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Abstract: This paper presents a global and local tensor sparse approximation (GLTSA) model for
removing the stripes in hyperspectral images (HSIs). HSIs can easily be degraded by unwanted
stripes. Two intrinsic characteristics of the stripes are (1) global sparse distribution and (2) local
smoothness along the stripe direction. Stripe-free hyperspectral images are smooth in spatial domain,
with strong spectral correlation. Existing destriping approaches often do not fully investigate such
intrinsic characteristics of the stripes in spatial and spectral domains simultaneously. Those methods
may generate new artifacts in extreme areas, causing spectral distortion. The proposed GLTSA model
applies two `0-norm regularizers to the stripe components and along-stripe gradient to improve the
destriping performance. Two `1-norm regularizers are applied to the gradients of clean image in
spatial and spectral domains. The double non-convex functions in GLTSA are converted to single
non-convex function by mathematical program with equilibrium constraints (MPEC). Experiment
results demonstrate that GLTSA is effective and outperforms existing competitive matrix-based and
tensor-based destriping methods in visual, as well as quantitative, evaluation measures.

Keywords: hyperspectral image destriping; non-convex optimization; mean cross-track profile; PADMM

1. Introduction

Hyperspectral images (HSIs) offer abundant spatial and spectral information useful in various
application fields, including weather prediction [1] and environmental monitoring [2]. Hyperspectral
images collected by using whisk-broom sensors and push-broom scanners can be degraded by stripes, often
caused by calibration error or inconsistent responses between detectors [3]. Such stripes degrade visual
quality and pose negative influence on subsequent processing, such as unmixing [4,5], super-resolution [6],
classification [7,8], compressive sensing reconstruction [9,10], and recovery [11,12]. In general, three
types of stripes exist: horizontal (row-by-row) [13,14], vertical (column-by-column) [15,16], and oblique
stripes [17,18]. Since horizontal and oblique stripes can be transformed to vertical stripes, without loss of
generality, our directional model focuses only on vertical stripes.

In tensor algebra, an HSI dataset is a three-mode tensor, where the first two modes represent spatial
information, while the third mode gives spectral information of surface materials. HSI destriping
methods can be divided into two categories: matrix-based (band-by-band) methods [13,17] and
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tensor-based (3D data cube) methods [19,20]. In spite of good results for a single band, matrix-based
destriping methods ignore spectral correlation causing spectral distortion in the restored HSI.

Matrix-based destriping methods can be classified into three categories: filtering-based, statistics-based,
and optimization-based. Filtering-based methods include wavelet analysis [17], Fourier domain filter [21],
and filters combined with Fourier and wavelet [22]. If they considered only the periodic stripe, the stripes
would be identified by spectral analysis and suppressed by a finite-impulse-response (FIR) filter [21].
Unfortunately, useful information of the same frequency can be treated as stripes and therefore be filtered
out. For non-periodic stripes, they may cause blur or ringing artifacts. Münch et al. [22] proposed a wavelet
filter in the Fourier domain to improve destriping performances.

Statistics-based methods [23–30], such as moment matching (MM) [23] and histogram matching
(HM) [25], analyze and match the distribution of each sensor signal. MM assumes that the distributions
(the mean and the standard deviation) captured from different imaging systems are identical. HM
attempts to match a reference empirical cumulative distribution function (ECDF) by using the histogram
of the target signal. However, these methods are based on the strong assumption of similarity and
regularity among the stripes. The results are unstable, especially for nonlinear and/or irregular stripes.
To overcome this issue, various approaches have been proposed [26–30]. Cao et al. [26] improved
HM by using sliding windows. This approach understands that the distribution of vertical stripes
comes close to the gray level distribution of the column-centered local area. To remove stripes of
different frequencies, Sun et al. [27] proposed an improved MM method to remove nonlinear and
irregular stripes. Shen et al. [28] proposed a piecewise destriping method, which makes it difficult
to determine the threshold value. For stripes on Moderate-Resolution Imaging Spectro-radiometer
(MODIS), Rakwatin et al. [29] proposed a filter jointed HM method with an iterated weighted least
squares method. Chang et al. [30] combined MM with the multi-resolution analysis in the wavelet
domain. When the scenes are with a homogeneous surface, these methods perform well. The results
depend strongly on the moment or histogram set in advance. However, finding the suitable reference
moment or histogram is always challenging.

