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Abstract: We propose a new method for SAR image despeckling, which performs nonlocal filtering
with a deep learning engine. Nonlocal filtering has proven very effective for SAR despeckling.
The key idea is to exploit image self-similarities to estimate the hidden signal. In its simplest form,
pixel-wise nonlocal means, the target pixel is estimated through a weighted average of neighbors,
with weights chosen on the basis of a patch-wise measure of similarity. Here, we keep the very
same structure of plain nonlocal means, to ensure interpretability of results, but use a convolutional
neural network to assign weights to estimators. Suitable nonlocal layers are used in the network
to take into account information in a large analysis window. Experiments on both simulated and
real-world SAR images show that the proposed method exhibits state-of-the-art performance. In
addition, the comparison of weights generated by conventional and deep learning-based nonlocal
means provides new insight into the potential and limits of nonlocal information for SAR despeckling.

Keywords: Synthetic Aperture Radar (SAR); SAR despeckling; deep learning; nonlocal filtering;
image restoration

1. Introduction

Synthetic Aperture Radar (SAR) images are becoming more and more relevant for a large number
of applications. They represent a perfect complement to optical remote sensing images, because
of their completely unrelated imaging mechanisms and their ability to ensure all-time all-weather
coverage. SAR-optical fusion is arguably a major topic in remote sensing image processing [1–4].
Unfortunately, extracting reliable information from full-resolution (single-look) SAR images is a very
difficult task due to the presence of intense multiplicative speckle noise. Further problems arise because
of the non-stationary nature of noise, and the peculiar statistics of SAR images, markedly different
from those of natural images. In this challenging scenario, a SAR despeckling technique should satisfy
multiple contrasting requirements, as outlined in [5]:

1. suppress most of the speckle in homogeneous regions;
2. preserve textures;
3. preserve region boundaries and other linear structures;
4. avoid altering natural or man-made permanent scatterers; and
5. avoid introducing filtering artifacts.

Research on SAR image despeckling has been going on for several decades [6]. Early methods
were based on spatial-domain filtering [7,8], with some forms of local adaptivity to deal with signal
non-stationarity. In general, they ensure only a limited speckle reduction. Then, the diffusion
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of wavelet transform spawned a new generation of filters based on transform-domain coefficient
shrinkage. For example, Xie et al. [9] used a Markov random field (MRF) prior to improve regularity
in wavelet-domain shrinkage, while Solbo and Eltoft [10] performed homomorphic wavelet maximum
a posteriori filtering. Despite a stronger speckle rejection, however, these methods ensured limited
detail preservation and introduced disturbing artifacts. More recently, nonlocal methods gained large
popularity due to their superior performance. The nonlocal approach was first proposed in the seminal
paper of Buades et al. [11], together with the nonlocal means (NLM) algorithm for denoising images
corrupted by additive white Gaussian noise (AWGN). Then, in [12], Dabov et al. proposed the highly
effective block-matching 3D algorithm (BM3D), a de facto baseline in the field. These ideas and tools
proved effective also for SAR despeckling, and several effective nonlocal despeckling filters were
soon proposed, including PPB [13], SAR-BM3D [14], FANS [15], NL-SAR [16], and the NLM variants
proposed in [17].

In the last few years, deep learning ensured a quantum leap in many image processing tasks
in remote sensing, from land cover classification [18], to segmentation [19], pansharpening [20], and
data fusion [21]. Therefore, there is a growing interest also for deep learning-based SAR image
despeckling. Methods based on convolutional neural networks (CNN) [22,23] and generative
adversarial networks (GAN) [24] have been proposed already back in 2017, and new methods keep
appearing at a growing rate [25,26]. Nonetheless, improvements over the previous state of the art have
been quite limited to date. This is probably due to the scarcity of high-quality training data, but also to
a still insufficient comprehension of the despeckling problem and of the potential of deep learning
methods towards its solution. Under this point of view, nonlocal methods are especially interesting as
they shed some light on despeckling mechanisms. They rely on the idea of separating the filtering
process in two key steps: (i) finding the best predictors of the target, not necessarily close to it; and
(ii) performing the actual estimate based on them. The separate analysis of these two steps provides
precious insight on method’s strengths and weaknesses.

In this work, we try to blend the nonlocal concept with CNN-based image processing, with the aim
of exploiting their complementary strengths for SAR despeckling. Although some CNN-based nonlocal
methods have been proposed for AWGN denoising, in the last few years (e.g., [27–30]), only very
recently, researchers have begun to explore this promising approach for SAR despeckling [31,32].
In particular, here we follow our recent conference paper [31], and propose a simple CNN-powered
nonlocal means filter, that is, plain pixel-wise nonlocal means in which the filter weights are computed
by means of a dedicated convolutional network. By doing so, we pursue a two-fold goal. On the one
hand, we look for sheer performance, aiming at improving objective and subjective quality indicators
with respect to the current state of the art. On the other hand, we look for interpretable results, which
shed light on the potential of this approach and on ways to achieve it. Therefore, we do not use
deep learning to blindly separate signal from noise, but rather use a strongly constrained CNN-based
architecture that provides interpretable results, in terms of relationships among target and predictor
pixels. That is, we try to gain some new insights on SAR despeckling by studying the strategy followed
by data-driven methods to address this problem.

Following the Introduction, in Section 2, we analyze the related work on deep learning-based
despeckling. Then, in Section 3, we describe the proposed approach, with two implementations based
on different CNN architectures. Section 4 presents experimental results on synthetic and real-world
SAR data, while Section 5 discusses results. Finally, Section 6 draws conclusions and outlines future
work.

