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Abstract: The Tropical Rainfall Measurement Mission (TRMM) satellite is the first to be designed
to measure precipitation, and its precipitation products have been assessed in a variety of ways.
Data for its post-real-time level 2 product (3B42) performed well in terms of the precipitation
amount at the monthly scale because they were corrected by a precipitation dataset that was gauged
every month. However, the performance of this dataset in terms of precipitation frequency and
intensity is still not ideal. To this end, TRMM 3B42 products were evaluated using precipitation
data from 747 meteorological stations over mainland China in this study. The Pearson’s correlation
coefficient (CC), relative bias (RB), and relative error (RE) were used to assess the capability of
TRMM products in terms of estimating the frequency, intensity, and amount of precipitation for
different categories of precipitation during nighttime and daytime in a multiscale analysis (including
interannual variation, seasonal cycles, and spatial distribution). Our results showed the following:
(1) The 3B42 products reproduced interannual trends of the frequency and amount of precipitation
(except for trace precipitation) with an average correlation coefficient of 0.84. (2) 3B42 performed well
at calculating the annual and monthly precipitation amount, but performed poorly for frequency
and even worse for intensity. The biases in these two properties canceled out, however, which led
to a better estimate of the amount. (3) 3B42 represented the distribution of the subdaily amount of
precipitation over a majority of the regions in the east, but did not perform well on the Tibetan Plateau
or in northwest China. The performance of 3B42, as detailed in this study, can serve as valuable
guidance to data users and algorithm developers.

Keywords: TRMM 3B42V7; spatial-temporal variations; nighttime-daytime contrast; precipitation
frequency; precipitation intensity; precipitation amount

1. Introduction

Precipitation is among the most important meteorological and climatic variables [1]. It features
complex temporal and spatial variations, and is a key factor in regional weather changes and the
formation of the global climate [2,3]. Short and intense precipitation can cause floods [4], but droughts
occur if it does not rain for a long time [5]. Therefore, obtaining accurate precipitation data to
understand the relevant mechanism is important for reducing its negative impacts on the environment
and society [5,6].

Current methods for measuring precipitation include ground observations from rain gauges and
radars, and estimates inferred from satellite sensors [7,8]. Rain gauge observations constitute the
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most primitive and direct method for measuring precipitation, but are often restricted by the number
and uneven spatial distribution of meteorological stations [9], especially in developing countries
and areas with complex terrains [10]. Weather radar can provide high-resolution precipitation with
continuous spatial coverage [11], but has limitations in terms of the transmission of electronic signals,
barriers posed by mountains, and cold weather [7,12,13]. Satellite precipitation products have received
increasing research interest owing to their wide range of observations, high spatiotemporal resolution,
free availability, and real-time access to data [14,15].

Supported by these satellite and remote sensing technologies, many research institutions and
government organizations have developed a series of rainfall datasets at both the regional and the
global scales [2], such as the Tropical Rainfall Measurement Mission (TRMM) [16,17], the Climate
Precipitation Center Morphing Method (CMORPH) [18], the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Network (PERSIANN) [19], and the Global Precipitation
Measurement (GPM) [20]. These rainfall products have wide coverage and high resolution to
compensate for a lack of spatial distribution of the ground stations and satisfy the needs of data-deficient
areas. Of the satellite precipitation products, the TRMM product is considered among the most reliable,
and is widely used [11,21–23].

With the continual release of satellite data, research is underway on verifying the accuracy
of TRMM satellite data, especially its post-real-time version 7 level 2 product (3B42V7) [17,24].
Varikoden et al. analyzed the temporal and spatial distributions of the intensity of precipitation in
the Malay Peninsula [25]. Pombo and Oliveira used 3B42 products to predict extreme precipitation
in Angola, and achieved good results [26]. Nastos et al. analyzed the annual and seasonal spatial
distributions of differences between the results of TRMM products and gauge observations over
Greece [27]. Related researches have also been conducted in the La Plata Basin [28], Amazon Basin [29],
Saudi Arabia [30,31], India [32], Iran [33], China [14,34–36], and the United States [37–39].

Because the research version data of the 3B42 have been corrected by a monthly ground precipitation
dataset, it is clear that the monthly amount of precipitation is representative, as has been confirmed by
several studies [17,40,41]. However, other important properties of precipitation, such as the frequency
and intensity, also needed to be evaluated. Past studies have also shown that the 3B42 data can
adequately capture the spatial variation in annual and seasonal precipitation [10]. Nevertheless,
it tends to overestimate trace precipitation and underestimate torrential precipitation at the daily scale
owing to inadequate detection capability [10,42]. Therefore, whether 3B42 products and ground data
can obtain the same effect for different categories of precipitation needs to be determined.

