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Abstract: Light use efficiency (LUE), which characterizes the efficiency with which vegetation converts
captured/absorbed radiation into organic dry matter through photosynthesis, is a key parameter
for estimating vegetation gross primary productivity (GPP). Studies suggest that diffuse radiation
induces a higher LUE than direct radiation in short-term and site-scale experiments. The clearness
index (CI), described as the fraction of solar incident radiation on the surface of the earth to the
extraterrestrial radiation at the top of the atmosphere, is added to the parameterization approach to
explain the conditions of diffuse and direct radiation in this study. Machine learning methods—such
as the Cubist regression tree approach—are also popular approaches for studying vegetation carbon
uptake. This paper aims to compare and analyze the performances of three different approaches
for estimating global LUE and GPP. The methods for collecting LUE were based on the following:
(1) parameterization approach without CI; (2) parameterization approach with CI; and (3) Cubist
regression tree approach. We collected GPP and meteorological data from 180 FLUXNET sites
as calibration and validation data and the Global Land Surface Satellite (GLASS) products and
ERA-interim data as input data to estimate the global LUE and GPP in 2014. Site-scale validation
with FLUXNET measurements indicated that the Cubist regression approach performed better than
the parameterization approaches. However, when applying the approaches to global LUE and GPP,
the parameterization approach with the CI became the most reliable approach, then closely followed
by the parameterization approach without the CI. Spatial analysis showed that the addition of the
CI improved the LUE and GPP, especially in high-value zones. The results of the Cubist regression
tree approach illustrate more fluctuations than the parameterization approaches. Although the
distributions of LUE presented variations over different seasons, vegetation had the highest LUE,
at approximately 1.5 gC/MJ, during the whole year in equatorial regions (e.g., South America, middle
Africa and Southeast Asia). The three approaches produced roughly consistent global annual GPPs
ranging from 109.23 to 120.65 Pg/yr. Our results suggest the parameterization approaches are robust
when extrapolating to the global scale, of which the parameterization approach with CI performs
slightly better than that without CI. By contrast, the Cubist regression tree produced LUE and GPP
with lower accuracy even though it performed the best for model validation at the site scale.

Keywords: light use efficiency; gross primary productivity; clearness index; parameterization
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1. Introduction

Estimations of global vegetation productivity are essential for improving the understanding of
the interaction between the terrestrial biosphere and the atmosphere in the context of global changes
and the further formulation of climate policy decisions [1,2]. GPP, a key variable in the global carbon
cycle, is influenced by various factors such as temperature [3], soil moisture [4], vegetation types and
even tree species [5], crop types [6], tree ages [7] and radiation [8]. To date, many models, including
process models and LUE-based models, have been established to estimate global GPP; however, they
vary greatly in terms of produced values [9–18].

Currently, some GPP models try to build the relationships between GPP and climate factors,
FPAR and the vegetation indices with which global GPP is produced [19–21]. However, those models
don’t care about the intermediate variable LUE and its impact on GPP. LUE is of great significance
in GPP estimation, and it can help us to deeply understand and clarify the key processes of the
vegetation carbon sequestration. This paper focuses on the estimation of LUE based on remote
sensing data, and then explores its impact on GPP estimation. The LUE-based model was originally
described by Monteith [22,23]. It has a simple formula and can present consistent ecosystem processes
across various vegetation types [24,25], which makes it the most promising method for adequately
addressing the spatial and temporal dynamics of GPP. The input data, such as the fraction of absorbed
photosynthetically active radiation (FPAR), could be produced by remote sensing techniques. Therefore,
it has been widely used to estimate GPP at local, regional and global scales [3,26–29].

LUE is defined as the ratio of carbon uptake to absorbed photosynthetically active radiation (APAR)
for a plant canopy [30]. The dominant methods used to determine LUE are based on environmental
stress factors and vegetation spectral indexes. The photochemical reflectance index (PRI), as one
popular vegetation spectral index, is a good estimator of LUE, especially in the short-term [31,32] and
at the leaf/canopy scale [33,34]. However, confounding factors appear at larger temporal and spatial
scales. The correlations of PRI with LUE varied dramatically throughout the growing season [35] and
were decoupled in severe circumstances, consequently leading to an overestimation of LUE [36]. Some
studies process temperature and water stress factors based on the parameterization approach [37] and
machine learning methods [38], and have obtained high-quality LUE values.

The LUE-based GPP model is built upon two fundamental assumptions: (1) GPP equals the
product of APAR and LUE; (2) actual LUE may be reduced below its potential value by environmental
stresses such as low temperatures or water shortages. Consequently, the accuracy of the LUE greatly
influences the quality of the GPP. However, it is quite difficult to accurately calculate global LUE because
it cannot be directly measured and is sensitive to various factors. In different models, parameters
such as temperatures or water stress factors are described in different ways, which leads to significant
variations in the estimation results. The evaporative fraction (EF) is widely used as a water stress
factor in LUE and GPP models [39]. Zhang et al. (2015) [40] showed that LUE was more responsive to
plant moisture indicators, such as plant EF, than to atmospheric indicators, such as the vapor pressure
deficit (VPD).

Previous studies suggest that the efficiency of carbon uptake is usually higher under diffuse
light (cloudy or hazy skies) than under direct light (clear sky) [41,42]. The underlying mechanism
for this growth is the increased penetration of light into deeper layers of the canopy under diffuse
light [8]. In contrast, clouds may reduce the total radiation, which would lead to the reduction of PAR
and GPP [43]. Therefore, the effect of radiation mode on LUE and GPP is complicated. Furthermore,
previous studies have mostly focused on short-term [44] and site-scale [43,45] LUE and GPP. The CI,
described as the fraction of solar incident radiation on the surface of the earth to the extraterrestrial
radiation at the top of the atmosphere [35,46], is an effective way to explain the circumstances of diffuse
and direct light. This index prompts our motivation to explore the influences of the CI on long-term
and global LUE and GPP.

Machine learning methods provide a powerful tool to upscale site-observed fluxes to a larger
scale with satellite-derived parameters and other explanatory variables [37]. The application of the
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Cubist regression tree approach in vegetation carbon uptake research is a good example. The main
advantage of the Cubist method is to add multiple training committees and “reinforcement”, so as
to make the weights more balanced [47]. It also provides linear equations for prediction instead of
black box. In addition, Cubist is a commercial, proprietary product and has the least algorithmic
documentation [48]. Houborg et al. prove the better performances than random forest in estimating leaf
area index [49]. Previous studies use this approach to produce LUE, GPP and spatially continuous GPP
in the USA [50–53], and these studies gain satisfactory validation results against site-scale measured
GPP. However, few studies compare this approach with the parameterization approach in terms of
global LUE and GPP.

