimed at maximizing the spatial distribution
of the plots over the study area. We anticipated that evergreen foliage would reduce our capacity to
isolate glossy buckthorn phenological characteristics from those of coniferous trees. For this reason,
we tried to limit the number of plots in forest stands dominated by coniferous tree species. Finally, all
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plots were located at least 50 m from each other or from any spectrally contrasting feature, such as
roads and clear-cuts, to reduce potential edge effects on OLI reflectance values [38].

We assessed plot-level glossy buckthorn cover using a modified version of the point-intercept
method [39]. Plots were measured between May 12 and June 6 of 2015. In each plot, we established
three 30-m long transects that were spaced 10 m apart and oriented north-south. Along each transect,
we established one 4 m2-circular subplot (diameter = 1.13 m) every 5 m (7 subplots/transect), in which
we assessed the occurrence of glossy buckthorn (presence/absence) and of other tree or shrub species
in the subplot. Plot-level glossy buckthorn cover (%) was then calculated as the ratio of the number of
subplots containing glossy buckthorn to the total number of subplots (N = 21). All sampled plots were
geolocated using a Garmin Oregon 650 GPS (the Horizontal Dilution of Precision (HDOP) under the
forest canopy was below 6 m using the Wide Area Augmentation System, or WAAS).

2.3. Processing of Landsat-8 OLI Images

We downloaded a time series of Landsat 8 OLI images (L1T) encompassing our study area from
the USGS Global Visualization Viewer (GloVis) website (https://glovis.usgs.gov/). We limited our time
series to images acquired between April and November during the years 2013 to 2015 and rejected
images with a cloud cover above 10% (Table 1). Differences in atmospheric conditions between images
in the time series can reduce the performance of change detection algorithms [40,41]. To minimize
this source of noise, we used the ATCOR Ground Reflectance module in PCI Geomatica [42] to
transform OLI digital numbers (DN) into surface reflectance values. Standard continental atmospheric
properties and rural aerosol conditions were assumed, and vegetation was considered as a Lambertian
surface. Topographic effects were also corrected in ATCOR using the Canadian Digital Elevation
Model [43]. Finally, we extracted surface reflectance values in OLI 30 m bands 4 (red, 0.64–0.67 µm)
and 5 (near-infrared, 0.85–0.88 µm) for all forest pixels in the time series. We masked non-forested
pixels using the 1:20 k provincial forest maps.

Table 1. Landsat 8 Operational Land Imager (OLI) images used in this study. All images were acquired
along path 13 and row 28 (WRS-2) in descending mode.

Date Day of Year Cloud Cover (%)

23 April 2013 113 3
10 June 2013 161 1

19 August 2015 231 7
30 September 2013 273 2

3 October 2014 276 2
23 November 2015 327 3

2.4. NDVI Times Series

To identify the best temporal window for predicting glossy buckthorn occurrence and to obtain
input and validation data for the phenology-based unmixing procedure, we calculated the NDVI for
each date of OLI acquisition as:

NDVI =
ρ5− ρ4
ρ5 + ρ4

(1)

where ρi is the surface reflectance in OLI band i. We generated NDVI time series for each measured
plot by averaging, for each date, the NDVI values from a 3 × 3 pixel window centered on each plot
coordinate. Finally, plot-level NDVI time series were used, along with glossy buckthorn percent cover
measured in field plots, to determine the minimum cover value at which glossy buckthorn cover could
be detected using the temporal unmixing approach.

https://glovis.usgs.gov/
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2.5. Temporal Unmixing

The high level of spatial heterogeneity of forested areas, combined with the moderate spatial
resolution of OLI, resulted in spectrally mixed forest pixels. To disentangle glossy buckthorn signals
in mixed pixels, we used a linear spectral unmixing approach [44]. We applied spectral unmixing in
the temporal domain, replacing spectral bands with image dates to retrieve the relative abundance
(i.e., fraction) of cover types inside image pixels. Linear spectral mixture models consider pixel
reflectance as a weighted sum of homogeneous spectral components called endmembers. Thus, we
chose three temporally distinct endmembers (cover types), which also exhibit marked differences in
their phenological trajectories: deciduous, coniferous, and glossy buckthorn. To create endmembers’
temporal signatures, we used percent cover data measured in field plots. For each endmember, we
selected one plot in which endmember cover type was at least 70% of the plot area. Field plots used for
endmember selection were excluded from subsequent analyses. Endmember percentage cover values
were 89%, 70%, and 80% for glossy buckthorn, deciduous, and coniferous endmembers, respectively.
To minimize the influence of soil and background vegetation on endmember NDVI values, deciduous
and coniferous endmember plots were selected among dense forest stands in which glossy buckthorn
was absent. The glossy buckthorn endmember plot was located in a stand where tree cover was
absent and that had the highest glossy buckthorn cover of all measured plots. To ensure a well-closed
canopy, we used a summer NDVI image (August 19, 2015) to delineate, for each endmember, a group
of contiguous pixels from the plot center. Endmember pixels were then extracted from each NDVI
image and their descriptive statistics (minimum, maximum, mean, standard deviation) were extracted,
by endmember and by date, to be used as inputs to the linear unmixing procedure. We used a t-test to
confirm phenological differences between each endmember, which suggested that plots invaded by
glossy buckthorn and those from which it was absent could be temporally distinguished. To account
for the multiplicity of the test at each date (N = 3), we used the Bonferroni correction and used a
threshold of 0.017 (0.05/3) to consider differences as significant (see Appendix A).