Moreover, the mechanisms of precipitation are different during the daytime and nighttime due
to the diurnal variation in solar radiation, relative humidity, and the type of clouds with dominant
precipitation [43–45]. As the TRMM satellite calculates precipitation from the scattering of ice crystals
in clouds, the differences in the types of precipitation clouds can significantly affect the quality of
satellite data [16]. Consequently, it is important to check the variation in precipitation reproduced by
the 3B42 product during the daytime and nighttime, which is also important for understanding the
physical mechanism of precipitation.

This study makes assesses performance of 3B42 data in terms of quantifying the frequency
and intensity of precipitation during daytime and nighttime through station observations. Subdaily
precipitation data were collected from approximately 800 meteorological stations in mainland China
from 1998 to 2017. The interannual variation and seasonal cycle of subdaily precipitation are analyzed
and compared between the 3B42 data and station observations. The spatial distributions of relative
biases between data from the satellite and stations at the subdaily scale are examined. The correlation
coefficient (CC), relative bias (RB) and relative error (RE) are used to assess the capability of the
TRMM 3B42 to simulate nighttime and daytime precipitation at multiple levels (the frequency,
intensity, and amount of precipitation) in different categories ranging from a trace to a large amount
of precipitation.
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2. Study Area and Data

2.1. Study Area

The study area covered most of China, ranging across 75◦E–133◦E longitude and 16◦N–50◦N
latitude. The vast territory, location near the Pacific Ocean, and descending three-terrace topography
create large differences in climate among the regions of the country. A topographical map of the study
area with a diagrammatic sketch of the main mountains is shown in Figure 1.
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Figure 1. The diagrammatic sketch of the main mountains and distribution of meteorological stations
in the study area. The datasets were obtained from China Meteorological Administration (CMA;
http://data.cma.cn/en/).

Affected by monsoons from the Pacific Ocean and Indian Ocean, the country is warm and humid
in the summer, especially in the eastern regions. In the winter, cold and dry winds from the interior of
Asia lead to lower precipitation and temperatures in China, especially in the northern regions. Owing
to the wide-ranging influence of winter and summer monsoons, China is hot and rainy in the same
period. In general, there is much more precipitation in the summer than in the winter, with significant
changes in interannual variation. The spatial distribution of precipitation is also uneven in China,
and annual precipitation gradually decreases from the southeast to the northwest.

2.2. Satellite-Based Precipitation Products

The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between the National
Aeronautics and Space Administration (NASA) of the United States and the National Space
Development Agency (NASDA) of Japan [16]. It was launched in Japan on 27 November 1997,
and carried a TRMM microwave imager (TMI), a precipitation radar (PR), visible and infrared
scanner (VIRS), clouds and earth radiant energy system (CERES), and a lighting image sensor
(LIS) [16,46]. The TMI, PR, and VIRS are basic precipitation-measuring instruments for TRMM
satellites. The TRMM observatory was designed to observe rainfall to provide accurate global tropical
precipitation estimates [16,46,47].

The TRMM satellite consists of two products, a near-real-time version (3B42RT) and a
gauge-adjusted post-real-time research version (3B42). The former covers the global latitude belt from

http://data.cma.cn/en/
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60◦S to 60◦N, providing quick but less accurate estimates suitable for real-time observation. The latter
covers the range from 50◦S to 50◦N, providing more accurate estimates that are more suitable for
research [48]. To reduce the random error in comparison with precipitation products of version 6,
both have updated to version 7 using the latest correction algorithm to improve accuracy [34,41,48–50].
Compared with 3B42RT data, the formation of the precipitation products of 3B42 is complex for many
reasons. First, the precipitation data at the monthly scale are obtained from 3B42RT products. Second,
monthly scale-related data are recalibrated using the monthly dataset of the Global Precipitation
Climatology Centre (GPCC). Third, the recalibrated monthly data are rescaled to a 3-h resolution to
reproduce the 3B42 research version. Details of the algorithm can be found in studies by Iguchi et al. [51]
and Dinku and Anagnostou [52].

The TRMM data used in this study were from the post-real-time TRMM satellite version 7
level 2 product (3B42V7), from the National Aeronautics and Space Administration (NASA; https:
//disc.gsfc.nasa.gov/datasets/TRMM_3B42_7/summary), with a spatial resolution of 0.25◦×0.25◦ and a
3-h time step (0000, 0300, . . . , 2100 UTC). It was evaluated using gauge-based precipitation observations
in mainland China from 1 January 1998 to 31 December 2017.

2.3. Gauge-Based Precipitation Observations

The meteorological precipitation observations are recorded in Beijing Time (short for BT hereafter).
The daytime (08:00–20:00 BT) and nighttime (20:00–08:00 BT) data, with a full time series of
subdaily precipitation data from 800 meteorological stations in mainland China from 1 January
1998 to 31 December 2017, were obtained from the China Meteorological Administration (CMA;
http://data.cma.cn/en/). This dataset has undergone a series of strict quality control measures and
homogenization, including the climate limit value or allowable value check, internal consistency
checks, and spatiotemporal consistency tests [53].

