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Abstract: Recently, due to the acceleration of global warming, an accurate understanding and
management of forest carbon stocks, such as forest aboveground biomass, has become very important.
The vertical structure of the forest, which is the internal structure of the forest, was mainly investigated
by field surveys that are labor intensive. Recently, remote sensing techniques have been actively used
to explore large and inaccessible areas. In addition, machine learning techniques that could classify
and analyze large amounts of data are being used in various fields. Thus, this study aims to analyze
the forest vertical structure (number of tree layers) to estimate forest aboveground biomass in Jeju
Island from optical and radar satellite images using artificial neural networks (ANN). For this purpose,
the eight input neurons of the forest related layers, based on remote sensing data, were prepared:
normalized difference vegetation index (NDVI), normalized difference water index (NDWI), NDVI
texture, NDWI texture, average canopy height, standard deviation canopy height and two types
of coherence maps were created using the Kompsat-3 optical image, L-band ALOS PALSAR-1
radar images, digital surface model (DSM), and digital terrain model (DTM). The forest vertical
structure data, based on field surveys, was divided into the training/validation and test data and
the hyper-parameters of ANN were trained using the training/validation data. The forest vertical
classification result from ANN was evaluated by comparison to the test data. It showed about a 65.7%
overall accuracy based on the error matrix. This result shows that the forest vertical structure map
can be effectively generated from optical and radar satellite images and existing DEM and DTM using
the ANN approach, especially for national scale mapping.

Keywords: forest vertical structure; KOMPSAT-3; ALOS PALSAR-1; artificial neural network

1. Introduction

Recently, as global climate change has shown observable effects on the environment such as
global warming, interest in the forests that make a significant contribution to the global carbon cycle is
increasing [1]. Therefore, an accurate understanding and management of forest carbon stocks, such
as forest biomass, is very important to preserve and protect forest ecosystems and to understand the
impact of climate change [2,3]. However, due to the complex structure of forests, spatial distributions
such as the aboveground biomass stocks and the location of the carbon uptake are still not quantified
in many forests [1]. The forest aboveground biomass could be estimated from the vertical forest
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structure information [4,5] in order to understand and quantify the carbon uptake function of this
ecosystem [6,7].

The vertical structure of the Korean forest is usually composed of four-layer structures: canopy,
understory, shrub, and grass [8]. Ecologically stable multi-layered natural forests are formed through
competition and the coexistence of vegetation [9]. Natural forests with various vertical structures have
high vitality and are more resistant to pests and environmental impacts [10–12]. Forests with vertical
structures are also used as indicators since they are an important component of biodiversity [13].
For example, the canopy height observed in Lidar remote sensing could be used to estimate forest
biomass [14]. Therefore, it is important to better understand the components of the forest structure.
However, uncertainties remain in forests with complex structural characteristics.

The vertical structure information of forests has traditionally been established through field
surveys. In Korea, approximately 70% of the land is mountainous and most of the areas could not be
easily accessed; as a result, recent forest surveys in Korea used aerial photographs and field surveys.
However, since aerial photographs alone make it difficult to grasp the vertical structure of forests,
field surveys are necessary. However, the traditional approach is time consuming and resource
intensive, which cause delays in updating. Remote sensing approaches could provide continuous forest
monitoring and mapping for large and inaccessible areas at the periodical temporal resolutions [15,16].
Additionally, although it cannot be used for the direct measurement of forest biomass [17], it can
partially detect the structure of a forest [18,19].

Remote sensing methods have been used to detect species of plants, pest damage to plants, and
extraction of vegetation characteristics [20,21]. In the vegetation research of remote sensing, in general,
an index map with several wavelength bands of an image is analyzed. Index maps that are widely
used in vegetation are the normalized difference vegetation index (NDVI), normalized difference
water index (NDWI), etc. [22,23]. NDVI and Red Edge Bands are well-known as useful indicators of
vegetation classification [24,25]. Broadleaf trees have a higher water storage capacity than coniferous
trees and differ in the degree of water storage by species [26]. In the case of forest texture information,
the texture of the image is determined by the distribution of shadows; a shadow from a single-layered
artificial forest with the same age and species appears relatively even though the texture value is
low [27,28]. Forest density was classified using aerial images and forest texture [27]. Differences in the
arrangement of the canopy architecture between single and multi-layered trees are considered [27,29].
As the layer structure becomes more complicated, the height difference from surrounding objects
increases. In addition to these ecological characteristics, there is a difference in the reflectivity of the
community according to the dominant species representing the community, according to the dominant
species, because the image texture is rough and the height between the populations differs. It is
also considered that the arrangement of the crown is uniform in single-layer forests and uneven in
multi-layer forests [27,29].