A linear spectral mixture model was created in the ENVI 4.8 software [45] and applied to unmix
the time series of NDVI images. This model was used to assess the fraction of each endmember at
the forested pixel level. The mixture model used in this procedure assumed that the NDVI time
series results from each endmember. We used a fraction value of 0.4 to determine if a pixel was
invaded by glossy buckthorn or not. This fraction was determined using a combination of the receiver
operating characteristic (ROC) and Pareto front. The ROC curve was used to evaluate the effect of
different fraction values on the false negative and true positive rates. We then used a Pareto front to
determine the threshold fraction that allowed to minimize false negative rate while also maximizing
the true positive rate (see Appendix B). The classification accuracy was evaluated using data from the
remaining 121 field plots (109 invaded and 12 non-invaded). We used confusion matrices to calculate
omission (lack of predictions) and commission (excess of predictions) errors and the level of agreement
(accuracy) between field observations and model predictions.

3. Results

3.1. Field-Based Measurements of Glossy Buckthorn Cover

The average glossy buckthorn cover from all field plots was 62.6%, with minimum and maximum
values of 0% and 89%, respectively (Table 2). Glossy buckthorn cover differed significantly between the
two zones, with higher values in Cookshire than in Richmond (65.3% vs. 57.9%, respectively; p = 0.008).
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Table 2. Descriptive statistics of glossy buckthorn cover and tree canopy cover from plots measured in
Richmond and Cookshire.

Variables
Richmond and Cookshire Richmond Cookshire

Mean S.D. Min. Max. Mean S.D. Min. Max. Mean S.D. Min. Max.

Buckthorn
cover (%) 62.6 21.8 0 89 57.9 22.6 0 85 65.3 21.1 0 89

Tree cover
(%) 62.3 18.5 33 90 69.6 13 33 90 58.2 19.9 33 90

3.2. Validation of the Phenology-Based Map of Glossy Buckthorn Occurrence

Glossy buckthorn was detected in only two of the 21 plots dominated by conifer trees, suggesting
that dense conifer canopies may be an obstacle to the accurate detection of glossy buckthorn, regardless
of the time of year. Therefore, coniferous-dominated plots were excluded, which left 100 plots from
subsequent validation analyses. The confusion matrix (Table 3) shows that the classification method
achieved a global accuracy of 69%, meaning that 69% of present glossy buckthorn was classified
accurately (true positive rate = 62/90). Similarly, 70% of the sites in which glossy buckthorn was absent
were correctly classified. On the other hand, our approach could not detect glossy buckthorn presence
in 31% of the plots where it was present (false negative rate = 28/90), whereas in 30% of the cases its
presence was predicted when it was actually absent from the plot (false positive rate = 3/10).

Table 3. Confusion matrix for glossy buckthorn occurrence estimated from temporal linear unmixing
of the Landsat-8 OLI normalized difference vegetation index (NDVI) image series. The threshold value
(% cover) was used to determine if glossy buckthorn was present if the endmember fraction map was
set to 0.4 (minimum glossy buckthorn cover measured value in presence plots was 27%).

Observed
Presence Absence Total

Predicted
Presence 62 3 65
Absence 28 7 35

Total 90 10 100

The important variability in glossy buckthorn percent cover among the 90 plots where it was
found allowed splitting the dataset into three cover classes. The classification performance increased
as the class lower bound increased, with an 11% increase from the class covering the largest range in
buckthorn cover (≥25%) to that containing only plots with a high buckthorn cover (≥75%) (Table 4).

Table 4. Agreement and disagreement values calculated from the confusion matrices of different glossy
buckthorn cover classes. Each confusion matrix used the same amount of absence plots (N = 10) but
decreasing numbers of presence plots (≥ 25%: N = 90 (lowest glossy buckthorn cover), ≥65%: N = 60
(average glossy buckthorn cover), ≥ 75%: N = 32).