To ensure the integrity of data, the dataset was screened and inspected in this study. By referring
to the scope of satellite observations (50◦S–50◦N), meteorological stations in the northernmost parts
of China, above 50◦ N in Heilongjiang Province and the Inner Mongolia Autonomous Region, were
excluded. Station observations that had missing values for an entire month in any of the 240 months
during the research period (1998–2017) were discarded. Finally, the missing subdaily data of these
stations for each month were calculated, and defects due to instrument errors and bad weather were
marked. Because each station had two records per day (08:00–20:00 BT and 20:00–08:00 BT), data
from stations with less than 15% of data missing for both time periods were retained. Following these
procedures, a total of 747 stations met the requirements and were used in this study. They were denser
in the east than in the west, especially in the northwestern and the Tibetan Plateau. The distribution of
the stations is shown in Figure 1.

3. Methodology

3.1. Data Preprocessing

To evaluate the precipitation data from the meteorological stations and grids of the remote sensing
products, the general approach used was to generate data from the former to the latter. However,
such spatial interpolation usually incurred additional errors, especially in western China, due to the
sparseness of stations [21,54]. Alternatively, this study directly compared meteorological observations
with those of the satellite grid data centers where the meteorological stations were located. Therefore,
the 747 meteorological stations corresponded to 747 grid points, whereas grids that did not contain any
meteorological stations were excluded.

To eliminate errors between satellite products and station observations caused by different time
zones, the time at which the satellite data were captured were transformed from UTC to Beijing time.
That is, the nighttime represented 12:00–24:00 UTC or 20:00–08:00 BT, and the daytime represented
12:00–24:00 UTC or 08:00–20:00 BT.

https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_7/summary
https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_7/summary
http://data.cma.cn/en/
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The satellite precipitation dataset had a 3-hour temporal resolution, and was stored in the
date-hour format. For example, 3B42.19980101.12.7 is the data recorded at 12:00 UTC, which represents
the average amount of precipitation (in mm/h) over 3 h from 10:30 UTC to 13:30 UTC on January
1, 1998. To coordinate this with Beijing time during the day, we assigned a weight of 0.5 to data
recorded at 00:00 UTC and 12:00 UTC, and a weight of 1to those recorded at 03:00, 06:00, and 09:00
UTC. Subsequently, these weighted data were summed and multiplied by a factor of 3 to obtain the
amount of precipitation, as recorded by 3B42V7 during the daytime. Similarly, data for 12:00 UTC and
24:00 UTC were assigned a weight of 0.5 while those recorded at 15:00, 18:00, and 21:00 UTC were
assigned a weight of 1. Then, these weighted data were summed and multiplied by a factor of 3 to
obtain the amount of precipitation during the night.

3.2. Precipitation Classification and Properties

In this study, a precipitation event is defined as an instance of precipitation greater than or
equal to 0.1 mm within 12 h during the daytime or nighttime. According to the amount of
precipitation, each precipitation event is classified into the following four categories of intensity:
trace (0.1 ≤ P < 1 mm (12 h)−1), small (1 ≤ P < 10 mm (12 h)−1), moderate (10 ≤ P < 25 mm (12 h)−1),
and large (P ≥ 25 mm (12 h)−1)). The similar classification has been used in many related studies [55–57].

Three properties of precipitation, i.e., its frequency, intensity, and amount, were analyzed in this
study. The precipitation amount in each category was the cumulative precipitation of all precipitation
events within it. The precipitation frequency was the number of days with precipitation in a given
category. The precipitation intensity for each category was the ratio of its precipitation amount to the
duration hours. Similar interpretations of the frequency, intensity, and amount of precipitation have
been used in previous research [58].

3.3. Trend Calculation and Evaluation Indices

Trends of the frequency, intensity, and amount of precipitation were calculated based on the
following regression equation:

Pr(t) = at + b + ε, (1)

where Pr refers to the frequency, intensity, or amount of precipitation, t is time, a is the corresponding
trend, b is the constant term, and ε refers to error in the equation. Regression analysis is used to
describe the trends of satellite estimates and station observations at the interannual scale. The P value
was used to indicate the level of significance.