However, since optical satellite images only observe the top of canopy, the Light Detection and
Ranging (Lidar), digital terrain model (DTM), digital surface model (DSM) and radar images can be
very useful in measuring vertical structures. Since the vertical structure of trees is also closely related
to the height, the Lidar data is mainly used to measure the height of trees [30]. A study estimating the
height of trees through the difference between DSM and DEM (Digital Elevation Model), extracted from
Lidar data, has been conducted [23]. The Lidar data, however, can be targeted at specific locations as
well as site surveys so that the update cycle is unlikely to be shortened. In this respect, low-frequency
radar, including SAR images, could be utilized to interact with forest structural components at different
heights. Research has been undertaken to estimate and verify spatial biomass distribution from SAR
images [31].

However, machine learning has attracted attention in the context of abundant data to be used for
recent learning, including satellite images. Artificial neural networks are an effective method to analyze
remote sensing data, which are effective for forest surveys and the exploration of large areas [25].
Therefore, the use of satellite remote sensing data and artificial neural networks for forest surveys with
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high uncertainty is considerably more effective than costly aerial photographs and human surveying.
Therefore, this study applied a method of estimating and classifying forest vertical structures using
remote sensing technique and an artificial neural network (ANN).

This study aims to analyze the forest vertical structure to estimate forest aboveground biomass
in Jeju Island from satellite images. In this study, the vertical structure of forests was quantified by a
number of tree layers; according to the number of layers included in the canopy layer, the understory
layer, and the shrub layer—layer structure was classified into single, double, or triple-layer structure.
For this purpose, an input layer for forest vertical structure analysis was derived based on satellite
images and applied to the ANN method. In detail, first, NDVI, NDWI, NDVI texture, and NDWI
texture were prepared from KOMPSAT-3 optical images acquired from a part of Seogwipo-si in Jeju
Island, South Korea. In order to estimate the height of the trees, two kinds of canopy height maps were
produced from the canopy height map by subtracting the DTM from DSM. Two kinds of coherence
images were produced from multi-temporal ALOS PALSAR-1 radar images. Finally, the eight input
layers and the training data of the forest vertical structure data produced by the field survey were
applied to ANN. The classification result accuracy of the forest vertical structure was then validated
through forest vertical reference data and error matrix.

2. Study Area and Dataset

The study area is a part of Seogwipo-si, Jeju-do, South Korea where Mt. Halla is located in the
North. The study site mainly consists of abies koreana and pittosporum forests (Figure 1). The forest
vertical structure classification map was created by the field survey in 29 November 2018 (Figure 2).
On-site survey of the forest vertical structure was conducted by human surveys in a group of two
people, and the height measurement was carried out based on the height of the 2 m survey pole or
recorder. The grass layer was measured on the basis of examiner’s knee and waist height. Finally,
the forest layer structures from the survey contents were drawn as a reference map (see Figure 2) [8].
The training/validation dataset for learning as well as the test dataset for the accuracy evaluation after
the learning was selected considered the spatial distribution of three forest vertical structure layers
from the reference map by human surveying.
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Figure 1. Study area: (a) Jeju island, Korea; (b) Kompsat-3 satellite ortho-rectified image acquired in
the study area.

The input layer for learning was composed of eight neurons extracted based on satellite images
in this study. For the input layer, the Kompsat-3 orthoimage was acquired in the study area and the
acquisition parameters of the Kompsat-3 image were listed in Table 1. The acquisition time of the
image was 29 April 2017, which is in the spring season in study area. The solar altitude angle and the
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azimuth angle of the image is approximately 65.64◦ and 127.23◦, respectively. The NDVI and NDWI
maps and the corresponding texture maps for NDVI and NDWI were generated from the Kompsat-3
orthoimage. All input data were resampled onto a 2.8 m grid based on Kompsat-3 image’s ground
sample distance (GSD) by using bilinear interpolation.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 17 
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Figure 2. (a) Background topography of the study area; (b) a reference map of forest vertical structure
classification produced by the field survey on 29 November 2018.