Recently, more researchers have been paying attention to optimization-based destriping
methods [14,19,31,32]. Mathematically, these methods view the destriping problem as an ill-conditioned
inverse problem, which is traditionally handled by exploiting priors with corresponding regularizations.
Inspired by classical total variation (TV) models, an improved TV model to destripe MODIS image is
proposed [14]. To remove stripes in multispectral image, Chang et al. [19] introduced a novel TV regularizer
in the spectral and spatial domains. Based on the unidirectional total variation (UTV) model, several
improved or combined methods were proposed [31,32]. In [31], the author combined UTV with framelet to
remove stripes, while Chang et al. [32] incorporated a UTV model with sparse priors of the stripes to remove
random noise and stripes concurrently. Most optimization-based methods estimate the ideal image from
stripe-degraded images, without considering the directional and structural characteristics of the stripes
in spectral and spatial domains. Recently, the methods combining the priors of both image component
and stripe component have been proposed [13,15,16,33,34]. Analyzing the properties of stripes, Liu et
al. [13] and Dou et al. [16] separated the stripes from the image. Chen et al. in [15] and Chang et al. in [34]
extracted stripe components from the perspective of image decomposition. To overcome the drawback of
sparsity constraint based on L1 norm for stripes, the authors in [33] introduced group sparsity schemes,
i.e., L2,1 norm to represent sparsity property of the stripes.

Matrix-based methods mainly focus on spatial information and process a single-band image each time,
and they do not fully utilize the spatial–spectral information of HSIs. An Anisotropic Spectral–Spatial Total
Variation (ASSTV) model [19] is proposed for HSI destriping, considering the prior of image component by
combining spectral–spatial total variation, but not the prior of stripe components. Though most existing
matrix-based methods can restore stripe-free images, they usually destroy the original structure, causing
spectral distortion. For serious stripes corruptions, outputs from existing methods are either over-smoothed
or degraded with artifacts see the Figures presented in the experimental part.
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Tensor-based destriping methods can fully exploit structural spectral–spatial correlation [35,36].
Low-Rank Tensor Decomposition (LRTD) in [20] separated the stripes from the perspective of low-rank
tensor decomposition. In [35], a weighted low-rank tensor recovery (WLRTR) model is extended to
WLRTR robust principal component analysis (WLRTR-RPCA) to extract the stripes. In [36], destriping
is implemented with combined low-rank approximation and nonlocal total variation. Although
tensor-based destriping methods outperform matrix-based methods, the low-rank constraint of stripes
is difficult to satisfy in real HSIs, especially when the stripes are discontinuous [34]. Determining
an optimal rank of tensor is challenging.

Considering the characteristic of stripes, sparse representation and sparsity promoting priors have
been utilized to remove the stripes in HSIs [15,16,32,33]. However, this sparsity characteristic has not been
considered under a tensor framework. In this paper, the tensor-based non-convex sparse model utilizes the
sparse priors to estimate stripes from the observed images, using two `0 sparse priors and two `1 sparse
priors. One `0 sparse prior is related to the global sparse distributional property of stripes, and the other is
related to the directional property of stripes (along the gradient stripes). One `1 sparse prior characterizes
the continuity of image (across-stripe direction), and the other denotes the correlation along the spectral
dimension. Section 3.2 further explains the reasons for choosing these priors. Figure 1 shows the framework
and priors of the proposed method. The ∇1 and ∇2 represent unidirectional TV operators of the along-stripe
direction and the perpendicular direction, respectively, and ∇3 represents the difference operator along the
spectral direction. To solve the proposed GLTSA, we extended the proximal alternating direction method of
multipliers (PADMM)-based algorithm [16] to the tensor framework.
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The main contributions of the proposed HSI destriping methods are as follows:

(1) We transformed an HSI destriping model to tensor framework, to better exploit high correlation
between adjacent bands. In the tensor framework, a non-convex optimization model was
constructed to estimate the stripes and underlying stripe-free image simultaneously for higher
spectral fidelity.