The purpose of this paper is to compare and analyze the performances of different approaches for
producing global and seasonal LUE and GPP. The three methods for determining LUE were based
on (1) a parameterization approach without the CI, (2) a parameterization approach with the CI,
and 3) the Cubist regression tree approach. We collected eddy-covariance and meteorological data
from 180 FLUXNET sites as calibration and validation data and GLASS products and ERA-interim
data as input data to estimate global LUE and GPP in 2014, with a spatial resolution of 5 km and a
temporal resolution of 8 days. FLUXNET measurements were used to validate LUE and GPP using
three approaches at the site scale. Furthermore, we compared the temporal and spatial patterns of the
LUE and GPP to analyze and assess the strengths and drawbacks of each approach. It is worth noting
that global LUE distributions were first presented in this study to explore the spatial variations in LUE
in different areas and the temporal changes in LUE in different seasons.

2. Materials and Methods

2.1. Data Collection

2.1.1. Data from FLUXNET

The FLUXNET2015 dataset, which can be downloaded from https://fluxnet.fluxdata.org/data/,
contains global eddy covariance measurements and meteorological variables from more than 200 sites.
In this study, we selected daily GPP, incident shortwave radiation (SW), latent heat flux (LE), sensible
heat flux (H) and hourly air temperature (TA). FLUXNET GPP is calculated as the difference between
ecosystem respiration (RECO) and net ecosystem CO2 exchange (NEE). SW was used to calculate PAR
by multiplying the value by 0.48 [54]. LE and H were prepared for the EF according to EF = LE/(LE+H).
Mean temperature (Tmean) was obtained by averaging hourly TA. To ensure that the FLUXNET data
were reliable, we retained only high-quality data with the help of quality flags. Finally, we obtained
29,056 pieces of data distributed at 180 sites ranging from 2003 to 2014. All data were distributed in 12
types of vegetation, of which CRO (croplands) had 20 sites, CSH (closed shrublands) had 3 sites, DBF
(deciduous broadleaf forests) had 24 sites, DNF (deciduous needleleaf forests) had 1 site, EBF (evergreen
broadleaf forests) had 10 sites, ENF (evergreen needleleaf forests) had 35 sites, GRA (grasslands) had
33 sites, MF (mixed forests) had 9 sites, OSH (open shrublands) had 14 sites, SAV (savannas) had 7 sites,
WET (permanent wetlands) had 18 sites, and WSA (woody savannas) had 6 sites. In this study, we
considered WET as GRA because of the complicated conditions of WET.

2.1.2. MODIS Data Processing

We downloaded the fraction of absorbed photosynthetically active radiation (FPAR) and leaf area
index (LAI) (MCD15A2H) data of Moderate Resolution Imaging Spectroradiometer (MODIS) at a
spatial resolution of 500 m (from MODIS Global Subsets website https://modis.ornl.gov/cgi-bin/MODIS/

global/subset.pl), with which LUE was calculated according to Formula (1) in the FLUXNET sites:

LUE =
GPP

PAR× FPAR
=

GPP
0.48× SW × FPAR

(1)

https://fluxnet.fluxdata.org/data/
https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl
https://modis.ornl.gov/cgi-bin/MODIS/global/subset.pl


Remote Sens. 2020, 12, 1003 4 of 25

where GPP and SW were from the FLUXNET data, and FPAR was from the MODIS data at a resolution
of 500 m. 0.48 represents the ratio of photosynthetically active radiation to the total incoming solar
energy. At each site, 9 (3 × 3) pixels around the central position were collected for quality-control
processes. The first quality-control process included (1) gaining 9 values in each site; (2) deleting
invalid data according to the quality control flags; (3) counting the number of valid values in each site;
and (4) retaining the valid data if the number exceeds 5, or deleting the valid data if the value did not.

MODIS LAI and FPAR depend on the reflectance in the red, near-infrared (NIR), and sometimes
shortwave infrared (SWIR) bands at the surface level, which are often very sensitive to atmospheric
effects, including clouds, aerosols, water vapor, and ozone [55,56]. Although many of these effects
can be removed using real-time or near real-time atmospheric observations [57], the remaining effects
can sometimes be very large. These remaining effects generally cause more increases in the red
band than in the NIR band, consequently resulting in the reduction of LAI and FPAR. In this case,
there would be abnormally low values in a seasonal trajectory. Therefore, we conduct the second
quality-control process, which includes deleting abnormally low values based on seasonal curves [58].
In parameterization approaches, parameters, for example, maximum LUE, vary with vegetation type.

In the regression tree approach, vegetation type can be an input data used to calibrate the approach.
We used the International Geosphere-Biosphere Programme (IGBP) vegetation type map from yearly
global 5-km MODIS Landcover (MCD12C1) to address different types of vegetation. In addition, we
downloaded MOD17 8-day/0.05 degree GPP as an existing global GPP product to analyze our GPP
from http://files.ntsg.umt.edu/data/NTSG_Products/MOD17 [59].

2.1.3. GLASS Data

The GLASS LAI and FPAR datasets were generated and released by Beijing Normal University
(http://www.bnu-datacenter.com) [60]. This product has a temporal resolution of 8 days and is available
from 1981 to the present. The LAI and FPAR used in this study were generated from AVHRR reflectance
at a resolution of 5 km [61]. The GLASS LAI and FPAR products have smooth and reasonable
trajectories. By cross-comparison and validation, the accuracy of GLASS products is clearly better than
that of MODIS and CYCLOPES products (Carbon Cycle and Change in Land Observational Products
from an Ensemble of Satellites). Moreover, the GLASS LAI and FPAR are more temporally continuous
and spatially complete than are the other tested products [62,63].

2.1.4. ERA-Interim Data

ERA-Interim is a global land surface reanalysis dataset covering the period since 1979 and
continuing in real time. This product can be downloaded from the European Centre for Medium Range
Weather Forecasts (ECMWF) Data Server at http://data.ecmwf.int/data. The time steps are sub-daily,
daily and monthly, and a spatial resolution of 0.75◦. ERA-Interim is the result of the simulation with the
latest ECMWF land surface model driven by meteorological forcing from the ERA-Interim atmospheric
reanalysis and precipitation adjustments based on the monthly Global Precipitation Climatology
Project (GPCP) [64]. In this study, we downloaded half-daily ERA average air temperature (AAT),
2-m dewpoint temperature (D2M), surface air pressure (P), downward shortwave radiation (SWdw),
net longwave radiation (LWnet) and net shortwave radiation (SWnet). Then, we averaged every 16
values to obtain 8-day ERA data to prepare for the global LUE and GPP estimation.