Table 1. Parameters of KOMPSAT-3 image used in this study.

Parameters
Kompsat-3

Multispectral

Date (YYYY.MM.DD) 2017.04.29
Ground sample distance (m) 2.8

Sun altitude angle (deg.) 65.64
Sun azimuth angle (deg.) 127.23

In addition, the DTM and DSM were collected for the canopy height measurement. The DTM,
with a spatial resolution of 5 m, was collected from the National Geographic Information Institute
(NGII DEM); NGII DEM was generated at 1 m resolution by using national reference points, 1:5000
digital topographic maps, and LiDAR data collected by local governments, and then released after
being resampled into 5 m. (Figure 3a). WorldDEM, which can be considered as DSM because the
WorldDEM was created by using TerraSAR-X X-band radar interferometry, with the resolution of 12 m,
was obtained from German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt e.V., DLR)
(Figure 3b). The DSM was used for the ortho-rectification and topographic correction of Kompsat-3
image, and both the DTM and DSM data were used to create canopy height maps. The DSM and DTM
data were also preprocessed to 2.8 m resolution. The DTM data in Figure 3a is much smoother than
the DSM data in Figure 3b, even though the resolution of DTM is more than two times higher than
DSM. This is because DTM is the height of the ground terrain, while DSM is the above-ground height
including the height of ground objects such as the canopies and buildings.

Finally, a total number of eight ALOS PALSAR-1 images were acquired in the descending
orbit. Figure 4 shows the ortho-rectified ALOS PALSAR-1 power image. The PALSAR-1 raw data
were preprocessed to create PALSAR-1 single look complex (SLC) images. Then, we generated 12
interferograms from the eight PALSAR-1 SLC images, as listed in Table 2. The incidence angle of the
PALSAR-1 images was 38.7 deg, and the pixel spacing were about 3.15 and 4.68 m in the azimuth and
range directions, respectively. The temporal and perpendicular baselines of the interferometric pairs
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are summarized in Table 2. An L-band ALOS PALSAR-1 image has a higher transmittance to objects
due to a longer wavelength, so that it is able to preserve a higher coherence in forest areas than the X
and C-band images [32]. Therefore, the L-band image is more suitable to classify the forest vertical
structure rather than the X and C-band images.
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Figure 4. Ortho-rectified ALOS PALSAR-1 intensity image on 24 October 2007, used for this study.

Table 2. Interferometric parameters of the ALOS PALSAR-1 pairs.

Interferometric Pair Temporal Baseline (Days) Perpendicular
Baseline (m)

Incidence
Angle (deg.)

Range Pixel
Spacing (m)

Azimuth Pixel
Spacing (m)

20071024_20071209 46 114.8615 38.7 4.68 3.15
20071024_20080124 92 485.7195 38.7 4.68 3.15
20071024_20091214 782 −898.2806 38.7 4.68 3.15
20071024_20100129 828 −228.1115 38.7 4.68 3.15
20071209_20080124 46 370.8854 38.7 4.68 3.15
20071209_20100129 782 −342.9631 38.7 4.68 3.15
20080124_20100129 736 −713.9710 38.7 4.68 3.15
20081211_20090126 46 286.0561 38.7 4.68 3.15
20091214_20100129 46 270.1388 38.7 4.68 3.15
20100129_20101101 276 857.1810 38.7 4.68 3.15
20100129_20101217 322 1148.4430 38.7 4.68 3.15
20101101_20101217 46 291.3401 38.7 4.68 3.15
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3. Methods

In order to map the forest vertical structure, an input layer of the ANN approach was created by
using (i) the satellite images including the Kompsat-3 optical image and PALSAR-1 radar images and (ii)
existing DEM including NGII DEM (which is a DTM), WorldDEM (which is a DSM). Then, a probability
map of forest vertical structure was produced by using an artificial neural network. Finally, the
probability map was classified into single, double and triple vertical structure layers. The accuracy
of the classified map was evaluated by comparing the field survey data through the error matrix.
The overall process flow of this study is shown in Figure 5.
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3.1. Processing of Input Layer