According to the evaluation indicators of meteorological satellite products and assessment reports,
the Pearson’s correlation coefficient (CC), relative bias (RB), and relative error (RE) were used to assess
consistency between the satellite products and station observations in this study. The formulae for
these indicators are as follows:

CC =

n∑
i=1

(Ti − T)(Gi −G)√
n∑

i=1
(Ti − T)

2
√

n∑
i=1

(Gi −G)
2

, (2)

RB =

n∑
i=1

(Ti −Gi)

n∑
i=1

Gi

× 100%, (3)
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and

RE =

n∑
i=1
|Ti −Gi|

n∑
i=1

Gi

× 100%, (4)

where Ti and Gi refer to the TRMM data and the gauge data, respectively. T = 1
n

n∑
i=1

Ti and G = 1
n

n∑
i=1

Gi

are the mean values, and n is the number of precipitation events. The value of CC ranged from −1 to 1,
indicating the fitness of the temporal variation between satellite estimates and station observations.
CC > 0 represents a positive correlation and CC < 0 represents a negative correlation. Furthermore,
0 ≤ |CC| < 0.2 represents extremely weak or irrelevant correlation, 0.2 ≤ |CC| < 0.4 represents weak
correlation, 0.4 ≤ |CC| < 0.6 means moderate correlation, 0.6 ≤ |CC| < 0.8 means strong correlation,
and 0.8 ≤ |CC| ≤ 1.0 denotes extremely strong correlation. RB denotes the estimated effect of the satellite
products on station observations [59]. RB > 0 implies that the satellite product has overestimated
precipitation and RB < 0 means that it has underestimated precipitation. If RB is close to zero,
the TRMM data are closer to the gauge data on average. RE can give an estimate of the accuracy of the
satellite measurement from the point of volatility. Basically, the satellite data have less volatility when
there is a smaller RE value.

4. Results

4.1. Interannual Variation in Subdaily Precipitation Properties

Figure 2 shows the interannual variations and linear trends of the precipitation frequencies of the
TRMM 3B42 and gauge data during nighttime and daytime for the categories of trace, small, moderate,
and large amounts of precipitation in the period 1998–2017. In general, TRMM 3B42 products roughly
reproduced the interannual trends of the precipitation frequencies over mainland China in the last two
decades, excluding the frequency of trace amounts of rain (Figure 2a1,b1). Specifically, TRMM had
the strongest correlation with gauge data in terms of moderate and large amounts of rain (CC > 0.9),
a moderate correlation for small amounts of rain (CC = 0.562 and CC = 0.470 for nighttime and daytime,
respectively), and an insignificant correlation for trace amounts of rain.

The frequencies of trace amounts of rain were significantly underestimated by the TRMM 3B42,
by 31.82% during the nighttime and 26.61% during the daytime. For the frequencies of small amounts
of rain, there were diurnal differences in the estimates of the satellite. At night, the TRMM 3B42
underestimated the frequency of small amounts of rain (RB = −3.48%), and overestimated it in the
daytime (RB = 4.6%). It only slightly underestimated moderate amounts of rain (RB = −0.17%),
indicating good performance for moderate precipitation frequency during the nighttime. During the
daytime, for moderate and large amounts of rain, the TRMM 3B42 tended to slightly overestimate
the frequency (RB = 10%). Because the frequency of mild precipitation (trace or small amounts of
rain) contributes the most to the total precipitation frequency, the correlation of TRMM and gauge
data in terms of the total precipitation frequency was weak, and the satellite underestimated the total
precipitation frequency.

According to station observations, the frequency of precipitation as trace amounts of rain over the
past two decades fluctuated slightly. However, as detected by satellites, it decreased at a rate of 5.8 d/10
a during the nighttime and 4.9 d/10 a during the daytime, which were significant values at the 0.01 level
based on the significance test. For small amounts of rain, the precipitation frequency from the stations
was relatively stable, with a slight oscillation around 35 days, but the satellite estimates recorded
a significant difference between the daytime and nighttime. Precipitation frequency, as recorded
by the satellite, decreased at a rate of 1.5 d/10 a during the nighttime at a significance level of 0.05.
On the contrary, it gradually increased at 0.6 d/10 a during the daytime, but without any significance.
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The satellite products recorded a strong correlation at stations with moderate and large amounts of
rain, and their trends of increase were similar to those obtained using station observations.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 23 
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Figure 2. Interannual variations and linear trends of precipitation frequencies from TRMM 3B42
data and gauge data during the (a) nighttime and (b) daytime for different categories of intensity
from 1998 to 2017 over mainland China. From left to right are days with a trace amount of rain
((0.1 ≤ P < 1 mm (12 h)−1)), a small amount of rain (1 ≤ P < 10 mm (12 h)−1), a moderate amount of
rain (10 ≤ P < 25 mm (12 h)−1), a large amount of rain (P ≥ 25 mm (12 h)−1)), and the total precipitation
(P ≥ 0.1 mm (12 h)−1). The y-axis scales are different for different precipitation categories.

Therefore, in terms of mild precipitation (trace and small amounts of rain), the TRMM 3B42
had considerable deficiencies in reproducing the trend of the interannual precipitation frequency.
Moreover, the satellite tended to slightly overestimate the frequency and the trend of moderate and
large amounts of rains (intensity higher than 10 mm (12 h)−1), and to significantly underestimate those
of other categories of rain (intensity lower than 10 mm (12 h)−1), which is consistent with the results
for the southern Tibetan Plateau in past research [60].