Glossy Buckthorn Cover (%)

≥25% ≥65% ≥75%

Agreement (%) 69 74 80
Disagreement (%) 31 26 20

Total (%) 100 100 100

Given the differences in forest cover between the two zones (Table 2), we compared the performance
of our classifier by calculating agreement/disagreement values separately for each zone. We found a
marked difference in performance between Richmond (59% agreement) and Cookshire (75% agreement).
Figure 2 shows commission and omission errors and the agreement between predictions and observation
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data. Omission errors were more frequent in the presence (30%) than in the absence classes (8%).
Commission errors comprised most of the prediction errors in the absence class (75%), indicating an
over-representation of pixels free of glossy buckthorn in the resulting map.
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Figure 2. Omission and commission errors and agreement between predictions of glossy buckthorn
occurrence from the phenology-based method and measurements from 100 plots (the number of
validation plots (100) that correspond to the sum of gray and white only).

In most forested areas of the Richmond zone, glossy buckthorn was identified by temporal unmixing
analysis. There were some places where the probability of occurrence of glossy buckthorn was more
than 90% (Figure 3).

The results show a different pattern for the Cookshire zone (Figure 4). Indeed, glossy buckthorn
was present but scattered in the landscape. There was some forested area where glossy buckthorn was
likely absent.
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Cookshire zone estimated from linear unmixing of a Landsat 8 NDVI time series (2013–2015).

4. Discussion

An earlier study using Landsat-7 ETM+ data suggested that glossy buckthorn should compose at
least 70% of the canopy in pixels to be successfully identified [46]. Likewise, we found that the mapping
of buckthorn occurrence was more accurate in plots where glossy buckthorn cover was higher than
70%. High spatial resolution hyperspectral or multispectral images would have been a better tool than
Landsat imagery for investigating zones where glossy buckthorn covered less than 70% of the canopy.
However, the costs associated with high spatial resolution images (<1 m/pixel) are high and they
generally require advanced processing methods and a high computing power [47]. Becker et al. [46]
mapped glossy buckthorn and common buckthorn (Rhamnus cathartica L.) in a territory using 50 × 50 m
experimental plots. Unfortunately, their classification with Landsat 5 TM and Landsat 7 ETM + was
found to be ineffective in patches smaller than 50 × 50 m. Most of our field plots showed a dense 2–3-m
high glossy buckthorn cover. We commonly encountered dispersed small patches of dense glossy
buckthorn bushes, which were undoubtedly difficult to identify using 30-m Landsat 8 OLI images.
It is likely that this particularity, combined with a well-developed tree cover, has contributed to the
high false negative rate we obtained and that this would limit the precision of this approach if applied
for mapping glossy buckthorn occurrence in stands where similar attributes exist. Our mapping was
cautious because it included only places heavily invaded by glossy buckthorn and can be used as a
reference map for future analysis. The high commission error rate reveals that the model failed to
predict the absence of glossy buckthorn in the study area. Indeed, the model underestimated the actual
invasion of glossy buckthorn in most coniferous stands. This underestimation is particularly important
since conifers occupy 17% of the study area. Therefore, it appears that multispectral optical remote
sensing data such as Landsat 8 OLI is not the optimal tool for mapping glossy buckthorn occurrence in
these stands since these plants remain invisible to the instrument throughout the year under dense
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conifer canopies. This limitation might become more important in the coming decades, as climate
change will potentially favor the extension of glossy buckthorn distribution in the Canadian boreal
forest (from where is it actually relatively absent).

There were several reasons why our mapping was more effective in Cookshire than in the Richmond
zone. First, field observations by managers and foresters showed that the invasion was extensive in
Cookshire. This may also be explained by the difference in stand cover of the validation sites, which
was lower in Cookshire than in Richmond. For sure, it was more difficult to identify glossy buckthorn
through a dense forest canopy, even knowing that the leaves have fallen at some point, due to the
interference caused by the presence of branches and tree trunks. By comparison, a study using a time
series of NDVI to perform the characterization of glossy buckthorn and common buckthorn, managed
to successfully identify these two species in Ohio and Michigan (USA) with a kappa of 0.73 [46].
This seems greatly facilitated by the ecological characteristics of the study area, since communities
were mainly oak grasslands, low-cover environments without conifer species. Our results suggest that
phenology-based mapping using unmixing and the time series of multispectral satellite data may be
more efficient to detect species at a lower threshold than traditional approaches.