3.1.1. NDVI and NDWI Maps

High mountain regions have sunlit and sunshade slopes depending on the solar incidence angle.
The sunlit slope areas have a higher reflectivity, while the sunshade areas have a lower reflectivity in the
optical imagery. To classify the forest type or forest structure efficiently, topographic normalization is
required in high mountain areas. In this study, the Statistical-empirical model, among other topographic
normalization models, was selected and applied to the Kompsat-3 optical image, as given by [33]:

ρh = ρ− {a·cosi + b}+ ρ (1)
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where ρ and ρh, respectively, indicate a pixel value of the original and topographic-corrected images, ρ
is the mean value of the original image, a and b are the Statistical-empirical model parameters, and i is
the incidence angle [34,35]. The Statistical-empirical model has been widely and successfully used to
normalize the topographic effect of vegetation covers in high mountain areas. After the topographic
normalization was applied to the optical image, the NDVI and NDWI index maps were created, as
given by:

NDVI =
(NIR−Red)
(NIR + Red)

(2)

NDWI =
(Green−NIR)
(Green + NIR)

(3)

where Green, Red and NIR denote the green, red and near-infrared (NIR) bands of the Kompsat-3
image, respectively. NDVI is an index that estimates the presence or absence of vegetation by using the
difference between red and near-infrared reflectance [34]. NDWI is an index that uses the difference
in spectral characteristics according to water content of tree canopies, and it varies according to the
vegetation type and vitality [25]. NDVI is more sensitive to chlorophyll content, whereas NDWI is more
sensitive to water content of the leaves [36,37]. In this study, the NDVI and NDWI maps were used
for the forest vertical structure mapping rather than the original Kompsat-3 image. This was because
the index maps had a lower topographic effect than the original image, although the topographic
normalization was successfully applied.

Thus, two input neurons were created by the Kompsat-3 optical satellite image. The Kompsat-3
image was ortho-rectified from the DSM data using ground control points (GCP) and rational
polynomial coefficients (RPC) parameters and topography-normalized from the DTM data using
Equation (1). Then, the NDVI and NDWI maps were created by using Equations (2) and (3). Figure 6a,b
shows the NDVI and NDWI maps from Kompsat-3. Since the topographic effect in the NDVI and
NDWI maps was almost mitigated by the Statistical-empirical model, we could not find this effect,
even in the high mountain areas (see Figure 6a,b).
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3.1.2. NDVI and NDWI Texture Maps

In addition, texture maps were, respectively, calculated from NDVI and NDWI maps. The texture
map was mainly determined by the forest type and structure, forest shadow area, etc. For example, in
the case of artificial forests with single-layered forest with uniform tree age and species, the texture
values could be relatively constant. However, multi-layered vertical natural forests with varying ages
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and species had rough textures [27]. The calculation of the NDVI and NDWI normalized texture
maps was generated by three main steps: (i) filtering of NDVI and NDWI maps using the Gaussian
averaging filter, (ii) calculating the root mean square difference (RMSD) between the original and
filtered maps in a given window kernel, and (iii) dividing the RMSD map into the filtered map on the
basis of pixel-by-pixel calculation. The texture map (T) was defined, as given by [38]:

T(i, j) =

√∑Ni/2
i=−Ni/2

∑N j/2
j=N j/2

(I(i, j)−I f (i, j)
I f (i, j)

I f (i, j)
(4)

where i and j are lines and pixels, respectively, Ni and Nj are, respectively, the window kernel size in
the line and pixel directions, and I and If are, respectively, the original and filtered intensity images.
The Gaussian averaging filter was applied to the NDVI and NDWI maps with the purpose of noise
reduction and base plane estimation [38]. Then, the median filter of size 3 × 3 was applied to the texture
maps to reduce the noise, and the unit of the texture maps was converted to decibel unit, as given by:

Tdb(i, j) = −20· log10 T(i, j) (5)

where Tdb denotes the texture map in the decibel unit. In the normalized texture map, texture values
for smooth areas are high while texture values for rough areas are low.