Figure 3 shows that the intensities of all four precipitation categories and the total precipitation
intensity were overestimated by the TRMM 3B42, with the largest overestimation in the intensity of
trace amounts of rain (Figure 3a1,b1), whereas it heavily underestimated the frequency of trace amounts
of rain. For small, moderate, and large amounts of rain, the TRMM 3B42 slightly overestimated the
values, and their corresponding RB values were smaller than 3%, indicating that the precipitation
intensity based on satellite data was close to the station observations. Due to the overestimation
for each category of precipitation, the total precipitation intensity was overestimated by 18.43% and
16.96% during the nighttime and daytime, respectively. Although the satellite overestimated the
intensity of trace amounts of rain significantly during the daytime, the TRMM and gauge data were
strongly correlated (CC = 0.817). This formed a strong contrast with the results for the nighttime
(CC = −0.09), which indicated significant uncertainty due to system error in the assessment of the
intensity of precipitation as a trace amount of rain by the satellite, especially during the nighttime.

In addition to overestimating the precipitation intensity, the satellite data also exhibited a trend of
increase, except in the case of a large amount of rain. The increased trends were especially significant
for trace, small, and moderate amounts rain at night, all of which passed the significance test at a level
of 0.01. This caused the total precipitation intensity (based on satellite data), which passed the test
with a significance of 0.05, to also increase annually.
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precipitation categories.

Compared with the frequency and intensity of precipitation, the correlation of TRMM and gauge
data was the best in terms of the amount of precipitation (Figure 4). Its performance in calculating
trace amounts of rain was still poor (CC < 0.1), in that they were significantly underestimated.
The precipitation amount recorded by satellite data decreased at a rate of 2.2 mm/10 a (nighttime) and
1.8 mm/10 a (daytime), and passed the significance test of 0.01. There were diurnal differences in the
assessment of small amounts of rain. The satellite data tended to underestimate the amount during the
nighttime but overestimated it in the daytime. It also overestimated moderate and large amounts of
rain, but not by much. The average correlation coefficient of the four categories of precipitation intensity
was 0.65 and that of total precipitation was above 0.97, showing a strong correlation. The above showed
that performance in terms of precipitation amount was more similar for frequency than for intensity.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 23 
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The TRMM and gauge data showed the best correlation in terms of the total precipitation amount
during the nighttime (CC = 0.988) due to the underestimation of trace and small amounts of rain being
offset by the overestimation of moderate and large amounts of rain. During the daytime, the satellite
data overestimated the total precipitation amount by 7.58%, indicating that the underestimation of
trace amounts of rain and the overestimation of other types of rain were not completely offset. This also
indicated that the satellite data had poorer simulation capability during the day than at night.

4.2. Properties of Seasonal Cycle of Subdaily Precipitation

Figures 5–7 show the multiyear average seasonal variation in the frequency, intensity, and amount
of precipitation for trace, small, moderate, and large amounts of precipitation during the nighttime
and daytime over China. In general, the TRMM 3B42 effectively reproduced the seasonal shape of the
frequency and amount of precipitation during the nighttime and daytime (CC > 0.88). In addition,
the satellite products could roughly represent the seasonal shape of small and large amounts of rain,
and the total precipitation intensity (CC > 0.8). However, the satellite products had slight deficiencies
in their ability to simulate the shape of trace and moderate precipitation intensity (CC < 0.67).
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Figure 5. Seasonal cycle of multiyear mean precipitation frequencies from TRMM 3B42 data and
gauge data for precipitation frequencies during the (a) nighttime and (b) daytime for various
precipitation categories over mainland China. From left to right are days with a trace amount
of rain ((0.1 ≤ P < 1 mm (12 h)−1)), a small amount of rain (1 ≤ P < 10 mm (12 h)−1), a moderate amount
of rain (10 ≤ P < 25 mm (12 h)−1), a large amount of rain (P ≥ 25 mm (12 h)−1)); and total precipitation
(P ≥ 0.1 mm (12 h)−1). The y-axis scales are different for different precipitation categories.

The frequency of a trace amount of rain was underestimated by the satellite throughout the year
during the nighttime (−55.66% < RB < −9.90% for each month) and daytime (−52.50% < RB < −6.71%
for each month), with the largest underestimation in January. However, the intensity of trace amounts
of rain was overestimated throughout the year during both the nighttime (18.46% < RB < 42.43% for
each month) and the daytime (22.16% < RB < 37.13% for each month), with the largest overestimation
in August. The TRMM and gauge data estimated the amount of mild rain well (−47.64% < RB < 21.86%
during the daytime and nighttime), with a strong correlation (CC > 0.9). Because the biases in the
frequency and intensity of precipitation cancel each other out, the calculated amount of precipitation
was reasonable.