Along with complications due to the tree canopy, there were also other interferences, such as the
presence of exposed soil and of other plant species, such as ferns (primarily Onoclea sensibilis L.) or
speckled alder (Alnus rugosa (Du Roi) Spreng.). Speckled alder is a shrub that grows in the understory,
very similar to glossy buckthorn, also considered a companion species of the latter. The presence of this
understory vegetation modified the reflectance signal of the canopy. According to some authors, these
variations can be over 18% in the red band, and over 10% in the infrared band [48]. Some studies have
even used this variability in the reflectance values to detect the type of understory vegetation [49–51].
Using Landsat 8 (OLI) allowed the classification of an invaded forest according to forest types, rather
than the understory species themselves. The spatial resolution of Landsat 8 sensor (OLI) thus represents
a limit when trying to map smaller entities than the pixel.

Other images with a higher spatial or spectral resolution (such as WorldView, IKONOS, Quickbird)
could have been used in this study, but the costs associated with these images are prohibitive and,
moreover, they may not be available for the desired dates and regions of interest. This is also the case
for airborne (AVIRIS, CASI, etc.) or in-orbit (EO1-Hyperion) hyperspectral imagery. Hyperspectral
sensors could greatly improve glossy buckthorn mapping because of their ability to discriminate
pixels by taking advantage of the richness of the spectral information contained in large numbers of
high-spectral resolution bands [52]. In addition, it is sometimes necessary to make several corrections
to obtain images without blur, which complicates the use of these images [53]. Although they have
proved to be efficient in mapping alien species, e.g., [54], the acquisition of these images by airborne
sensors can be complex with respect to the availability of flying machines or current regulations [27].
LiDAR was used for classifying understory species in coniferous stands [55,56]. This tool could also
improve outcomes for mapping glossy buckthorn, since the tool is able to provide information from
under the tree canopy. Because the structure of coniferous stands differs from that of deciduous
forests [57], and also because it can be modified by the presence of an alien invasive species in the
understory [58], it is likely that the presence of glossy buckthorn in coniferous woods can be detected
with LiDAR. In addition, the amount of commission errors in the absence class indicates that more
invaded pixels were not properly classified as a presence, reflected again by an underestimation of
the cover.

5. Conclusions

Temporal unmixing performed on a time series of Landsat8 (OLI) NDVI images allowed for the
detection of glossy buckthorn in deciduous and mixed forest. The mapping allowed to identify forest
stands heavily overgrown by glossy buckthorn, but did not allow detection in coniferous stands. Thus,
the study helped to partially verify the hypothesis that phenology allows to discriminate the temporal
signature of glossy buckthorn from that of other forest cover types found in the study area. In order
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to improve the occurrence mapping of glossy buckthorn, other avenues should be considered such
as increasing the number of presence and absence sites to better reflect the great variability in forest
structures and compositions (cover types, canopy closure, settlement patterns, etc.). This would allow
for the selection of more representative points of absence for the calculation of homogeneous spectral
components. Other spectral indices less likely to saturate in well-developed biomass stands (e.g., EVI
or ARVI) could improve the glossy buckthorn detection threshold.
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Figure A1. Landsat 8 OLI-derived NDVI phenological trajectories (i.e., temporal spectra) for the
endmembers used in the unmixing procedure. Data points are mean NDVI values for groups of pixels
extracted around each endmember field plot and for each image acquisition date. The error bars
represent standard deviation for the same dates and groups of points.
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Table A1. Comparisons of endmember mean values: t-tests F-stats and P-values for each pair of
endmember and the date of image acquisition. P-values in bold indicate a significant difference in mean
between two groups for a given date. To account for the multiplicity of the test at each date (N = 3), we
applied the Bonferroni correction. P-values below 0.017 (0.05/3) were considered as significant.

Treatement

Deciduous vs Glossy Buck. Deciduous vs Coniferous Coniferous vs Glossy Buck.

Day of year F-Stats P-Value F-Stats P-Value F-Stats P-Value

113 −7.1 0.000 −5.2 0.002 −14.5 0.004
161 −4.4 0.001 3.0 0.086 1.8 0.198
231 12.4 0.000 0.3 0.808 6.5 0.011
273 28.4 0.000 −3.3 0.016 25.9 0.000
276 13.7 0.000 −7.2 0.000 8.1 0.000
327 −4.9 0.001 −5.2 0.008 −9.2 0.010
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Figure A2. The ROC curve used to determine the optimal threshold value for predicting the occurrence
of glossy buckthorn. A Pareto front was used to determine the fraction of glossy buckthorn that allows
one to minimize the false negative rate and maximize the true positive rate. The black line describes the
behavior of the ROC algorithm for all possible threshold values, while the blue dashed line represents
a random classifier with no power of discrimination.
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