2. Related Work

To the best of our knowledge, the first papers using deep learning for SAR image despeckling date
back to 2017. The SAR-CNN proposed in [22] uses homomorphic processing to adapt the DnCNNN
denoiser, proposed originally in [33] for AWGN data, to perform SAR despeckling. Training relies on
25-look SAR data taken as clean reference and a suitable SAR-oriented loss derived from the measure
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proposed in [13,34]. A significant performance improvement is observed with respect to state-of-the-art
conventional methods, but the lack of truly clean (infinite-look) SAR data is pointed out as a major
limiting factor to performance.

In addition, the Image Despeckling CNN (ID-CNN) proposed in [23] resorts to residual learning
to estimate the noise component of the image. However, it works directly in the original domain, and
the despeckled image is obtained by dividing the original image by the estimated noise, which seems
to be an unreliable practice. To circumvent the problem of missing clean data, training is performed on
simulated SAR images, obtained by injecting synthetic speckle on optical (e.g., GoogleEarth) images.
A combination of Euclidean and Total Variation (TV) losses is used. This approach to training, call it
synthetic, is followed by the majority of subsequent papers. Although it allows for virtually unlimited
training data, they do not possess the statistical properties of real-world SAR images. The underlying
clean signal differs from a true SAR signal (just think of the double reflection lines in urban areas)
while the hypothesis of uncorrelated speckle holds only in special circumstances.

In [24], the same authors of [23] proposed a despeckling method based on Generative adversarial
networks (GAN). During training, the discriminator distinguishes clean from despeckled images and
teaches the generator how to extract high-quality clean images from the original SAR data. To this
end, the Euclidean loss is complemented by a perceptual loss (computed on a pretrained VGG16
model [35]) and an adversarial loss. Again, synthetic training is used, casting doubt on the merits of
an interesting approach. We also point out that the trained model is not published online, making it
virtually impossible to replicate the experiments, given the hardship of GAN training.

In addition, inspired by Wang et al. [24] is SAR-DRN [36] based on a dilated residual network
(DRN). Dilated convolutions allow one to keep the lightweight structure and small filter size of
ID-CNN but enlarge the receptive field. In addition, skip connections help reduce the vanishing
gradient problem. Along the same line, Gui et al. [37] used dilated convolution and residual learning
with a densely connected network. In addition, Li et al. [38] relied on dilated convolution and
residual training, the main innovation being the use of a convolutional block attention module to
enhance representation power and performance. All these methods use synthetic training on the
UC-Merced [39] dataset. Dense connections are used also in [40] to face the vanishing gradient problem,
but, to further reduce computation, a limited block-wise connectivity is considered. Moreover, to help
the network preserve image details, a preliminary single-level wavelet transform is computed, and the
stacked subbands are fed to the net, using a loss function based on wavelet features. Again, synthetic
training based on UC-Merced images is used.

In [41], the U-Net architecture, originally proposed for segmentation, is adapted to despeckling
needs. The loss includes an additional total variation term to better filter smooth areas. After synthetic
training on aerial images, the net is fine-tuned on more realistic simulated data, obtained by injecting
speckle on multitemporal filtered SAR images. To avoid overfitting, speckle data are generated on the
fly. A very simple denoiser is proposed in [42] with the goal to show the value of an additional loss
term accounting for the Kullback–Leibler divergence between original and despeckled data, so as to
ensure fidelity of first-order statistics. However, a very limited experimental validation is carried out.

Training on SAR data is completely bypassed in [43]. Following the MuLoG approach [44],
the idea is to exploit denoising architectures designed for additive white Gaussian noise and
pre-trained on abundant AWGN data. Suitable adaptation is applied to deal with Fisher–Tippet
distributed log-transformed SAR data, which, for low number of looks, differ significantly from
Gaussian data. Pan et al. [45] followed the same approach but replaced the DnCNN denoiser with
the faster FFDNet denoiser [46], which uses combined downsampling-upsampling steps to improve
efficiency. Then, in [25], homomorphic filtering is performed based on multiple instances of the same
CNN [47] trained on Gaussian noise at various levels of intensity. The output images are then combined
by means of guided filtering driven by an edge map.

A few very recent papers use noise2noise (N2N) training to circumvent the lack of truly clean SAR
data. In [48], it is observed that a CNN denoiser can be trained effectively also in the absence of a clean
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ground truth provided multiple images with the same signal component and independent noise
realizations are available. Therefore, clean targets can be replaced by noisy targets. The noise level of
the noisy reference is immaterial (hence, blind despeckling is possible) and is only required that mean
value is preserved. In [49], N2N training is used for a slightly modified version of U-Net. Later on,
in [50], N2N training is applied to a dense dilated-convolution network without batch normalization.
In both cases, however, the authors kept training on images with simulated speckle, hence the true
potential of N2N training is never really exploited. A similar flaw affects the method in [51], where
samples for N2N training are generated by means of a GAN architecture and a nested U-Net model is
used for the final despeckling. In [52], a blind speckle decorrelator is used to pre-process test images
and improve their fir to synthetic images used for N2N training.

To the best of our knowledge, the interplay between nonlocal methods and deep learning for SAR
despeckling has been first explored in two very recent papers. In [32], the approach of Cruz et al. [29]
is followed, in which nonlocal processing is used to refine the output of CNN-based filters. Instead,
in [31], we proposed to use nonlocal means filtering with weights computed patch-by-patch by means
of a dedicated CNN, so as to compare the weights provided by the network with those output by
conventional nonlocal methods.

We conclude this short, and certainly non-exhaustive, review with some general remarks. First, it
clearly appears that the use of deep learning for SAR despeckling is raising great interest, and new
methods are being proposed by the day. Most of these proposals, however, focus on new architectures,
neglecting what is the most critical point, in our view, i.e. the lack of reliable reference data. Synthetic
training cannot really make up for this lack, and ad hoc datasets, such as in many other fields, are
needed more than new architectures. A further observation is that many papers do not provide code
and data to allow for reproducible research, also due to the restrictive policies on data widespread in
the remote sensing field. Finally, we note an insufficient attention to previous methods and results.
For example, for the well-known SAR-BM3D method, two papers report a ENL indicator below 5 and
above 500,000, respectively, fluctuations that can be hardly attributed to differences in the original
images.