In addition, in the case of a small amount of rain, the satellite data tended to overestimate
the precipitation frequency in May–September (nighttime) and May–October (daytime), but to
underestimate the frequency in other months (Figure 5a2,b2). Therefore, the seasonal amplitudes of
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the precipitation frequencies were exaggerated by the satellite data. This situation also appeared
in the seasonal variation of the low precipitation amount (Figure 7a2,b2), further indicating that the
seasonal cycle of precipitation amount was dominated by the precipitation frequency. Although
the precipitation frequency was overestimated or underestimated in different months for the four
precipitation categories, there was a prominent convex seasonal shape for the total precipitation
frequency. The satellite data tended to overestimate the frequency in rainy months (May–August) and
to underestimate it in rainless months (October–March).
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As a result, the seasonal variations of TRMM data and station observations are not generally
consistent with each other for precipitation frequency and intensity. The satellite data underestimated
the precipitation intensity from May to August, but overestimated it from September to April. TRMM
data had the closest agreement with those from the stations in terms of the total precipitation amount.
Therefore, biases in the frequency and intensity of precipitation in each month canceled each other out,
which led to the best estimation of the amount of precipitation.
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4.3. Properties of Spatial Distribution of Satellite Data and Stations in Subdaily Precipitation

Figures 8–10 show the spatial distribution of the multiyear average relative bias of the frequency,
intensity, and amount of precipitation between TRMM 3B42V7 products and station observations for
different precipitation categories over mainland China. In general, the spatial distribution of the relative
bias in the precipitation frequency was similar to that in precipitation amount, whereas that of the
precipitation intensity presented a different situation, especially for trace and small amounts of rain.

Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 23 

 

underestimated south of Qinling. In western China, the satellite data tended to overestimate the 

precipitation amount, especially in the Tianshan Mountains, the southern margin of the Tibetan 

Plateau, and the Qilian–Hengduan Mountains (RB ≥ 200%), indicating that the satellite data delivered 

poor performance in areas with a complex terrain. 

 

Figure 8. Spatial distribution of relative bias from TRMM 3B42 data and gauge data for precipitation 

frequencies during (a‒d) nighttime and (e‒h) daytime for different categories of intensity over 

mainland China. From top to bottom are days with a trace amount of rain ((0.1 ≤ P < 1 mm (12 h)−1)), 

a small amount of rain (1 ≤ P < 10 mm (12 h)−1), a moderate amount of rain (10 ≤ P < 25 mm (12 h)−1), 

and a large amount of rain (P ≥ 25 mm (12 h)−1)). Regular or inverted triangles represent stations that 

have a positive or negative relative bias, respectively. 

Figure 8. Spatial distribution of relative bias from TRMM 3B42 data and gauge data for precipitation
frequencies during (a–d) nighttime and (e–h) daytime for different categories of intensity over mainland
China. From top to bottom are days with a trace amount of rain ((0.1 ≤ P < 1 mm (12 h)−1)), a small
amount of rain (1 ≤ P < 10 mm (12 h)−1), a moderate amount of rain (10 ≤ P < 25 mm (12 h)−1), and a
large amount of rain (P ≥ 25 mm (12 h)−1)). Regular or inverted triangles represent stations that have a
positive or negative relative bias, respectively.
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Figure 8 shows that for trace amounts of rain, the satellite data underestimated the precipitation
frequency for more than 70% of the stations in China, with a value of RB smaller than −85%.
However, for other regions, such as the Loess Plateau, the Hengduan Mountains, and western
China, the precipitation frequency was heavily overestimated. For small amounts of rain, the range
of overestimation by the satellite expanded around the Loess Plateau, but was smaller than 40%.
The relative bias in underestimation decreased from −85% for a trace amount of rain to −30%. For a
moderate amount of rain, there were differences in the distribution of RB during the nighttime and
daytime. Precipitation frequency in most of eastern China was underestimated during the nighttime
and overestimated during the daytime, but the relative bias was within 20%, indicating that the satellite
had a certain accuracy and reliability for a moderate amount of rain. Heavy rain was overestimated in
the south of China and underestimated in northern regions and Yunnan Province, which is contrary to
the distribution of the precipitation frequencies in other categories.

For the frequency of precipitation, there was no obvious difference in the patterns of distribution
during the nighttime and daytime except in the case of a moderate amount of rain. The satellite data
showed a significant north–south gradient for estimating the frequencies of large or trace-small amounts
of rain. From trace to large amounts of rain, the range of overestimation of precipitation frequency by
the satellite data increased, but the maximum bias was mainly distributed in the Tibetan Plateau.