2.2. Methods

LUE is of great significance in GPP estimation, and it can help us to deeply understand and clarify
the key processes of the vegetation carbon sequestration. In this section, we will describe the different
approaches of estimating LUE and then how to gain GPP based on LUE.

http://files.ntsg.umt.edu/data/NTSG_Products/MOD17
http://www.bnu-datacenter.com
http://data.ecmwf.int/data
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2.2.1. LUE Estimation

We established 3 approaches to compute LUE. Two of them were parameterization approaches in
which we first determined the maximum LUE for each type of vegetation by an optimization algorithm
developed at the University of Arizona (SCE-UA), and then we adjusted the maximum LUE with
temperature and water stress factors, finally estimating the actual LUE. The difference between the two
parameterization approaches was whether we considered the effect of solar radiation by adopting the
CI in the determination of the maximum LUE. The third approach was the Cubist regression approach,
which considers the contributions of temperature, LAI, EF, CI and vegetation type to the LUE.

• Parameterization approach without CI (approach V1)

LUE is estimated by Formula (2) in the parameterization approach without CI (approach V1):

LUE = LUEmax∗f(T)∗f(W) (2)

where LUE is the actual LUE and can be calculated by Formula (1) at FLUXNET sites, and LUEmax is
the maximum LUE without stress in each type of vegetation. f(T) represents the temperature stress
and can be described as [65]:

f(T) =
1.1814[

1 + e0.2(Topt−10−T)
]
×

[
1 + e0.3(−Topt−10+T)

] (3)

where T represents the average temperature and comes from the FLUXNET measurements, and Topt is
the monthly mean temperature when the vegetation reaches the maximum LAI for each vegetation
type. f(W) describes the water stress and is related to EF by [65]:

f(W) = 0.5 + 0.5× EF (4)

At the site scale, EF was calculated by Formula (5), where LE and H were collected from the
FLUXNET data. For global LUE and GPP estimation, EF was derived by Formula (6), where ET and
PET represent the actual and potential evapotranspiration, respectively.

EF =
LE

LE + H
(5)

EF =
ET

PET
(6)

Previous studies suggest that the Penman–Monteith (P–M) formula is a biophysically sound
and robust framework for estimating daily evapotranspiration at regional and global scales with
remotely sensed data [66]. In this study, we used a modified P–M approach with biome-specific canopy
conductance to estimate daily actual evapotranspiration, which can be partitioned into soil evaporation
and canopy transpiration [67,68]. Potential evapotranspiration is calculated using the Priestley and
Taylor (P–T) formula [69]. More details can be found in Cui, et al. [70].

The maximum LUE values for different vegetation types in approach V1 were determined by the
SCE-UA optimization algorithm. The SCE-UA optimization algorithm, developed and described by
Duan, et al. [71], is both a global and a probabilistic optimization algorithm. This approach is structured
by four basic ideas: (1) the combination of random and deterministic approaches; (2) the concept of
clustering; (3) the concept of a systematic evolution towards global improvement; and (4) the concept
of competitive evolution [72]. The details of the SCE-UA method refer to the literature [71,73]. Due to
its high efficiency of solving global optimal solutions under nonlinear constraints and never depending
on the initial value of the mode, SCE-UA has been widely used for the optimization of parameters
and data assimilation [74–77]. In this study, we set a valid and reasonable range for LUEmax. The cost
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function equals the root-mean-square error (RMSE) between the actual LUE and the estimated value.
Then, we minimized the cost function to obtain LUEmax in each vegetation type (Table 1).

Table 1. LUEmax, LUEsu
max and LUEsh

max for each vegetation type.

IGBP Vegetation Type Vegetation Type
Abbreviation LUEmax LUEsu

max LUEsh
max

Evergreen Needleleaf Forests ENF 1.432 0.573 2.556
Evergreen Broadleaf Forests EBF 1.491 0.596 2.603
Deciduous Needleleaf Forests DNF 0.831 0.332 1.400
Deciduous Broadleaf Forests DBF 1.434 0.573 2.556
Mixed Forests MF 1.540 0.616 2.494
Closed Shrublands CSH 1.168 0.467 2.070
Open Shrublands OSH 0.761 0.304 1.510
Woody Savannas WSA 1.120 0.460 2.298
Savannas SAV 1.301 0.520 2.466
Grasslands GRA 1.277 0.511 2.398
Croplands CRO 1.587 0.943 2.466

• Parameterization approach with CI (approach V2)

In the second parameterization approach (approach V2), we considered the effect of the CI,
and LUE was estimated by Formula (7):

LUE =
[
LUEsu

max ×CI + LUEsh
max × (1−CI)

]
× f(W) × f(T) (7)

CI =
SWsur f ace

SWtop
(8)

SWtop =
T
π

S0(ω0sinϕsinδ+ cosϕcosδsinω0) (9)

S0 = S0 ×

(
1 + 0.033× cos

(
2π×

day
365

))2

(10)

where LUEsu
max and LUEsh

max are the coefficients of CI and 1-CI, respectively. LUEsu
max equals the LUE in

completely direct light. LUEsh
max is positively related to LUE in diffuse light. CI represents the fraction

of solar incident radiation on the surface of the earth (SWsur f ace) to the extraterrestrial radiation at the
top of the atmosphere (SWtop). T denotes the time period corresponding to SW; thus, T = 60 × 60 ×
24 = 86,400 s in this study. S0 represents the solar radiation constant, which is equal to 1367 W/m2.
ω0 is the solar horizon at sunrise. ϕ is the latitude. δ is the solar declination. In order to optimize
LUEsu

max and LUEsh
max, we firstly set reasonable ranges for them based on the value of LUEmax for each

vegetation type; and then different values are randomly selected from the specific ranges, in addition,
the corresponding LUE is calculated which would be compared with FLUXNET LUE. Finally, we built
the cost function (RMSE) and minimized it to simultaneously optimize LUEsu

max and LUEsh
max using the

SCE-UA optimization algorithm.