3. Proposed Method

In this section, we motivate and describe the adopted nonlocal CNN filtering framework, and
then propose two implementations of its core CNN, the first one based only on local convolutional
layers, and the second one including also a recently proposed nonlocal layer.

3.1. CNN-Powered Nonlocal Means

In [22], we already proposed a CNN-based despeckling filter, called SAR-CNN, based on residual
training in the log-domain, obtaining a state-of-the-art performance. A weak point of that proposal, as
well as of all deep learning-based methods, is the difficult interpretation of the results. The filter acts
basically as a black box, and we can only observe the output produced in correspondence of a given
input. A careful analysis may point out strengths and weaknesses of the method but not their origin
and possible solution. Indeed, the problem of interpreting and controlling the network behavior is
receiving much attention in the deep learning literature (e.g., [53,54]), but remains open today.

Based on such considerations, this work aims not only at improving performance with respect to
the state of the art, but also at providing more interpretable results that can guide us towards future
developments. Given the outstanding performance of nonlocal SAR despeckling methods, we propose
an architecture which embodies nonlocal processing. However, we also make it interpretable, as far
as possible, so as to gain insight into the overall potential of nonlocal processing in the context of
CNN-based SAR image despeckling. With this goal in mind, we decided to consider the strongly
constrained framework depicted in the block diagram of Figure 1, which implements plain pixel-wise
nonlocal means (NLM) [11].
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Figure 1. Architecture of the nonlocal CNN SAR image despeckling.

In NLM, each filtered pixel is obtained through the weighted sum of noisy pixels taken in
a relatively large neighborhood, that is

x̂(t) = ∑
s∈Ω(t)

w(s, t)y(s) (1)

where x̂(t) is the estimate of x(t), the clean image at site t, y(s) is a sample of the noisy image at
site s, Ω(t) is a neighborhood centered on t, and w(s, t) is the weight of y(s) in the estimate of x(t).
Crucial for the success of nonlocal means is the selection of suitable weights, such to exploit the
dependencies among the target pixel and its noisy estimators. In [11], weights are made to depend on
a measure of dis-similarity d[x(s), x(t)] between estimator and target,

w(s, t) = C e−λd[x(s),x(t)] (2)

with λ a bandwidth parameter, governing filtering smoothness, and C a normalizing constant.
Lacking any prior knowledge, besides the observed noisy data, this measure relies on patch-based
contextual information, that is

d[x(s), x(t)] = ‖y(s)− y(t)‖2 (3)

where y(t) and y(s) are two small patches centered on t and s, respectively. By using patches,
rather than individual pixels, one takes into account the context and reduces the impact of noise
on dissimilarity estimation. The choice of the Euclidean distance can be shown to be optimal in the
AWGN case, while other distances are more suited to different noise distributions.

In this work, we keep using the pixel-wise NLM of Equation (1), but rely on a CNN to select
the most appropriate weights for each target pixel. Given a large number of examples, we expect the
CNN to learn how to best exploit spatial dependencies. It should be clear that pixel-wise NLM is far
from the state of the art; much improved versions have been proposed in time, and filters based on
the blending of multiple approaches, such as BM3D, are definitely more effective. However, besides
the main goal of improving results, we aim at gaining insight into the CNN “reasoning”, and this is
relatively easy based on the analysis of the NLM weights.

Going back to Figure 1, the clean signal at site t is estimated through NLM, based on the patch of
noisy data extracted around it, Y(t) = {y(s), s ∈ Ω(t)}. To fix the ideas, let t be the central pixel of the
25 × 25 patch highlighted with a blue frame in the input image (upper-left). x̂(t) is simply given by



Remote Sens. 2020, 12, 1006 6 of 22

the weighted average of Y(t) using weights W(t) computed by the CNN. On the upper path of the
scheme, the whole input y is first log-transformed, and then fed to the CNN, which outputs the weights
W(t) = {w(s, t), s ∈ Ω(t)} corresponding to each location t in form of 252-vectors. Irrespective of the
specific CNN architecture, its last layer is always a 252-way softmax, so as to ensure non-negative
weights with unitary sum over each patch-vector. Note that the log is only introduced to avoid the
instabilities caused by the multiplicative nature of the speckle, and does not imply homomorphic
processing. In fact, the SAR data are filtered in their original format, that is, the NLM block implements
exactly the formula of Equation (1).

The key processing block is the CNN, responsible for selecting the best weights for each individual
target. In the following subsection, we describe two alternative architectures, a more conventional one,
already described in our preliminary conference paper [31], and a more innovative solution, proposed
here for the first time, including new nonlocal layers. In Figure 2, the training scheme used for the
first architecture is illustrated which, with straightforward modifications, can be adapted also to the
second architecture. The lower part of the scheme coincides with the forward processing of Figure 1.
In principle, a single noisy training patch Y(t) is processed to generate the weights, W(t), and hence
the estimate, x̂(t), of the central target pixel. This latter is then compared with the clean reference
x(t), to compute a loss which is back-propagated to update the CNN weights. In real operations,
however, the training images are properly cropped to create minibatches, with multiple target pixels
estimated at once, to allow an efficient implementation of the training on the available hardware.
This process is also described synthetically in Figure 2.

input

log(·)

Patch to vector

25
2

CNN

Weighted
average

25
2

reference
(25-look)

Weights update

Loss
x̂x

Figure 2. Efficient training scheme for the proposed method, referred to a single 48 × 48 patch.
All pixels in the dashed red box are predicted at once and compared to the reference to update the
network parameters. Solid line 25 × 25 boxes show the prediction area for each corresponding target
(colored dots).