Figure 9 shows that the satellite data overestimated the precipitation intensity at 99% of the
stations over mainland China for small amounts of rain, and the relative bias was larger than 40%
for most stations. However, the biases in the precipitation intensity between satellite data and data
from stations for the small, moderate, and large amounts of rain were relatively small, and the spatial
distribution patterns were not evident.

Figure 10 shows that the pattern of spatial distribution of relative bias between satellite data
and data from stations for precipitation amount was similar to that for its frequency. For a trace
amount of rain, there was almost no difference between the nighttime and daytime, whereas the spatial
distribution of the relative bias was roughly bounded by the Qinling Mountains. Precipitation amount
was overestimated by the satellite data in the north of Qinling Mountains, and was underestimated
south of Qinling. In western China, the satellite data tended to overestimate the precipitation
amount, especially in the Tianshan Mountains, the southern margin of the Tibetan Plateau, and the
Qilian–Hengduan Mountains (RB≥ 200%), indicating that the satellite data delivered poor performance
in areas with a complex terrain.

Figures 11–13 show the spatial distribution of the multiyear average relative error of the frequency,
intensity, and amount of precipitation between TRMM 3B42V7 products and station observations for
different precipitation categories over mainland China. Generally, the amplitude of relative error is
larger than that of relative bias for each precipitation category, since the positive and negative values
can offset the latter statistic. Figure 11 shows that the relative error in the precipitation frequency was
larger during the daytime than during the night, while the opposite is the case for the precipitation
intensity shown in Figure 12. This leads to relative stability between the nighttime and daytime in
terms of the precipitation amounts shown in Figure 13. The lowest amount of rain has the largest
relative error among the four precipitation categories (the mean RE is about 50% for precipitation
frequency, 40% for precipitation intensity, and 60% for precipitation amount). Spatially, the relative
error is larger in northwest China than in other areas, especially for trace and small amounts of rain,
indicating that the TRMM 3B42V7 products have large volatility in northwest China.

The maximum underestimation of the precipitation amount by satellite products dropped from
78% for a trace amount of rain to 66% for a small amount of rain, so the degree of underestimation
decreased only slightly. The relative bias and relative error between the satellite data and data from
stations with a moderate amount of rain were small, similar to the case of interannual variations
(Figure 2). This indicated that the satellite data had strong temporal and spatial simulation capabilities
for dealing with a moderate amount of rainfall. The spatial distribution of large amounts of rain
was significantly different from that of trace and small amounts of rain, and was underestimated in
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northwest China. This trend was reversed in east China for a trace amount of rain. It was overestimated
in south and northeast China, whereas it was underestimated in north China.
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Figure 11. Spatial distribution of relative error from TRMM 3B42 data and gauge data for precipitation
frequencies during (a–d) nighttime and (e–h) daytime for different categories of intensity over mainland
China. From top to bottom are days with a trace amount of rain ((0.1 ≤ P < 1 mm (12 h)−1)), a small
amount of rain (1 ≤ P < 10 mm (12 h)−1), a moderate amount of rain (10 ≤ P < 25 mm (12 h)−1), and a
large amount of rain (P ≥ 25 mm (12 h)−1)).
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5. Discussion

5.1. Uncertainties in Estimates of Trace Amounts of Rain

In general, the TRMM 3B42V7 indicated good agreement with the data observed at the stations
(except for trace amounts of rain) for the frequency and amount of precipitation. This is consistent with
the findings of previous studies [58]. The frequency of precipitation as a trace amount of rain detected
by the satellite was significantly smaller than that observed at the stations, with a trend of decrease.
To the best of our knowledge, the ability of the satellite to capture trace precipitation was inadequate,
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and research has shown that the TRMM 3B42 underestimated the frequency of low-intensity rainfall
events [61].

However, note that the trend of the frequency of precipitation as a trace amount of rain was
decreasing (Figure 2a1,b1) with statistical significance. Combined with Figure 8, we see that the
precipitation was underestimated in south and northeast China. The frequency of a small amount of
rain has significantly decreased in south China over the past 50 years [62,63]. However, the satellite
data magnified this trend of reduction.

5.2. Negative Correlation between Frequency and Intensity

For both interannual variation and the seasonal cycle, the precipitation amount from the 3B42
and that from station observations had a higher correlation and lower relative bias compared with the
frequency and intensity of precipitation. This was because 3B42 products had already correctly used
the GPCC gauge analyses to enhance the calibration. Moreover, Figures 2, 3, 5 and 6 indicated that
the frequency and intensity of the TRMM 3B42 had a negative correlation (−0.89 for nighttime and
−0.85 for daytime). As the precipitation amount was affected by both the frequency and intensity of
precipitation, there was a trade-off between them, resulting in a better performance in recording the
amount of precipitation [9].