• Cubist regression tree approach (approach V3)

The Cubist regression tree approach (approach V3) was finally established to estimate LUE.
Cubist is a tool to generate rule-based predictive approaches from data. This approach partitions data
into smaller groups that are more homogenous. To achieve outcome homogeneity, regression trees
determine: (1) the predictor to split on and the value of the split; (2) the depth or complexity of the tree;
and (3) the prediction formula at the terminal nodes. Cubist is one of the most utilized regression tree
approaches. Some specific features of Cubist are (1) the specific techniques used for linear smoothing,
creating rules, and pruning; (2) an optional boosting; and (3) the predictions generated by the rules can
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be adjusted using nearby points from the training set data [78]. For the Cubist regression tree approach,
an assumption that LUE is determined by vegetation growth, water stress, temperature stress, radiation
condition and vegetation type was made. Therefore, we selected 4 continuous parameters, LAI, EF,
Tmean and CI and one discrete variable, vegetation type, which respectively represent the 5 factors
in order, as input. The maximum number of regression trees was set to 10. The established linear
formulas are listed in Table 2.

Table 2. Cubist regression tree approach.

Rule 1
conditions vegetation type in {CRO, DNF, WSA, OSH, GRA}, LAI ≤ 0.7 and EF ≤ 0.753

linear formula LUE = 0.047 + 0.159 LAI + 0.78 EF − 0.11 CI

Rule 2
conditions vegetation type in {DBF, SAV} and Tmean ≤ 11.562

linear formula LUE = -0.042 + 0.13 LAI + 0.62 EF + 0.0119 Tmean − 0.07 CI

Rule 3
conditions vegetation type = WSA

linear formula LUE = 0.338 + 1 EF - 0.006 Tmean + 0.02 LAI

Rule 4
conditions vegetation type in {CRO, DNF, OSH, GRA}, LAI > 0.7 and EF ≤ 0.753

linear formula LUE = 0.207 + 1.08 EF + 0.091 LAI − 0.006 Tmean − 0.4 CI

Rule 5
conditions vegetation type in {MF, ENF, EBF, CSH} and Tmean ≤ 11.562

linear formula LUE = 0.784 + 0.029 Tmean + 0.68 EF − 1.12 CI + 0.062 LAI

Rule 6
conditions vegetation type in {DBF, SAV, MF, ENF, EBF, CSH}, Tmean > 11.562 and EF

≤ 0.753
linear formula LUE = 0.682 + 1.17 EF − 0.57 CI - 0.0066 Tmean + 0.014 LAI

Rule 7
conditions LAI ≤ 1.8 and EF > 0.753

linear formula LUE = -0.514 + 0.409 LAI + 1.47 EF + 0.025 Tmean − 1.05 CI

Rule 8
conditions vegetation type in {DBF, WSA, SAV, MF, GRA, ENF, EBF, CSH}, LAI > 1.8

and EF > 0.7531864
linear formula LUE = 0.862 + 1.26 EF − 1.41 CI + 0.021 LAI

Rule 9
conditions CI <= 0.447, LAI > 1.8 and EF > 0.753

linear formula LUE = 0.439 + 1.71 EF − 0.93 CI

Rule 10
conditions vegetation type = CRO, LAI > 1.8 and EF > 0.753

linear formula LUE = −0.831 + 3.24 EF + 0.0316 Tmean − 1.53 CI

2.2.2. GPP Estimation

In this part, the main task is to prepare the required spatially continuous parameters listed in
Figure 1. With Formula (3), we calculated gridded temperature stress f(T); with Formulas (4) and (6),
we obtained gridded EF and water stress f(W), respectively. We already obtained the LUEmax (Table 1)
for each vegetation type during the parameterization process. Having the above data, the global LUE
maps in 2014, with a spatial resolution of 5 km and a temporal resolution of 8 days, were produced (V1).
The difference between V2 and V1 is the addition of the CI. With Formulas (8)–(10), we obtained the
global gridded CI. LUEsu

max and LUEsh
max are listed in Table 1. Then, we obtained the global 8-day LUE

in 2014 according to the process described in the blue frame. For the Cubist regression tree approach
(V3), we first calculated the gridded parameters (green frame) and then selected the corresponding
linear formula (Table 2) for each pixel to calculate global LUE. Having gained LUE maps, the same
equation (Equation (11)) was next used to calculate global GPP.

GPP = 0.48× SW × FPAR× LUE (11)
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Figure 1. The flow chart of global Light use efficiency (LUE) and gross primary productivity (GPP) by
3 approaches.

2.2.3. Calibration and Validation

After quality control, 29,056 pieces of FLUXNET site data remained, of which 19,459 pieces were
randomly chosen for calibration and the remaining data (9597 pieces) were for validation. Data for
the calibration and validation both are globally distributed and cover all vegetation types. Figure 2
shows the validation of the three approaches. We also calculated LUE with MOD17 GPP algorithm [79]
and compared with in situ data. The results show that our LUE and GPP products were better than
MOD17 results which had lower coefficients of determination (R2) and higher root-mean-square
error (RMSE), with R2 of 0.098 for LUE and 0.558 for GPP, and RMSE of 0.545 gC/MJ for LUE and
2.575 gC/m2/d for GPP. The R2 of LUE equaled 0.183 and 0.240 for parameterization approaches
V1 and V2, respectively. The RMSE of LUE dropped from 0.508 to 0.487 gC/MJ after considering
the CI. The results suggested that the addition of the CI to the parameterization approach slightly
improved the accuracy of LUE. The R2 and RMSE of LUE by the Cubist regression approach equaled
0.538 and 0.352 gC/MJ, respectively. In comparison with the former two approaches, the Cubist
regression tree approach had great advantages in gaining a higher R2 and a lower RMSE. The three
approaches all underestimated LUE, especially when the FLUXNET LUE exceeded 2.0 gC/MJ. However,
the underestimation problem was alleviated for GPP, with the R2 ranging from 0.63 to 0.78 and the
RMSE ranging from 1.79 to 2.33 gC/m2/d. The LUE in the FLUXNET sites was equal to the GPP in sites
divided by the corresponding MODIS FPAR. The uncertainty in the LUE at the sites might result from
the error of MODIS FPAR. However, the predicted GPP was calculated by multiplying the FPAR. There
was a certain degree of offset of GPP error after multiplication and division operations. In addition,
the seasonal variations in solar radiation enhanced the accuracy of GPP estimation.