The NDVI and NDWI texture maps were, respectively, generated from the NDVI and NDWI
maps using Equations (4) and (5). As you can see from Figure 7a,b, the smoother the index maps are,
the higher the texture values are.
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texture maps.

3.1.3. Average and Standard Deviation Canopy Height Maps

The canopy height map was calculated by considering that the forest vertical structure is closely
related to the tree height. Canopy height maps created by using the difference between DSM and DTM
have a good performance in measuring tree height [23]. In this study, DTM and DSM, with the spatial
resolution of 5 and 12 m, were used to create the canopy height map. The DTM was generated based
on the national base map (digital topographic map on scale of 1:5000), and the DSM was produced
by using TerraSAR-X SAR interferometry (InSAR). Thus, the DTM data had a lower accuracy in
forest areas, especially for mountainous areas, and the canopy height in the DSM, created by the
interferometric technology, could be underestimated because the radar signal could have penetrated
leaves, stems, etc.
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Two input neurons of MLP-ANN were created from existing DTM and DSM. The DSM and DTM
were resampled into 2.8 m GSD, and then used to generate a canopy height map from the difference
between DTM and DSM. In this study, the average canopy height (hereafter ‘avgCH’) and standard
deviation canopy height (hereafter ‘stdCH’) maps were, respectively, generated by using a moving
window of 11 × 11 to estimate the average and standard deviation of the height of the tree communities.
A size of the moving window was empirically determined based on the spatial resolution of DTM,
DSM data and size of the tree communities. Figure 8 shows the avgCH and stdCH maps. The avgCH
map estimated from the InSAR-derived DSM can be reduced in proportion to the real canopy height.
For the most part, the avgCH values ranged from 10 to 20 m. In some areas, the avgCH values were
up to 30 m. The stdCH map can be used to recognize the variation of the height of adjacent trees
(Figure 8b). That is, the stdCH values were allowed for the visual identification of the difference in the
forest vertical structure. These values were not higher when the avgCH values had a higher value, as
seen in Figure 8b. The stdCH map had a smaller value in the regions where the forest canopy height
was almost constant, while it had a higher value in the regions where the canopy height variation was
severe. This is because the higher the stdCH values, the greater the difference in the height of adjacent
trees in the community. In addition, higher stdCH values indicate a higher forest vertical structure [38].
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3.1.4. Mean Coherence Maps

Two types of coherence maps were used for the forest vertical structure mapping—created from
SAR interferometric pairs. Speckle noise was an inevitable component in radar satellite images, which
caused bias in coherence [39–41]. Thus, it was necessary to consider the bias in the SAR images
when the coherence was calculated. The coherence bias could have been reduced by multilooking
or image filtering, but the multi-look and filtering process had limitations that reduced the spatial
resolution [39]. In this study, to consider the trade-off relationship, two coherence maps were used to
map the forest vertical structure and the azimuth common-band filtering and the topographic and
ionospheric corrections were performed to reduce the bias of the coherence values. One coherence
map was calculated with filtering, while the other map was estimated without filtering. The coherence
maps were calculated from multi-temporal differential interferograms, which the topographic and
ionospheric distortions were mitigated in.

The detailed process was as follows: (i) the differential interferograms were generated in
all interferometric pairs; 12 differential interferograms were produced by the InSAR processing
using GAMMA software (GAMMA, Aktiengesellschaft-AG, Bern, Switzerland). For the processing,
the azimuth common-band filtering, flat-Earth correction, topographic correction and ionospheric
correction were applied, (ii) two types of coherence maps were created from the differential
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interferograms. One coherence map was generated by the coherence calculation from the non-filtered
differential interferograms, while the other maps were generated by the coherence calculation from the
filtered differential interferograms, and (iii) the mean coherence map (hereafter ‘CC1’) was created by
averaging the non-filtered coherence maps, while the mean filtered coherence map (hereafter ‘CC2’)
was generated by averaging the filtered coherence maps.