As loss function we use the SAR-domain distance analyzed in [34]

L(x̂, x) = dSAR(x̂, x) = log
[
(x̂ + x)/

√
x̂x

]
(4)

where image samples are in intensity format.
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3.2. Estimating Weights with a Conventional CNN

We now consider a first implementation of the proposed framework based on a fully convolutional
neural network. Layers and hyperparameters are summarized in Table 1. There are 12 convolutional
layers, with leaky ReLU nonlinearity and batch normalization (except for the first and last layer).
All filters have 3 × 3 spatial support, to limit the number of parameters, except 5 × 5 in the first layer,
while the number of features grows with the overall field of view, which reaches 25 × 25 in the last
layers. In the 12th layer, the 1089 features are compressed to 625 to match the size of the filtering
window, and then the softmax layer ensures meaningful weights.

Table 1. Layers and parameters of the local core CNN.

Layer Type Spatial Support Out. Features Nonlin. Batchnorm

1 conv 5 × 5 132 leaky ReLU n
2 conv 3 × 3 152 leaky ReLU y
3 conv 3 × 3 172 leaky ReLU y
...

...
...

...
...

...
11 conv 3 × 3 332 leaky ReLU y
12 conv 1 × 1 252 none n
13 softmax 25 × 25 252 softmax n

3.3. Estimating Weights with a “Nonlocal” CNN

With our second implementation, we try to encourage a stronger use of nonlocal information.
Layers and hyperparameters of this new CNN are summarized in Table 2. The main innovations with
respect to the previous solution are the use of the N3 nonlocal layer and a quite larger overall field of
view.

The N3 layer has been proposed recently [30] to enable nonlocal processing in any general-purpose
convolutional network. To obtain such a result, the new layer must embody the principles of nonlocal
processing in fully differentiable functions, so as to allow training by backpropagation. This is
achieved by engineering a differentiable and continuous version of the K-nearest neighbors (K-NN)
rule. Indeed, using nearest neighbors to pursue the task of interest is the quintessential nonlocal
process. However, the K-NN selection rule is a non-differentiable function of the input features, and
including it in a CNN would not allow backpropagation. Consider as an example the case K = 1.
Let q be the query (target feature) and F = { f1, . . . , fN}, a dataset of N features, with q, f ∈ RD. The
function NN1 : (q,F )→ {0, 1}N outputs a one-hot coded weight vector, w1 with components

w1(i) =

{
1 for i = arg maxj[−dj]

0 otherwise
(5)

where d(·, ·) is a suitable distance measure in RD, for example the Euclidean distance, and dj = d(q, f j).
Now, if one of the features, say fk, moves closer to q and becomes the new nearest neighbor, the two
weights w1(i) and w1(k) switch instantaneously from 1 to 0 and vice versa.

A differentiable version of this function, however, is readily obtained by replacing the hard-max
with the softmax function, that is

w̃1(i) =
e−di/T

∑j e−dj/T (6)

where T is a temperature parameter, such that w̃1 → w1 as T approaches 0. Both for the hard and soft
versions, the kth weight vector, associated with the kth NN, is obtained by using Equations (3) and (4),
respectively, after setting to infinity the distances of the first k− 1 NNs.
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Besides being differentiable, the soft selection rule allows one to define the “continuous” nearest
neighbors (cNN) of q,

f̃ (k) = ∑
i

w̃k(i) fi, k = 1, . . . , K (7)

Again, as T approaches 0, these quantities converge to the conventional NNs f̃ (k) → f (k).
However, for T � 0, they amount to an average over of a large number of neighbors of the query.
It is worth underlining that such smooth averages are largely used in nonlocal filtering to process
homogeneous regions of the image.

Table 2. Layers and parameters of the nonlocal core CNN.

Layer Type Spatial Support Out. Features Nonlin. Batchnorm

1÷5 conv 3 × 3 64 ReLU y
6 conv + skip 3 × 3 8 ReLU n
7 N3 80 × 80 64 none n

8÷12 conv 3 × 3 64 ReLU y
13 conv + skip 3 × 3 8 ReLU n
14 N3 80 × 80 64 none n

15÷19 conv 3 × 3 64 ReLU y
20 conv 3 × 3 252 softmax n

We can now briefly discuss the architecture summarized in Table 2. The first six layers are
borrowed from the AWGN denoiser proposed in [33], including the final skip connection, except
for the last layer, which outputs only eight feature maps. Then, for each input feature vector, the
subsequent N3 layer computes a local temperature and, based on this, the set of its seven cNNs. These
are not combined in any way, but provided in output together with the input feature itself, relying on
the net to learn the best way to use all this information. Note that the N3 layer has a quite large field of
view, exploring (with stride 5) neighbors in a 80 × 80-pixel window. The six convolutional and the N3

layers are then repeated, and finally another group of six convolutional layers, followed by a softmax
nonlinearity, provide the desired weights.

4. Experimental Validation

To assess the proposed approach, we carried out experiments on both simulated and real SAR
images. Optical images with injected single-look speckle allowed us to compute objective performance
indicators, the peak signal-to-noise ratio (PSNR), and the structural similarity (SSIM), which enabled
a simple comparison, in ideal conditions, with the state of the art. However, a solid performance
validation could only be based on the analysis of real-world SAR images. In the absence of a clean
reference, we used visual inspection of despeckled and ratio images to assess the filters’ properties,
especially for what concerns preservation of image details. Instead, speckle suppression ability was
measured objectively through the equivalent number of looks (ENL) computed on homogeneous
regions of the image and by means of the no-reference image quality indexM proposed in [55,56].