Looking at the validation result in each type of vegetation (Figure 3), it is easy to find that the DBF,
GRA and WSA gained high-quality LUE and GPP. In contrast, the two parameterization approaches
obtained weak relationships between FLUXNET and estimated LUE in CRO, EBF, MF, CSH and OSH.
In CRO, crop species were complicated and might contain C3 plants, C4 plants or both. The different
features between C3 and C4 crops [6] introduced errors in CRO. The vegetation in EBF showed few
variations in different seasons; therefore, it was difficult to retrieve solid correlations. In addition, EBF
was distributed in both high-latitude and low-latitude areas where the maximum LUE and the optimal
temperature varied greatly. These factors might lead to the uncertainty in the LUE and GPP in EBF.
In MF, OSH and CSH, the main cause was the heterogeneity of plants.
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3. Results

3.1. Validation of Global LUE and GPP Results in 2014

We extrapolated the calibrated parameters and models to a global scale and produced LUE and
GPP maps for 2014 with a spatial resolution of 5 km and a temporal resolution of 8 days. In this part,
we validated the results against FLUXNET measurements. There were 1700 pieces of data observed in
69 sites within 2014. Figure 4 indicates that our LUE and GPP estimates are reliable. The R2 of LUE
ranged from 0.21 to 0.30, and the RMSE ranged from 0.41 to 0.55 gC/MJ. The best result was produced by
the parameterization approach with the CI, while the least satisfactory one was estimated by the Cubist
regression tree model. There were more overestimated LUE values in the Cubist regression approach,
some of which reached or even exceeded 3 gC/MJ. Although the Cubist regression tree approach
gained the optimum result during calibration, it revealed clear disadvantages in extrapolating to the
global scale. Like other empirical methods, the main weakness of Cubist is the vague explanations
behind the formulas and the great possibilities to exceed reasonable values when dealing with some
rare and special situations. However, it is most likely to obtain pixels that are unsuitable for the
estimated relationships when mapping global LUE. Compared with LUE, the accuracy of GPP was
improved, with the R2 ranging from 0.51 to 0.60 and the RMSE ranging from 2.42 to 2.87 gC/m2/d.
Similarly, the parameterization approach with the CI gained the most satisfactory GPP. Although the
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Cubist regression tree approach still produced the weakest relationship between estimated GPP and
FLUXNET GPP, the overestimation was mitigated because of the constraint of PAR.

Then, we looked at more details in each type of vegetation (Table 3). In DBF, DNF, GRA, MF
and WSA, vegetation gained high-quality LUE with R2 values greater than 0.3. In EBF, ENF, OSH
and SAV, vegetation obtained acceptable accuracy with R2 values from 0.17 to 0.26. All of the above
types of vegetation had RMSE values less than 0.5 gC/MJ. However, all three approaches failed to
produce reliable LUE values in CRO, with an R2 less than 0.03 and an RMSE higher than 0.57 gC/MJ.
Crop species in CRO were complicated and might contain C3 plants, C4 plants or both. The different
features between C3 and C4 crops introduced errors in CRO. In comparison with the parameterization
approach without the CI, the parameterization approach with the CI showed clear advantages in all
types of vegetation in terms of calculating LUE. In comparison with the Cubist regression tree approach,
the parameterization approach with the CI clearly won in CRO, DBF, ENF, GRA, MF, OSH, and SAV and
was slightly superior in DNF and obviously inferior in EBF and WSA. Similar to the general situation,
the accuracy of GPP was improved in each type of vegetation compared with LUE. The relationship
between estimated GPP and FLUXNET GPP was strong, with the R2 values were greater than 0.5
in DBF, DNF, EBF, ENF, GRA, MF, SAV and WSA. However, GPP gained only acceptable accuracy,
with R2 values of 0.46 and 0.31 and RMSE values of 2.73 gC/m2/d and 0.86 gC/m2/d in CRO and OSH,
respectively. The main errors in OSH were induced by the heterogeneity of plants. The error resources
of cropland vegetation will be discussed in Section 4. In general, the parameterization approach with
the CI gained the most accurate estimates even though the parameterization approach without the CI
surpassed the DNF and the Cubist regression tree approach won in ENF and WSA.
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Table 3. Light use efficiency (LUE) and gross primary productivity (GPP) validation for each type
of vegetation.

IGBP
V1 V2 V3

LUE GPP LUE GPP LUE GPP

R2 RMSE
(gC/MJ) R2 RMSE

(gC/m2/d) R2 RMSE
(gC/MJ) R2 RMSE

(gC/m2/d) R2 RMSE
(gC/MJ) R2 RMSE

(gC/m2/d)

CRO 0.02 0.58 0.46 2.74 0.03 0.57 0.46 2.73 0.01 0.88 0.22 4.42
DBF 0.43 0.42 0.64 3.14 0.45 0.41 0.65 3.06 0.11 0.73 0.40 3.74
DNF 0.43 0.24 0.80 1.70 0.48 0.24 0.74 1.76 0.48 0.20 0.61 1.24
EBF 0.00 0.46 0.53 3.18 0.01 0.43 0.50 3.03 0.26 0.37 0.48 3.18
ENF 0.13 0.46 0.49 2.65 0.17 0.46 0.50 2.61 0.09 0.62 0.51 2.80
GRA 0.26 0.42 0.56 2.45 0.34 0.41 0.61 2.27 0.22 0.49 0.52 2.58
MF 0.29 0.37 0.72 2.29 0.36 0.35 0.72 2.15 0.20 0.37 0.64 2.16

OSH 0.10 0.31 0.21 0.88 0.19 0.28 0.31 0.86 0.07 0.35 0.23 1.13
SAV 0.06 0.26 0.48 1.52 0.19 0.23 0.54 1.51 0.12 0.35 0.32 2.01
WSA 0.38 0.29 0.62 1.82 0.38 0.29 0.66 1.81 0.55 0.26 0.70 1.73

1 Bold fonts represent the best result. V1: Parameterization approach without the CI; V2: Parameterization approach
with the CI; V3: Cubist regression tree approach.

3.2. LUE

3.2.1. Parameterization Approach without the CI

Figure 5 shows the distributions of LUE produced by the parameterization approach without the
CI during four periods in 2014. The variations in the four periods indicate that the LUE varied greatly in
different seasons. From 2014049 to 2014136, during which spring occurred in the Northern Hemisphere,
the LUE in Asia, Europe and North America was generally low, with values less than 1.0 gC/MJ.
On these continents, vegetation in coastal areas had a higher LUE than that found in inland areas, even
at the same latitude or longitude. In equatorial regions including South America, middle Africa and
Southeast Asia, vegetation had the highest LUE, at approximately 1.5 gC/MJ. From the equator to
the Southern Hemisphere, LUE decreased to 1.2 gC/MJ at approximately 30◦ S and then continued
to decline to approximately 0.5 gC/MJ in southwestern South America and Africa. The west and
south of South America shared low LUE values because of the low temperatures resulting from high
altitudes and high latitudes, respectively, while the vegetation in Africa presented a low LUE because of
drought [80], which can be supported by the extremely low EF in this study. In Australia, the vegetation
had much lower LUE values than those in South America and Africa, with an approximate value of
0.5 gC/MJ, but demonstrated a similar tendency for LUE to increase from the eastern coastline areas,
at 1.5 gC/MJ, to the western area, at less than 0.5 gC/MJ, because of the decreasing soil moisture [81].