Specifically, to generate the CC1 map, 12 coherence maps were calculated through 3 × 3 window
block calculation from the 12 differential interferograms, and then averaged on the basis of the
pixel-by-pixel operation. The CC2 map was created by (i) filtering the differential interferograms using
the Goldstein filter with the kernel size of 32 and the filter parameter (alpha), (ii) creating the coherence
maps from the filtered interferograms through 3 × 3 window block calculation, and (iii) averaging the
12 filtered coherence maps. The CC1 map can have a bias in maintaining the spatial resolution, while
the CC2 map has a loss in the spatial resolution due to the filtering effect without the bias.

Figure 9 shows the CC1 and CC2 maps in the study area, which were generated and used
for the two input neurons to reduce the trade-off effect between the spatial resolution and the bias
of the coherence values. Since the CC1 map was not applied with SAR filtering, it may have a
bias in preserving the spatial resolution. However, the bias effect of the CC2 map could be largely
reduced, but the spatial resolution of the CC2 map must have been lower due to the filtering effect.
In this study, the CC1 and CC2 maps were used as the ANN input neurons to account for the SAR
imaging characteristics.
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3.2. Artificial Neural Network

In this study, a machine learning method of ANN was applied to estimate the forest vertical
structure, and specifically, the multi-layer perceptron (MLP) algorithm was used for learning. The MLP
algorithm drew multiple discrimination lines by adding hidden layers to solve the limitation of the
linear classification of the conventional perceptron [28,42]. The MLP algorithm consisted of three
layers, including input layer, hidden layer and output layer, and performed prediction and estimation
by adjusting the connectivity between these layers. The MLP algorithm used an error back propagation
algorithm, which meant that the final result was output by repeating the way the signal was transmitted
to the hidden layer. In other words, the initial output value was compared to the true value through
the initial value, and the obtained weight was corrected in the direction of reducing the error by the
back propagation algorithm. In addition, the activation function of a commonly used logistic function
were used to adjust the connectivity, as given by:

σ(z) =
1

1 + exp(−z)
(6)
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The sigmoid function, which was selected as the activation function, adjusted the predicted value
to a value between zero and one, and expressed the result as a probability of zero or one [25,34].

In this study, the MLP-ANN was implemented by using Matlab software. The neural network
was iterated for 1000 cycles per epoch and a total 500 epochs were processed with a learning rate of
0.001. The hidden layer consisted of 16 neurons and one linear output layer was created. Finally, to
map the forest vertical structure in the study area, the MLP-ANN approach was applied by using the
input layers, which was composed of the NDVI, NDWI, NDVI texture, NDWI texture, avgCH, stdCH,
CC1, and CC2 maps.

The neural network training was performed by using the training and validation sample data
shown in Figure 10. The training and validation data sample was extracted randomly based on forest
vertical structure classification map produced by the field survey. The tenfold cross-validation approach
was used for training and validation of the MLP-ANN method. For this, the training/validation data
was divided into ten groups, and the groups were randomly divided into training data of three groups
and validation data of seven groups. The training/validation approach was applied 20 times repeatedly,
and the 20 hyperparameters of MLP-ANN were estimated. The hyperparameter, showing the best
performance out of 20 results, was selected, and then it was used as an initial parameter value. Finally,
the hyperparameter was determined by using all the training/validation data [43].
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Figure 10. Training/validation data used for the multi-layer perceptron (MLP) artificial neural network
(ANN) for forest vertical structure possibility maps.

4. Results and Discussion

In this study, the MLP-ANN method was applied to map the forest vertical structure in Seogwipo-si,
Jeju-do, South Korea where Mt. Halla is located in the North. The input layer of the MLP-ANN
approach was composed of eight input neurons created by using the Kompsat-3 optical satellite image,
existing DTM and DSM data, and ALOS-1 PALSAR-1 radar satellite image.