To study the improvement with respect to the state of the art, we considered a number
of reference methods, chosen both for their performance and their diffusion in the community.
The enhanced-Lee [57] and Kuan [8] local filters operate in the spatial domain with adaptive windows
(we used size 5 × 5 pixel) that follow the dominant signal structures. Turning to nonlocal filters,
besides plain NLM [11], we considered its SAR-oriented iterative version, PPB [13], and the more
advanced NL-SAR [16], together with nonlocal transform-domain shrinkage methods, SAR-BM3D [14]
and FANS [15]. Finally, we compared results with two deep learning-based methods, SAR-CNN [22]
and ID-CNN [23]. In all cases, the main parameters, e.g. search-area and window size, were set as
suggested in the original papers, and the SAR-domain distance proposed in [13] was used. As for
the proposed method, the two core CNNs were trained with the ADAM gradient-based optimization
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method with 32-patch minibatches, and patch-sizes of 48 × 48 and 104 × 104-pixel, respectively.
Synthetic training data were obtained by injecting single-look simulated speckle on 400 different
optical images. Real SAR data were acquired by the COSMO-SkyMed satellites. In this latter case,
lacking true speckle-free data, we resorted to temporally multilooked images (25 dates) as reference,
excluding patches where temporal changes occurred. The two datasets comprise a total of 8000 and
12,800 minibatches, respectively. Training proceeded for 50 epochs, with an initial learning rate of
10−3, divided by ten after every 20 epochs. All code was in Tensorflow, running on an Intel Xeon
CPU at 2.10 GHz and an Nvidia P100 GPU. The trained models will be made available online upon
publication of the present paper.

4.1. Experiments on Simulated Images

We generated simulated SAR images through the pixel-wise product of clean optical images with
a field of Gamma-distributed independent random variables. In all our experiments, we considered
only single-look images, since this is the most challenging case, due to the high intensity of speckle, and
also the most interesting for applications, since there is no loss of resolution due to spatial multilooking.

In Figure 3, we show the clean and noisy images used in these experiments. Although in the
despeckling literature it is customary to use optical remote sensing images for simulation purposes,
we chose to consider general-purpose images to better remark that this approach does not generate
faithful approximations of real-world SAR images in any case, and all results must be taken with
due care. With these warnings, in Table 3, we show numerical results obtained on such images.
Synthetic results were computed as the average over the 10 test images and, for each image, as the
average over 10 realizations of the speckle field. Conventional methods are grouped on the upper part
of the table, while methods based on deep learning are in the lower part.

Figure 3. Test images with simulated single-look speckle (top) and corresponding clean references
(bottom).

Table 3. Numerical results on simulated single-look images.

Method PSNR SSIM TIME (s)

noisy 11.69 0.183 0.000

enhanced-Lee 20.95 0.474 0.012
Kuan 21.94 0.541 0.017
NLM 22.75 0.599 15.355
PPB 23.43 0.639 32.637
NL-SAR 24.01 0.678 5.944
SAR-BM3D 24.98 0.728 48.085
FANS 24.89 0.736 4.415

ID-CNN 24.22 0.687 0.014
SAR-CNN 25.95 0.762 0.029
CNN-NLM (w/o N3 layers) 25.96 0.758 0.036
CNN-NLM (with N3 layers) 26.45 0.786 0.360

Looking at the PSNR indicator, deep learning-based methods appear to have the potential to
provide a clear performance gain over conventional ones. Indeed, while ID-CNN is aligned with
advanced nonlocal methods, SAR-CNN improves by about 1 dB over the best of them (SAR-BM3D).
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As for the proposed method, there is no further improvement with respect to SAR-CNN when the
NLM weights are estimated with a fully-convolutional CNN. However, about 0.5 dB is gained when
the CNN with nonlocal layers is used. Since this is a consistent behavior, in the following experiments
we considered only this latter version of the proposed method. Turning to SSIM, quite a similar
behavior was observed. The proposed method (with nonlocal layers) provides the best performance
with an appreciable improvement over SAR-CNN, and a more significant gain with respect to all
conventional methods. In the last column, we report the average processing time. With nonlocal
methods, this was an issue. As an example, SAR-BM3D requires about 50 s of CPU, mostly for nearest
neighbor search. This is orders of magnitude more than simpler local filters, such as Lee and Kuan,
which in fact keep being popular among practitioners also for this reason. For deep learning methods,
processing time becomes fully manageable again, provided a GPU is used. Of course, training the
models may take very long, but this is carried out off-line.

To gain some insight into the quality of filtered images, Figure 4 shows the output of the best
performing methods for the Barbara image. To allow for an overall view of results, and also to limit
space, we display these images in a compact format. A suitable zooming is therefore recommended for
accurate visual inspection of details. Considering the very noisy input, it seems safe to say that the
proposed method provides filtered images of impressive quality. The speckle is effectively suppressed
without significantly impairing the image resolution. Moreover, most details are well preserved,
even thin lines and complex textures, and no major artifacts are introduced. Even the best conventional
nonlocal methods, instead, fail under one or the other of these aspects. For example, SAR-BM3D
preserves resolution and details, but ensures only a limited speckle suppression, while NL-SAR
removes most speckle but at the price of a significant loss of resolution. As for plain NLM, based on
the same filtering engine as the proposed method, it causes a strong loss of resolution, only partially
solved with PPB. The most interesting comparison, however, is with SAR-CNN. To better appreciate
the improvements, Figure 5 shows a much enlarged strip of Barbara, chosen for the abundance of
patterns. Indeed, on such regular patterns, the improvement granted by the new method is striking,
with lines that are barely distinguishable in the noisy input that are correctly reproduced in output
most of the times. Moreover, the disturbing artifacts produced by both SAR-BM3D and SAR-CNN on
Barbara’s face do not longer occur. Nonetheless, the loss of quality with respect to the clean image is
still significant. Our sensitivity to the features of a human face allow us to fully appreciate the sharp
loss of details that actually occurs. Whether a despeckling engine can ever avoid such losses, without
the help of further information, is debatable.

clean noisy NLM PPB FANS

SAR-BM3D NL-SAR ID-CNN SAR-CNN CNN-NLM

Figure 4. Output of selected filters for the Barbara image. Noisy original and clean reference are in the
top-left.
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Clean noisy SAR-BM3D SAR-CNN CNN-NLM

Figure 5. Zoom of best performing filters on a strip of Barbara. Noisy original and clean reference are
in the top-left.