In the second season (from 2014137 to 2014224), the global vegetation LUE generally illustrated
an increasing tendency. During the last two seasons (from 2014225 to 2014365 and from 2014001 to
2014048), the global vegetation LUE showed a gradual decreasing tendency. Vegetation in the Northern
Hemisphere had a similar changing trend with that of global vegetation. In eastern North America,
Europe and Southeast Asia, the vegetation LUE increased to 1.5 gC/MJ due to the increasing radiation
and temperature in the second season, and it declined to approximately 0.8 gC/MJ in the third season;
finally, it declined to less than 0.2 gC/MJ in the last season. The Southern Hemisphere, including South
America, Africa and Australia, showed fewer changes in LUE distribution during the four different
seasons. In the north of Africa and Australia, however, the vegetation illustrated the opposite tendency
as that seen in other areas where more radiation induced less LUE because these areas were attacked
by drought for the whole year. More radiation causes the temperature to constantly increase, which
consequently aggravates the effects of water stress.
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3.2.2. Parameterization Approach with CI

Considering the effect of different radiation modes, we added the CI in the parameterization
approach and gained a second global LUE distribution (Figure 6). In general, the LUE distributions
produced by this approach were similar to those produced by the parameterization approach without
the CI; the differences between the two approaches ranged from −0.1 to 0.4 gC/MJ. For example,
the differences included the LUE calculated by the second approach (V2) being even higher in high-value
zones, which agrees with a previous study that found that diffuse light enhanced LUE within similar
environmental conditions [82]. Looking at LUE in every single season, we found (1) from 2014049 to
2014136, the LUE calculated by V2 in South America, middle Africa, and the Southeast Asia reached
1.8 gC/MJ, which was approximately 0.3 gC/MJ more than the LUE calculated by V1. In Europe, the
LUE calculated by V2 slightly exceeded that calculated by V1, by 0.1 gC/MJ. On the other hand, the
LUE calculated by V2 was lower than the LUE calculated by V1 in the southwestern USA, the north of
Africa, and the southwest of Asia; (2) from 2014137 to 2014224, the LUE calculated by V2 in Europe,
Canada and northern Asia reached approximately 1.25 gC/MJ and slightly exceeded the LUE calculated
by V1 by 0.15 gC/MJ. However, the LUE calculated by V2 was lower than that calculated by V1 in the
southwestern USA, the north and south of Africa, the southwest of Asia and the north of Australia;
(3) from 2014225 to 2014320, the differences between the two approaches narrowed. Great increases
occurred in the north of South America, middle of Africa, and the southeast of Asia. (4) In the last
season, variations continuously decreased in the Northern Hemisphere but gradually increased in
the Southern Hemisphere, with more areas showing the LUE calculated by V2 being higher than the
LUE calculated by V1. In the four seasons, the equatorial regions all showed an increase in LUE as
calculated by V2. The main reason is that these areas had abundant rain for the whole year, which
reduced the radiation reaching the surface of the earth, consequently leading to a low CI. Therefore,
the addition of the CI increased the value of LUE. Other increases in LUE in the region during the
growing season can be explained by there being more rain and lower CI.
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3.2.3. Cubist Regression Tree Approach

Figure 7 demonstrates the distributions of LUE calculated by the Cubist regression tree approach.
Although LUE generally shared a similar distribution with that of the former two approaches,
the differences with the parameterization approach without the CI ranged from −0.8 to 0.8 gC/MJ.
In general, the positive differences were located in high-latitude areas, while the negative differences
were distributed in low-latitude regions. Looking at the LUE on every continent, we found that
the southwest of North America had decreases, but other places in North America had increases.
The differences diminished in the last season; in South America, few variations were observed;
in Europe, the LUE calculated by V3 exceeded that calculated by V1 in the four seasons. In the
middle of Africa, the LUE calculated by V3 was higher than that calculated by V1, while the north
and south of Africa saw decreases in LUE as calculated by V3. The situation in Asia was more
complicated. In northern Asia, including Russia and Mongolia, there were positive differences. During
the former three seasons, western Asia and northern China showed negative differences, but the
negative differences were eliminated in the last season. Southern China had positive differences in
the whole year. There were few variations in the south of Asia. In Australia, except for its southern
coastline, the LUE calculated by V3 was lower than the LUE calculated by V1 in the former three
seasons, while the negative differences mainly occurred along the southern coastline in the last season.
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Figure 7. The distributions of LUE by the Cubist regression tree approach (V3).

3.3. GPP

Figure 8 presents the distributions of global annual GPP in 2014. Similar to LUE, there were three
equatorial regions, including the northern regions of South America, middle Africa and Southeast
Asia, in which vegetation absorbed the most carbon, with GPP greater than 2500 gC/m2/yr. Next to
these high carbon sequestration areas, South America, South Africa, South China, India, the coastline
of Australia, and some mid-high latitudes in the Northern Hemisphere, such as the eastern USA and
Europe, cultivated vegetation with approximately 1500 gC/m2/yr GPP. High-latitude areas, such as
Canada and northern Europe, and high-altitude regions, including the USA, the western coastline of
South America, the south of Africa, and the Tibetan Plateau of China, saw low carbon sequestration
because of the low-temperature stress. Drought-hit areas, such as northern Africa, northern Australia,
and Northwest China, also experienced low GPP because of the lack of water.

We compared our 3 GPP results with MODIS GPP (MOD17). The four approaches produced
roughly consistent global annual GPP values ranging from 109.23 to 120.65 Pg/yr. The highest value
(120.65 Pg/yr) was obtained by the parameterization approach with the CI because this approach
considered the different effects between direct and diffuse radiation. The lowest value (109.23 Pg/yr)
was estimated by the parameterization approach without the CI. The lands covered by dense vegetation
are usually moistened by abundant rain, consequently having a low CI. Therefore, the addition of
the CI increased the GPP. We regard this approach as the best method for calculating LUE and GPP.
In comparison with the parameterization approach with the CI, the Cubist regression tree approach
produced a GPP of 116.41 Pg/yr. This approach divided all pixels into 10 classes and then put them
into a corresponding linear rule or rules. The Cubist regression tree approach had little mechanism
consideration behind the linear formulas. In addition, 10 rules might not sufficiently satisfy all pixels.
Therefore, linear rules are most likely to output negative values. Although we set values to zero in these
cases, most were still underestimated. We also plotted the difference between V2 GPP and MODIS GPP
(MOD17). It shows that the parameterization approach with the CI gets a higher GPP than MODIS
algorithm, especially in the equatorial regions (the northern regions of South America, middle Africa
and Southeast Asia) where even more than 600 gC/m2/yr of difference was produced. There were minor
differences which means V2 GPP were lower occurred in the south of China, Madagascar islands.
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(left lower), and the histogram of global annual GPP in 2014 by four algorithms (right lower).