The forest vertical structure was classified into three layer-structures. The layer structure included
all the canopy layers, the understory layer, and the shrub layer was defined by the triple-layer structure.
The forest vertical structure, including two among the canopy, understory and shrub layers was defined
as the double-layer structure, and the structure including only one among the layers was defined as
the single-layer structure. Figure 11 shows the probability maps using the MLP-ANN approach from
the training/validation data of single-layer, double-layer and triple-layer structures shown in Figure 10.
Figure 11a shows the probability map of the single-layer structure, Figure 11b presents the probability
map of double-layer structure, and Figure 11c shows the triple-layer structure. From the probability
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maps, we can recognize that (i) most pixels in the single-layer probability map have relatively low
values of less than 30%, (ii) most pixels in the double-layer probability map have values between 40%
and 60%, and (iii) some pixels in the triple-layer probability map have probability values higher than
80%, while some pixels have probability values lower than 20%. The low values in the single-layer
probability maps illustrated that the single-layer forest almost did not exist in the study area. In the
triple-layer probability map, the probability values greater than 80% indicate that the triple-layer forest
is likely to be in the higher value area, while the probability values higher than 20% mean that there is
almost no probability that the triple-layer forest is likely to be in the lower value area. This may mean
that the possibility of triple-layer forest identification could be clearly distinguished. The probability
of the double-layer forest ranged between 40% and 60%. The probability density function (pdf) of
the double-layer forest was closer to the Gaussian distribution than the single and triple-layer forests.
This may show that the double-layer forest can be dominant in the study area. Additionally, this
may also indicate that the double-layer forest is difficult to distinguish clearly from the single and
triple-layer forests.
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Figure 12 shows the vertical structure map classified from the single, double and triple-layer forest
maps of Figure 11 using the maximum operation. Very few single-layer forests existed in the vertical
structure map because the single-layer forest map has lower possibility values. Double-layer forests
were dominant in the study area, and triple-layer forests were found in the areas with high possibility
values in the triple-layer forest map. The classification map shows that the percentage of single-layer
forests were about 0.5%, the double-layer forests were about 61.1%, and the triple layer forest were
about 38.4%, respectively. Due to the fact that natural forests with various vertical structures were
mostly present in the study area, it would be expected that the double and triple-layer forests were
dominant, while the single-layer forests were rare.

To evaluate the classification result, the test dataset was extracted from the field survey based
forest vertical structure map of Figure 2, excluding the training/validation dataset. The error matrix was
used to evaluate the classification accuracy from the test data. The overall accuracy estimated from the
error matrix was about 65.7% (Table 3). The overall accuracy was not very high. Additionally, the fact
that this test was performed for a limited mountain region also needs to be considered, as shown in
Figure 3. Nevertheless, this may indicate the limitation of the forest vertical structure mapping using
satellite images and topographic data. If full waveform Lidar data can be used for the classification
using the ANN approach, the accuracy would be higher. However, the full waveform Lidar data were
not available in most cases, because it is not cost effective. Since the optical and radar satellite images
and topographic data, including DSM and DTM, are available in most cases, mapping only by using
the data enables us to create forest vertical structure maps time- and cost-effectively. Thus, from the
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result, it can be concluded that the forest vertical structure map can be created by using the satellite
and topographic data with an overall accuracy of about 65.7% time and cost-effectively.
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Figure 12. Classification map of forest vertical structure from the single, double and triple-layer forest
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Table 3. Validation of forest vertical structure classified by using the ANN approach (unit: pixel).

ANN
Reference Single Layer Double Layer Triple Layer Total User Accuracy (%)

Single Layer 25 474 87 586 4.27%
Double Layer 539 49,975 13,508 64,022 78.06%
Triple Layer 113 20,005 16,610 36,728 45.22%

Total 677 70,454 30,205 101,336
Producer accuracy (%) 3.69% 70.93% 54.99%
Overall accuracy (%) 65.73%

The user and producer accuracies of the single-layer forests were about 4.3% and 3.7%, respectively.
The accuracies were very low. Thus, we can say that identifying the single-layer forests was not
successful. This is because the number of the training and test data in the single-layer forests were not
high enough to train the MLP-ANN model (see Figure 10). The single-layer forests were classified into
double-layer (79.6%) and triple-layer (16.7%) forests. It means that the single and double-layer forests
could not be separated in this study. The user and producer accuracies of the double-layer forests
were, respectively, about 78.0% and 70.9%. The double-layer accuracy was higher than the single and
triple-layer accuracy. This is because the MLP-ANN model parameters of the double-layer forests were
well trained. Nevertheless, about 24.0% of the double-layer forests were mis-classified as a triple-layer
forest. Finally, the user and producer accuracies of the triple-layer forests were, respectively, about
45.2% and 55.0%. The accuracy in the triple-layer forest was much higher than in the single-layer
forest, but lower than in the triple-layer forest. About 30.5% of the triple-layer forest was mis-classified
as a double-layer forest. Thus, it means that 30.5% of the triple-layer forest was very similar to the
pattern of the double-layer forest.