To complete the analysis on simulated images, Figure 6 shows the ratio images for Barbara,
that is, the ratios between the noisy input and the despeckled output. An ideal filter should remove
only the injected speckle, therefore the ratio image should be a field of uncorrelated speckle samples.
This seems to be actually the case for some filters, such as SAR-BM3D, SAR-CNN, and CNN-NLM,
while, in some other cases, notably for NLM and PPB, there is a clear leakage of signal structures in the
ratio image. ID-CNN, instead, seems to have a bias in very dark regions. The proposed method seems
very satisfactory also under this point of view. This is also confirmed numerically by the no-reference
quality indexM [55,56], which compares the statistical distribution of the ratio image with that of
the theoretical speckle. The analysis was carried out on a set of homogeneous areas of the image,
automatically selected by the method. Results are reported in Table 4 for each test image, with smaller
values (zero in the ideal case) indicating better performance. The proposed method always exhibits
one of the smallest values (best in boldface) and the second smallest on the average.
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clean noisy NLM PPB FANS

SAR-BM3D NL-SAR ID-CNN SAR-CNN CNN-NLM

Figure 6. Ratio images for the Barbara image. Noisy original and clean reference are in the top-left.

Table 4.M quality indicator [55] on simulated test images.

Method #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average

enhanced-Lee 50.70 20.89 49.80 21.80 34.40 28.15 84.86 14.71 15.68 20.57 34.16
Kuan 89.14 20.04 39.24 16.26 52.95 31.32 107.86 12.10 11.27 20.51 40.07
NLM 21.85 17.26 15.99 12.78 27.59 31.52 44.40 12.19 7.57 16.87 20.80
PPB 10.10 13.57 11.29 11.45 15.06 13.93 24.23 7.00 7.51 8.22 12.24
NL-SAR 15.84 15.47 26.24 12.52 19.25 14.54 33.40 6.55 9.49 7.81 16.11
SAR-BM3D 15.92 12.55 10.37 15.25 15.67 13.33 42.46 6.15 7.62 8.12 14.74
FANS 10.41 9.41 9.04 8.87 12.86 7.41 19.91 2.96 6.46 5.21 9.25

ID-CNN 50.08 33.37 3.69 10.08 178.12 3.76 55.74 26.82 3.82 11.01 37.65
SAR-CNN 15.57 11.75 11.84 14.06 14.81 10.64 20.14 4.94 7.03 6.52 11.73
CNN-NLM 11.55 9.62 9.89 11.75 11.73 9.11 19.24 4.03 6.72 4.90 9.85

4.2. Experiments on Real-World SAR Images

To validate the proposed method on real-world SAR data, we relied on a stack of 25 co-registered
single-look images acquired by the COSMO-SkyMed sensor over the city of Caserta (I), and spanning
a temporal interval of about five years, from 26 July 2010 to 23 March 2015. The images cover an area
of about 40 km × 40 km, with 3 m/pixel spatial resolution, for a size exceeding 16,000 × 16,000 pixels.
Despeckling experiments were all carried on the first image of the stack. Temporal multilooking
was used to obtain reference data for training. Of course, such reference is far from the ideal “clean”
data, not only for the limited number of looks, which implies imperfect rejection of speckle, but also
for the presence of temporal changes. The latter problem was addressed by discarding areas where
a significant temporal change was detected. Eight 600 × 600-pixel clips were cropped from the first
image and used for testing, sampling various types of land cover. Of course, these areas were excluded
from the training set, but nearby areas of similar characteristics were included, so as to guarantee a
good alignment between training and testing data. All test clips are shown in Figure 7 together with
the corresponding multilook reference. Note that these multilooked images were not used in any way
in validation (they even include regions in which temporal changes occurred) and are only shown to
gain some insight into how the clean SAR signal might appear. The white boxes on the multilooked
images indicate the regions used to compute the ENL.
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Figure 7. Real-world single-look test SAR images (odd columns) and 25-look references (even columns).

Table 5 reports, for each filter, the ENL measured on all test images and, on the rightmost column,
their average. It appears that the proposed CNN-NLM provides always the largest (six images) or
second largest (two images) ENL. This reflects in the largest average ENL (about 250) followed by
CNN-SAR (150) and NL-SAR (100).

Table 5. ENL on test images.