4. Discussion

4.1. Comparison of Three Approaches

4.1.1. Comparison between the Parameterization Approach with and without the CI

To distinguish the different effects of direct and diffuse radiation, we added the CI into the
parameterization approach. Figure 4 illustrates the general improvements in LUE and GPP. Typical
examples of this improvement can be seen in IT-Isp, AU-Whr, CH-Cha and SE-St1. Table 4 lists
more details of these sites. These sites cover the Northern (IT-Isp, CH-Cha, SE-St1) and Southern
Hemispheres (AU-Whr) as well as humid (IT-Isp, AU-Whr, CH-Cha) and dry areas (SE-St1). They
include 4 types of vegetation: DBF, EBF, GRA and WET.
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Figure 9 shows the functions of the CI in the parameterization approach on the LUE estimation.
Red dotted lines outline the key points; the 201st and 273rd days in IS-Isp; the 97th and from the
121st to 185th days in AU-Whr; the 113rd, 185th and 273rd days in CH-Cha; and the 73rd and from
209th to 225th days in SE-St1. The CI at these points was less than 0.40, and some values were even
below 0.30, which were much lower than the average value of 0.50. In these cases, the accuracy of the
parameterization approach with the CI apparently surpassed that without the CI. A lower CI indicates
more diffuse radiation, which outputs a higher LUE.

Table 4. Detailed information for a few sites.

Site
ID Site Name Latitude

(◦)
Longitude

(◦)
Elevation

(m) Landcover
Mean Annual
Temperature

(◦C)

Mean Annual
Precipitation

(mm)

IT-Isp Ispra ABC-IS 45.813 8.634 210 DBF 12.2 1300
AU-Whr Whroo −36.673 145.029 152 EBF 16.7 625
CH-Cha Chamau 47.210 8.410 393 GRA 9.5 1136

SE-St1 Stordalen
grassland 68.354 19.050 351 WET −0.7 303.3

US-WCr Willow Creek 45.806 −90.080 520 DBF 4.02 787

US-Me2

Metolius
mature

ponderosa
pine

44.452 −121.557 1253 ENF 6.28 523

AU-Gin Gingin −31.376 115.714 105 WSA 18.76 346
DE-Kli Klingenberg 50.893 13.522 478 CRO 7.6 842

CH-Oe2 Oensingen
crop 47.286 7.734 452 CRO 9.8 1155

US-Los Lost Creek 46.083 −89.979 480 WET 4.08 828

US-Tw4 Twitchell East
End Wetland 38.103 −121.641 −5 WET 15.6 421

CH-Lae Laegern 47.478 8.364 689 MF 8.3 1100

US-SRG Santa Rita
Grassland 31.789 −110.828 1291 GRA 17 420
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4.1.2. Comparison between Parameterization Approaches and Regression Tree Approach

Figure 10 shows the global annual GPP estimated by the three approaches in each type of
vegetation. It is easy to find that EBF absorbed the most carbon among all types of vegetation, with a
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GPP greater than 30 Pg/yr, followed by SAV, WSA, GRA and CRO, with GPP values of approximately
15 Pg/yr. The lowest GPP values were produced by DNF and CSH because of the extremely small areas
for DNF and the weak carbon sequestration capacity for CSH. Although the GPP values estimated by
the three approaches were similar, there were still some differences for some vegetation types, such as
EBF, WSA and GRA. Most of the EBFs were located in equatorial regions with suitable temperature
and abundant rain. More rain implied more diffuse radiation; therefore, the clearness index obviously
increased the LUE and GPP. Our WSA calibration sites were located in low-latitude areas. The Cubist
regression approach was likely to lead to the overestimation when extrapolating this relationship to
high-latitude areas (southern Canada, northern USA, Europe and Russia). In contrast, the Cubist
regression tree approach underestimated GPP and NPP in GRA because of these inconsistent locations
between the calibration sites and land areas.
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To analyze the contributions of different latitudes to global vegetation carbon uptake and to
compare the performances of the three approaches, we averaged the LUE and summed the annual
GPP every 5 km along latitude (Figure 11). In general, LUE demonstrated a tendency of having
higher values at lower latitudes and lower values at higher latitudes. In the first season, LUE had
its highest value of approximately 1.5 gC/MJ in equatorial regions corresponding to South America,
middle Africa and Southeast Asia. There was another important peak near 1.0 gC/MJ at 40◦S latitude
because of the southern coastal vegetation in Australia. Areas from 50◦ to 55◦S saw higher LUE values,
some higher than 1.0 gC/MJ. The curves in the Southern Hemisphere illustrated more fluctuations.
The total area of vegetation was much smaller; consequently, the mean LUE was more sensitive to
spatial changes. Then, looking at the Northern Hemisphere, it was obvious that vegetation showed a
relatively lower LUE, i.e., less than 0.5 gC/MJ, because of the lower temperature and less radiation.
The LUE curves calculated by V1 and V2 were more stable than that calculated by V3. The Cubist
regression tree approach belongs to the empirical linear regression method, which could be easily
affected by a specific parameter and produced a fluctuating line. For the parameterization approaches,
the LUE showed a gradual increase from the Arctic to equatorial regions. The three approaches all
witnessed a local minimum of 0.5 gC/MJ at 12◦N, which was caused by the large area of low LUE
in Africa. In the second season, there were few changes (small drops) in the Southern Hemisphere;
however, the Northern Hemisphere witnessed large increases up to 1.0 gC/MJ at 50◦N. Similar to the
first season, the curve generated by V3 showed more fluctuations. In the third season, vegetation in the
Southern Hemisphere remained roughly unchanged. However, the LUE in the Northern Hemisphere
declined. The peaks produced by V1 and V2 fell to 0.7 gC/MJ, while those produced by V3 remained at
1.0 gC/MJ. In the last season, the Southern Hemisphere saw a slight increase in LUE, with a peak of
almost 1.0 gC/MJ. However. The LUE in the Northern Hemisphere went through a slump, and the
latitude of the peak moved from 55◦ to 25◦, and the peak LUE declined to 0.5 gC/MJ. Compared with
the Southern Hemisphere, the Northern Hemisphere presented much more variation. The main reason
for this variation was the distribution of vegetation in the Southern Hemisphere, which was mainly
located in low-latitude areas, while the vegetation in the Northern Hemisphere was spread in low-
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and high-latitude regions. High-latitude areas underwent great changes in temperature and solar
radiation, which were essential for vegetation growth. Therefore, the LUE in the Northern Hemisphere
varied greatly during different seasons. The two parameterization approaches showed few differences
except in equatorial regions and other local maximum values where V2 had a higher LUE than V1.
A better explanation for this increase can be found in Section 3.2.2. The Cubist regression tree approach,
however, presented a clear difference from the former parameterization approaches. V3 produced a
higher LUE in high-latitude areas (50◦N and 50◦S) and a lower LUE at low-latitude areas (between
30◦N and 30◦S). Looking at the GPP curves with latitude, there were two clear peaks reaching 75 TgC/yr
at 50◦N and 130 TgC/yr in equatorial regions. The annual GPP curves from the 3 approaches showed
fewer variations than those of LUE.
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4.2. Uncertainty Analysis