The results clearly show that the stratification structure of forests can be determined using satellite
images. As mentioned above, information on the vertical structure, along with the horizontal structure
of the forest, is essential to estimate the exact forest aboveground biomass [6]. The result map of forest
structure in this study shows relatively high accuracy in the double and triple-layer, which have a high
ratio in the study area. Therefore, the forest vertical structure map can be used to estimate the forest
aboveground biomass more accurately by reflecting the biomass difference of each layer structure.
Furthermore, the map enables us to identify forest vitality and environmental impacts.

This study presents limitations in the timing of data collection discrepancies and a lack of training
data. In addition, many previous studies that have conducted an analysis of forest vertical structure
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are mostly based on LiDAR data [29,30], which are subjected to regional, time and cost limitations. In
the future, more accurate results could be expected if satellite images from the same time period and
additional forest vertical reference data are used for research. Comparison analysis with classification
results, using the recently used deep learning technique, may increase the applicability of machine
learning in forest research. By complementing the limitations of this study, it is expected that better
results will be obtained in the future analysis of forest vertical structure and estimation of forest carbon
cycle through remote sensing and machine learning. The proposed forest vertical structure can be used
as basic data to establish a plan for coping with global warming by enabling more accurate carbon
fixation and forest aboveground biomass estimation than conventional methods.

5. Conclusions

The purpose of this study is forest vertical structure analysis for forest aboveground biomass
estimation in Jeju Island. Machine learning technique of the MLP-ANN model was applied based
on remote sensing data of by using the Kompsat-3 optical satellite image, existing DTM and DSM
data, and ALOS-1 PALSAR-1 radar satellite image. When using machine learning techniques, building
accurate input data may result in a forest vertical structure for accurate carbon uptake estimates.
Therefore, the input data was constructed by producing NDVI, NDWI, NDVI texture, NDWI texture,
avgCH, stdCH, CC1, and CC2 maps. The input layer was produced in consideration of the texture of
the canopy, the difference in tree height, and the image texture due to the difference in tree height. As a
result of classifying the input layers to ANN, the double-layer structure, which occupies the most area
and the second highest carbon absorption rate, showed a relatively accurate 70.9% classification in
producer accuracy, while the single and triple-layer structures showed approximately 3.7% and 55.0%
of producer accuracy.

Understanding horizontal and vertical structures of forest is an important factor in estimating
forest aboveground biomass. The results of this study show the possibility of more accurate estimation
of forest aboveground biomass using various types of satellite images through the construction of
forest vertical structure inventory. Specifically, in order to estimate a forest carbon absorption by
detecting the change of vertical structure in a national-scale forest, it is essential to use satellite imagery
with periodical acquisition. Accordingly, it is possible to estimate forest aboveground biomass more
precisely by using a vertical structure constructed by using satellite images along with the species and
horizontal structure data of forests.

Forest structure, which is a key factor in forest aboveground biomass estimation, is highly
uncertain due to the nature of forests in various forms over a wide area. In particular, the use of remote
sensing images is essential for forests distributed in inaccessible regions, since there is a limitation
in constructing forest inventory using field investigation. Additionally, machine learning techniques
could be used to estimate the structure of forests, as applied in this study. Thus, the combination of
remote sensing and machine learning techniques to classify and analyze large amounts of data is very
effective in forestry, especially for a national scale analysis.

Remote sensing data can be used to generate forest vertical structure maps for large areas on the
national scale. NDVI, NDWI, NDVI texture and NDWI texture variables could be generated from
optical remote sensing data; canopy height maps and coherence maps could be generated from SAR
imagery and existing DTM and DSM data. Future research should include the mapping of forest
vertical structures by each layer. Various types of remote sensing data acquired at the same time
could be used to create forest vertical information more accurately. The study results represented that
continuing research in these areas, by using the capability of remote sensing data to estimate forest
vertical structures in single and multi-layers, could lead to a considerable improvement in forestry.
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