Therefore, the satellite data could reproduce the interannual variation in the characteristics of
daytime and nighttime amount of precipitation except in the case of a trace amount of rain, and could
capture the reductions in small amounts of precipitation. The combined comparison of the frequency,
intensity, and amount of precipitation showed that the amount may be more susceptible to frequency,
and less affected by the intensity of precipitation. This was consistent with the conclusion that the
precipitation amount may be dominated by its frequency [58,64–66].

5.3. Poor Performance Areas

The relative bias between the satellite data and the data obtained at the stations in east China
was restricted to within 50%, but exceeded 200% in the northwest and the Tibetan Plateau. In general,
satellite products perform poorly in arid and semiarid areas [67], as well as mountainous areas [68,69].
Our results confirmed that 3B42 products perform poorly over high-altitude zones and complex
terrains, such as the Loess Plateau, the Tarim Basin, the Tian Shan Mountains, and the Tibetan Plateau.

This issue was more pronounced for trace amounts of rain in the northwestern regions and
large amounts of rain in the Tibetan Plateau. One explanation was that raindrops evaporate before
reaching the ground, but the satellite calculates precipitation from the scattering of ice crystals in the
clouds [70]. For the Tibetan Plateau, the overestimation can be attributed to several factors. On the
one hand, emissivity signals from lower surface temperatures at high altitudes may be misidentified
as rainfall [71], as is the case on snowy or icy ground. On the other hand, the complex terrain and
associated warm rain in the south of the Tibetan Plateau could also have caused significant bias in
satellite rainfall estimates [72]. Additionally, the poor performance may also be attributed to the sparse
ground gauge-based information adopted in the GPCC data for the bias adjustments. The relatively
sparse stations in these two areas lead to the large bias. Therefore, satellite precipitation products still
face a great challenge in accurately estimating the precipitation over high-altitude regions and desert
areas [67].

The spatial patterns of performance in northwest China are also affected by the main type
of precipitation actually observed, since different precipitating processes have different effects
on atmospheric circulation and in turn affect precipitation differently. Therefore, identifying the
dominated precipitation type can help to reveal the underlying reasons of the spatial patterns. It was
reported that the potential increase in convective extreme events may be caused by the significantly
increasing temperature in northwest China [73]. Previous studies also found that the increase
of the heavy precipitation in summer is convective-dominated, while the decrease in autumn is
stratiform-dominated [74]. Further research is needed to investigate the changes in convective



Remote Sens. 2020, 12, 740 19 of 23

and stratiform precipitations and will be beneficial to meteorological research. Moreover, the error
characteristics of satellite precipitation estimates can be further investigated in detail over different
climatic regions [61]. Despite these limitations, our results showed the performance of 3B42 products
under different categories of intensity of precipitation. This can also provide useful insights into
errors in their calculations of the frequency and intensity of precipitation. Future studies need to
focus on improving satellite data retrieval algorithms suitable for different intensities and properties
of precipitation.

6. Conclusions

This study examined the ability of TRMM 3B42V7 precipitation products to reproduce the
frequency, intensity, and amount of precipitation from 1998 to 2017. The calculations, including
for interannual trends, seasonal cycle, and spatial distribution, were conducted using data from
747 meteorological stations as a benchmark. The conclusions can be summarized as follows:

1) TRMM 3B42 products can successfully reproduce interannual trends of the frequency and amount
of precipitation, with an averaged correlation coefficient of 0.84 over the past two decades, except
for trace amounts of rain. The TRMM data and gauge data had the strongest correlation for
moderate and large amounts of rain (CC > 0.9), a moderate correlation for small amounts of rain,
and the weakest correlation for trace amounts of rain.

2) Satellite products can effectively represent the seasonal shape of the frequency and amount of
precipitation during the nighttime and daytime (CC > 0.88). However, there are deficiencies in the
estimated intensity of precipitation, especially for trace and small amounts of rain. The TRMM
3B42 tended to overestimate the precipitation frequency in rainy months (May–August) but
underestimate it in rainless months (October–March). The precipitation intensity yielded results
contrary to this. Therefore, the biases in the frequency and intensity of precipitation in different
months offset one another, and there is improved performance in terms of the estimated amount
of precipitation.

3) A spatial comparison showed that the TRMM 3B42 can effectively represent the distribution of
the daily precipitation amount over most of the eastern regions of China, but did not perform
well in the Tibetan Plateau and northwest China. Moreover, the satellite products tended to
underestimate small precipitation amounts in south China and large precipitation amounts in
north China, but overestimated small precipitation amounts in north China and large precipitation
amounts in south China.

In summary, the TRMM 3B42 products performed well in terms of the precipitation amount,
followed by the frequency, and worst in terms of the intensity. Furthermore, their performance in
terms of estimating the precipitation frequency was more similar to that concerning the precipitation
amount than the intensity. Owing to the highest relative bias being in the northwest regions and the
Tibetan Plateau, we think that 3B42 products should be used with caution in these areas, especially
when estimating trace or large amounts of rain.
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