Method #1 #2 #3 #4 #5 #6 #7 #8 Average

noisy 0.98 1.00 1.01 1.01 0.98 0.98 0.99 0.99 0.99

enhanced-Lee 7.69 8.43 6.72 8.63 8.12 7.99 9.14 7.07 7.97
Kuan 14.37 16.74 12.17 16.69 15.14 15.32 15.85 14.35 15.08
NLM 41.54 84.96 33.57 58.15 51.15 49.25 41.31 62.79 52.84
PPB 43.34 101.19 24.70 42.84 45.94 49.43 38.98 27.29 46.71
NL-SAR 59.95 97.17 150.31 131.86 97.72 43.73 102.26 134.14 102.14
SAR-BM3D 5.58 7.85 4.78 6.90 5.01 6.92 6.19 5.90 6.14
FANS 24.35 81.14 16.16 27.34 29.35 30.38 29.88 19.49 32.26

ID-CNN 5.76 9.52 8.10 8.99 6.37 2.82 8.40 6.77 7.09
SAR-CNN 24.97 237.09 177.40 317.63 64.92 117.69 175.53 73.54 148.60
CNN-NLM 316.84 464.88 235.08 271.52 94.18 171.39 346.70 100.19 250.10
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With real-world SAR images, however, even more than with simulated images, visual inspection
is necessary for a solid assessment. Therefore, in the following figures, we show detailed visual results
for two selected images. Again, for the sake of compactness, we display rather small images which
require adequate zooming for analysis, except for two strips shown much enlarged and analyzed
in depth later on. In Figures 8 and 9, we show the output of selected filters for Images #5 and
#6, respectively, together with the single-look input and the 25-look reference. Visual inspection
confirms the good behavior of the proposed method. There is a very effective suppression of speckle,
as predicted by the ENL numbers of Table 5, but also a faithful preservation of relevant details,
such as man-made structures, field boundaries, and roads, which all keep their original high resolution.
In addition, other methods preserve image resolution and details, such as SAR-BM3D, but with very
limited speckle suppression. On the other hand, NL-SAR and SAR-CNN suppress speckle very well,
but they also degrade resolution or lose entire structures. With the aim of better appreciating such
differences, Figures 10 and 11 focus on two narrow horizontal strips of Images #5 and #6 (rotated
for better displaying) showing the output of SAR-BM3D, SAR-CNN and the proposed method next
to the single-look input and the 25-look reference. As we observed before, SAR-BM3D seems to
preserve all the information present in the input, without losing or even blurring informative details,
but does not remove much speckle. SAR-CNN, instead, removes speckle very effectively but tends
to lose or blur linear structures (roads and boundaries), which, instead, are very well preserved by
the proposed method. This is arguably a consequence of nonlocal layers’ ability to take advantage of
image self-similarities.

multilook single-look NLM PPB FANS

SAR-BM3D NL-SAR ID-CNN SAR-CNN CNN-NLM

Figure 8. Output of selected filters on SAR Image #5. Single-look input and 25-look reference are in the
top-left.
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multilook single-look NLM PPB FANS

SAR-BM3D NL-SAR ID-CNN SAR-CNN CNN-NLM

Figure 9. Output of selected filters on SAR Image #6. Single-look input and 25-look reference are in the
top-left.

Clean noisy SAR-BM3D SAR-CNN CNN-NLM

Figure 10. Zoom of best performing filters on a strip (rotated for better displaying) of SAR Image #5.
Single-look input and 25-look reference are in the left.
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Clean noisy SAR-BM3D SAR-CNN CNN-NLM

Figure 11. Zoom of best performing filters on a strip (rotated for better displaying) of SAR Image #6.
Single-look input and 25-look reference are in the left.

However, turning to the ratio images, shown in Figure 12 for SAR Image #5, we observed also
an undesired behavior. The ratio images of all deep learning methods exhibit a clear leakage of signal,
concerning not only linear structures but also the average intensity of some fields. Given the black-box
nature of CNNs, we have only an indirect explanation for this phenomenon. However, the fact that it
involves both our deep learning methods, and it happens only with SAR images and not with simulated
data, may suggest that this problem has to do with the imperfect reference images used in training.
In fact, a 25-look image is not the clean SAR signal, but only an approximation of it, based on temporal
multilooking. Indeed, the fields characterized by a different average intensity than the rest of the image
correspond to areas where the despeckled image approximates fairly well the reference (see again
Figure 8) but not the original noisy image. Thus, the CNN behaves as instructed to do based on bad
examples, probably due to seasonal changes that escaped the change detector. With these premises, the
ratio image-basedM index can only provide bad results, which is in fact the case, as shown in Table 6,
where the proposed method trails all others. If our conjecture is right, however, these problems will be
automatically solved when better reference data will be available, the first item in our agenda.
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multilook single-look NLM PPB FANS

SAR-BM3D NL-SAR ID-CNN SAR-CNN CNN-NLM

Figure 12. Ratio images for SAR Image #5. Single-look input and 25-look reference are in the top-left.

Table 6.M quality indicator [55] on real SAR test samples.

Method #1 #2 #3 #4 #5 #6 #7 #8 Average

enhanced-Lee 18.54 14.12 21.39 23.92 16.01 14.88 30.48 17.81 19.64
Kuan 15.18 9.09 31.21 14.78 17.14 14.43 63.89 13.60 22.41
NLM 11.80 9.74 16.54 9.78 9.75 8.59 19.80 10.19 12.02
PPB 10.44 12.44 14.36 11.93 7.89 8.74 27.75 10.10 12.96
NL-SAR 8.64 11.34 6.66 6.04 4.00 5.95 17.20 3.69 7.94
SAR-BM3D 28.13 27.27 26.52 30.14 30.26 27.88 33.17 29.28 29.08
FANS 7.60 12.33 15.12 10.46 9.04 10.09 25.63 8.68 12.37

ID-CNN 12.06 9.16 11.86 11.27 9.43 10.32 9.69 9.71 10.44
SAR-CNN 13.12 12.83 37.99 40.64 44.42 16.16 67.93 16.06 31.14
CNN-NLM 32.60 20.47 33.33 43.38 60.31 13.11 71.82 21.65 37.09

In alternative, one may be tempted to use the network trained on synthetic data, optical images
with injected speckle, far from true SAR data but perfectly reliable and virtually unlimited. Figure 13
shows the output for SAR Image #5. Speckle suppression is much worse than with the network trained
on our 25-look reference (output shown again for easier comparison) and some odd micropatterns
appear in the despeckled image confirming that using real-world SAR data for training is the right
way to go.