As described in Section 2.2, we used a different dataset for the model calibration and global LUE
and GPP estimation. The uncertainty of the input parameters, such as EF, PAR and Tmean, would
introduce error to our LUE and GPP products. In this part, we plotted the time series of GPP, LUE, EF,
PAR and Tmean in two sites and compared data for calibration and global extrapolation. Figure 12
shows our PAR and Tmean used for global product match well with FLUXNET PAR and Tmean which
agrees with the high correlations of them (both higher than 0.95). By contrast, the correlation between
FLUXNET EF and global EF is only 0.681, which means EF had higher uncertainty. In CH-Lae, global
EF matched well with FLUXNET EF, then we got a satisfactory LUE and GPP, while US-SRG failed to
produce either a very good LUE or GPP because of the uncertainty of EF. Therefore, we think EF is a
key error source for global LUE and GPP.
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4.3. Error Analysis

For most vegetation types, the relationships between FLUXNET and estimated GPP were stronger
than LUE. This problem was particularly noticeable in CRO and EBF, with the LUE R2 at less than
0.05 and the GPP R2 at 0.46 and 0.50, respectively. The main causes might come from the process
used to calculate LUE. According to Formula (2), the precision of site-scale LUE relies on FLUXNET
GPP, incident shortwave (PAR) and MODIS FPAR. We regarded the measured FLUXNET data as
reliable; therefore, the uncertainty was mainly decided by FPAR. In some pixels, MODIS FPAR was
very low—because of the clouds, inconsistent landcover, or system errors—which would result in an
overestimation of LUE. Therefore, the weak relationships between FLUXNET-estimated LUE did not
only originate from the error of estimates, but from the FLUXNET LUE.

Figure 13 demonstrates the LUE and GPP curves and 5000 m × 5000 m land surface images
from a Google map at five sites, with which we can analyze the different effects of homogeneous and
heterogeneous land surfaces. US-WCr was covered by DBF, US-Me2 was covered by ENF, AU-Gin
was covered by WSA, and DE-Kli and CH-Oe2 were covered by CRO (Table 4). In the former three
sites, the land surface was homogeneous within an area of 5000 m × 5000 m. The estimated LUE
and GPP curves agreed well with FLUXNET LUE and GPP. However, most sites of croplands were
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heterogeneous in the same area. DE-Kli and CH-Oe2 showed a single vegetation type in 500 m × 500 m
of land. However, they contained different types of vegetation, including croplands, forests, built-up
lands and water, in 5000 m × 5000 m areas where the LUE varied greatly [5]. Furthermore, crops
could be divided into C3 and C4 plants that produce different LUE [6]. Therefore, the complicated
circumstances around croplands resulted in low-quality estimates.
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Figure 13. Left: LUE and GPP curves and land surface images in homogeneous sites. US-WCr, US-Me2
and AU-Gin); right: LUE and GPP curves and land surface images in heterogeneous sites (DE-Kli and
CH-Oe2) (red rectangles cover 500 m × 500 m land, yellow rectangles cover 5000 m × 5000 m land.

In addition, the misclassification induced errors in the estimated LUE and GPP. We used the
MODIS landcover product in this study. Some sites were misclassified, such as US-Los and US-Tw4
(Figure 14), because of inconsistent spatial resolutions and classification errors. These two sites were
recorded as grassland in the FLUXNET dataset, while the corresponding pixel was cropland in the
MODIS landcover data. In the parameterization approaches, we set different maximum LUEs for each
vegetation type. These pixels were wrongly treated as cropland rather than grassland, in which the
maximum LUE was lower than the former. Consequently, the LUE and GPP were overestimated.
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5. Conclusions

In this study, we collected discrete FLUXNET eddy-covariance and meteorological data and
spatially continuous MODIS, GLASS and ERA-Interim data to estimate the global LUE and GPP.
The SCE-UA optimization method had a high efficiency of solving the global optimal solution under
nonlinear constraints and never depended on the initial value of the mode, and the Cubist regression
tree approach provided a powerful tool with which to upscale site-observed fluxes to a larger scale with
satellite-derived parameters and other explanatory variables. We established three LUE-based GPP
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approaches to assess the different performances at both the site and the global scales. The method of
obtaining the LUE was based on (1) a parameterization approach without the CI, (2) a parameterization
approach with the CI, and (3) a Cubist regression tree approach.

By validating with FLUXNET measurements at the site scale, we obtained the following:
(1) The Cubist regression approach performed better than the parameterization approaches in

estimating LUE and GPP.
(2) The three approaches all underestimated the LUE, especially when the FLUXNET LUE

exceeded 2.0 gC/MJ. However, the underestimation problem was alleviated for GPP.
However, when applying these models to the global LUE and GPP in 2014, we found the following:
(1) The LUE and GPP estimated by the three approaches were reliable, of which the

parameterization approach with the CI produced the most satisfactory result then closely followed by
the parameterization approach without the CI, while the Cubist regression approach produced the
least satisfactory result.

(2) The accuracy of GPP was higher than that of LUE for all types of vegetation.
(3) The LUE distributions showed some variations in different seasons, but vegetation had the

highest LUE at approximately 1.5 gC/MJ for the entire year in equatorial regions (South America,
middle Africa and Southeast Asia).

(4) The three approaches produced roughly consistent global annual GPP values, ranging from
109.23 to 120.65 Pg/yr.

In conclusion, our results suggest the parameterization approaches are robust when extrapolating
to the global scale, of which the parameterization approach with CI performs slightly better than that
without CI. By contrast, the Cubist regression tree produced LUE and GPP with lower accuracy even
though it performed the best for model validation at the site scale.
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