Clean Noisy Trained on real data Trained on simulated

Figure 13. Output of proposed method with different training sets. From left to right: 25-look reference,
noisy input, and outputs obtained with CNN trained on real-world SAR data and on simulated data,
respectively.
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5. Discussion

We propose our CNN-NLM architecture with two goals: improving performance and providing
some new insight into nonlocal filtering. Therefore, we now turn to study the weights generated by
the proposed method and compare them with those of conventional NLM. Indeed, the only difference
between the two methods is in the weights, generated by a CNN in the proposal, set on the basis of a
similarity measure in NLM. Thus, we selected some relevant patches from Barbara and SAR Image
#6, and analyzed the weights used to estimate their central pixel. The results are shown in Figures
14 and 15, respectively. The selected patches are characterized by the presence of lines (blue), edges
(yellow), and texture (green), or else are homogeneous (red). These structures are easily recognized in
the clean/25-look reference patches, and much less in the original noisy ones. For each test patch, we
built a subfigure showing, in the top row, the clean/multilook reference, and the weights selected by
NLM and CNN-NLM superimposed to it, and, in the bottom row, the noisy input and the despeckled
output provided by NLM and CNN-NLM.

Consider for example the blue patch from Barbara, and the associated subfigure in the top-left.
Diagonal structures are clearly visible in the clean patch, especially a dark line in the center, the dark
space between two books. Both the conventional and CNN-based weights follow this dark line to
estimate the (dark) central pixel. In the first case, however, weights are dispersed over the whole
patch, and gather information also from pixels farther away from the target, while the CNN weights
are much more concentrated. The first choice is more adherent to the spirit of nonlocal filtering, as it
tries to exploit relevant information all over the image. Nonetheless, results speak clearly in favor of
the second choice. CNN-NLM provides in output quite a faithful copy of the clean signal, while the
NLM output patch exhibits a clear loss of resolution and the dark line almost disappears. This can be
explained by looking at how noisy the input patch is. Although sensible, in principle, the NLM choice
of weights is quite risky, as it relies on a similarity measure that, in the presence of such noisy data,
may select bad predictors.

This is even clearer in the second example, the yellow patch from Barbara, featuring a sharp edge.
Due to the limited contrast between the dark and bright sides of the edge, and to the intense noise,
NLM selects large weights on both sides, with the effect of largely smoothing the edge. On the contrary,
all large CNN-NLM weights are on the right side of the edge, and allow for its faithful reproduction.

Of course, risky NLM weights are less of a problem in homogeneous areas (red patch) and they
only give rise to some residual noise in the output patch, which is not necessarily wrong. Instead, in the
presence of regular patterns (green patch), the dispersion of weights in a large area leads to blurred
patterns in output, while the CNN weights, mostly concentrated on the central line, allow for the
extraction of such hidden pattern.

In real-world SAR images, we observe the very same phenomena described before, only less
pronounced, because of the absence of the sharp contrasts observed in optical images (we do not
analyze strong scatterers or double reflection lines as they are always well reproduced by reasonably
well-behaved filters). Again, lines (blue patch) are severely smoothed by NLM and tend to disappear
because too many pixels are used for the estimate, and not all of them are reliable. Similar problems
affect the edges (yellow patch) but are less pronounced. Homogeneous regions are correctly filtered in
both cases, with the CNN weights ensuring only a stronger smoothing. Finally, we could find only
some subtle regular patterns in our SAR image (green patch), so faint that the CNN could not find
preferential directions, and both NLM and CNN-NLM largely smooth it out.
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blue patch (line)
yellow patch (edge)

red patch (homogeneous)
green patch (texture)

Figure 14. Weights generated by conventional NLM and CNN-NLM for a few selected patches of
Barbara. Each subfigure shows: (top) the clean patch and the weights (in red) chosen by plain and
CNN-based NLM; and (bottom) the original noisy patch and the denoised patches generated by plain
and CNN-based NLM.

blue patch (line)
yellow patch (edge)

red patch (homogeneous)
green patch (texture)

Figure 15. Weights generated by conventional NLM and CNN-NLM for a few selected patches of SAR
Image #6. Each subfigure shows: (top) the clean patch and the weights (in red) chosen by plain and
CNN-based NLM; and (bottom) the original noisy patch and the denoised patches generated by plain
and CNN-based NLM.

6. Conclusions

We propose a new method for SAR image despeckling, based on nonlocal filtering and deep
learning (Supplementary Materials). The filter performs plain nonlocal means, but the filter weights are
chosen through a properly trained CNN, featuring suitable nonlocal layers. The results are extremely
promising, definitely competitive with the state of the art. A strong speckle rejection is observed,
together with a faithful preservation of details. On the down side, we observed some signal leakages in
the ratio images, which indicate imperfect filtering. Since this occurs only with real-world SAR images,
we believe this is due to the low-quality reference images used for training. Besides performance,
the analysis of CNN-generated weights sheds some light on the potential and limits of nonlocal
filtering. Apparently, a careful use of nonlocality is recommended in the presence of very noisy data.

Despite the good performance of the proposed method, several issues call for further investigation.
First, the signal leakage problem underlines the need for better training data and training modalities.
In our opinion, the lack of reliable reference images is the primary factor limiting the performance
of deep learning-based SAR despeckling. Then, we want to expand the analysis of NLM weights,
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to confirm our conjectures and explore more general cases. Finally, and most important, we aim at
designing better despeckling methods. This could require the use of more elaborate filtering structures
and the design and training of better deep learning architectures.

Supplementary Materials: Software and implementation details will be made available online at http://www.
grip.unina.it/ to ensure full reproducibility.
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