(2) The proposed method fully considers the discriminative prior of the stripes and the stripe-free
image in tensor framework. We represent and analyze intrinsic characteristics of the stripes and
stripe-free images, using `0 and `1, respectively. Experiment results show that the proposed method
outperforms existing state-of-the-art methods, especially when the stripes are non-periodic.

(3) We used the PADMM to solve a non-convex optimization model effectively. Extensive experiments
were conducted on simulated data and real-world data. The proposed scheme achieved
superior performance in both quantitative evaluation and visual comparison compared with
existing approaches.

The remainder of this paper is organized as follows. Section 2 gives some preliminary knowledge
on the tensor notations and intrinsic statistical characteristics of stripe and stripe-free images.
Section 3 presents the formulation of our model, along with a PADMM solver. In Section 4, we
discuss the experiments and analyze the selection of parameters. Section 5 concludes this paper.
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2. Intrinsic Statistical Property Analysis of Stripe and Clean Images

2.1. Notations and Preliminaries

In this paper, we use boldface Euler script letters (e.g., X), boldface capital letters (e.g., X), boldface
lowercase letters (e.g., x), and lowercase letters (e.g., x), to denote tensors, matrices, vectors, and scalars,
respectively. For an N-order tensor, X ∈ RI1×I2×···×IN, its element at location (i1, i2, · · · , iN) is denoted as
xi1,i2,··· ,iN. The `1 norm of tensor X is defined as ‖X‖1 =

∑I1
i1=1

∑I2
i2=1 · · ·

∑IN
iN=1 |xi1,i2,··· ,iN | and `0-norm is

defined as the number of non-zero elements inX. The inner product and Hadamard product of two N-order
tensors,X,Y, are defined as 〈X,Y〉 :=

∑
i1,i2,··· ,iN xi1,i2,··· ,iN ·yi1,i2,··· ,iN andX

⊙
Y :=Z, whereZ ∈ RI1×I2×···×IN

and zi1,i2,··· ,iN = xi1,i2,··· ,iN ·yi1,i2,··· ,iN . For more information about tensor algebra, please refer to [37].

2.2. Priors and Regularizers

This subsection analyzes the priors of stripes and stripe-free image and design appropriate
regularizers to describe the priors in a destriping model.

2.2.1. Global Sparsity of Stripes

When the stripes are few in an HSI image, the stripes are regarded as a sparse tensor [16]. Naturally
we choose `0-norm, the number of nonzero elements, to measure the sparsity of stripe component S:

R1(S) = ‖S‖0 (1)

Based on the sparsity constraint, the stripes are simply separated, while keeping useful information.
However, when the stripes are extremely dense, it is difficult to restore HSIs. Heavy stripes, which means
that the percentage of stripes in an image is high (usually more than 50%), significantly damage reliable
spatial and spectral information. A single `0-sparsity measurement for stripes can no longer depict
reasonably intrinsic characteristics of stripes. Thus, it is necessary to explore other regularizers for
stripes and HSIs to deal with heavy stripes.

2.2.2. Local Smoothness along Stripe Direction

Besides the global sparsity of stripes mentioned above, more powerful sparsity is embodied in
gradient domain along stripe. Figure 2 represents statistical distribution of non-zero elements in ∇2S,
where ∇2 is the gradient operator along the stripe, and the stripe S in Figure 2 is extracted from the
promising method proposed in [13]. Most gradient along the stripes are so small that they are close
to zero. The sparsity in gradient domain essentially reflects local smoothness along stripe direction.
The local sparsity measurement for stripes is as follows:

R2(S) = ‖∇2S‖0 (2)
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Figure 2. Statistics of non-zero elements in∇2S. Vertical axis indicates the number of non-zero elements,
while horizontal axis represents pixel value.
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2.2.3. Continuity of HSIs along Spatial Domain

As suggested in [16], for an HSIU, the spatial information long mode-1 (or spatial horizontal
direction) is continuous. From Figure 3b, the stripes severely destroy the local spatial continuity
in mode-1, indicating that the horizontal gradient of U should be as small as possible, to keep the
continuity. With this observation, the `1-norm regularization on the gradient ofU below is used to
describe the local continuity of the image in the spatial domain:

R3(U) = ‖∇1U‖1 (3)

where ∇1U represents horizontal gradient ofU.
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3. The GLTSA Destriping Method

3.1. Stripe-Degraded Model

The stripes in HSI can be classified into two categories from the mechanism of noise generation,
including additive stripes [14] and multiplicative stripes [38]. The multiplicative stripes can be
transformed to additive stripes by logarithmic transformation [39]. Thus, the observation model
of stripe-degraded HSI is formulated as F = U + S [13,14], and the corresponding tensor-based
reformulation is as follows:

F = U +S (5)

where F ,U,S ∈ Rh×v×b, and F ,U,S indicate the degraded image, the unknown clean image,
and stripes, respectively. Moreover, h and v indicate the horizontal and vertical pixel numbers in
spatial domain, and b represents the number of spectral bands.

3.2. The GLTSA Destriping Model

Based on the discussion for the priors for both the image and stripe components in Section 2.2,
the regularizers in the proposed model can be formulated as follows:

minS,U α‖S‖0 + ‖∇2S‖0 + λ‖∇1U‖1 + γ‖∇3U‖1 (6)

where α,λ, and γ are weighted parameters. To tackle this double-objective non-convex optimization
problem, we can transform it to the following single-objective non-convex optimization problem with
constraintU = F −S:

minS α‖S‖0 + ‖∇2S‖0 + λ‖∇1(F −S)‖1 + γ‖∇3(F −S)‖1 (7)

Note that the optimization problem in Equation (7) substantially differs from the models proposed
in [13,16]. The main difference is that the two models are matrix-based, while our method is tensor-based.
The two models in [13,16] have not considered the spectral correlation, which would result in spectral
distortion. The proposed method introduces the spectral prior to avoid this issue.

3.3. Optimization Procedure and Algorithm

There are two non-convex `0 regularization terms in Equation (7). In order to handle them, we first
present Lemma 1, the non-convex `0 optimization problem can be converted into convex optimization
with this Lemma. Then the PADMM method is utilized to solve it, and theoretically guarantee the
convergence at the same time.

Lemma 1. (Mathematical Program with Equilibrium Constraints (MPEC) equation [39]). For any given vector
w ∈ Rn, the following holds:

‖w‖0 = min0≤v≤1〈1, 1− v〉, s.t.v
⊙
|w| = 0 (8)

where < > represents the inner product of two vectors, and
⊙

denotes the element-wise product. The absolute of
w stands for the absolute value of each element of w. Then, v∗ = 1− sign(|w|) is the unique optimal solution of

the minimization problem in Equation (8), and sign(x) =


1, x > 0
0, x = 0
−1, x < 0

.

Lemma 1 can be intuitively extended to the tensor version, i.e., Lemma 2:
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Lemma 2. For any given tensorW ∈ RI1×I2×···×IN , the following holds:

‖W‖0 = min0≤V≤1〈1, 1−V〉, s.t.V
⊙
|W| = 0 (9)

whereV∗ = 1− sign(|W|) is the unique optimal solution of the minimization problem in Equation (9).

Proof. Similar to Lemma 1, see details in [39]. �

According to Lemma 2, the objective function (7) can be reformulated as follows:

min0≤V≤1,S α‖S‖0 + 〈1, 1−V〉+ λ‖∇1(F −S)‖1 + γ‖∇3(F −S)‖1s.t.V
⊙
|∇2S| = 0 (10)

According to ADMM optimization framework, we introduce four auxiliary variables O,P,Q, and
R, and then equally transform Equation (10) as follows:

min0≤V≤1,S,O,P,Q,R α‖P‖0 + 〈1, 1−V〉+ λ‖Q‖1 + γ‖R‖1,
s.t.V

⊙
|O| = 0,∇2S = O,∇1(F −S) = Q,∇3(F −S) = R

(11)

The augmented Lagrangian form of (11) is as follows:

L(V,S,O,P,Q,R, Λi,βi)

= α‖P‖0 + 〈Λ1,S−P〉+ β1
2 ‖S −P‖

2
F + 〈1, 1−V〉+ 〈Λ2,V

⊙
|O|〉

+
β2
2 ‖V

⊙
|O|‖

2
F

+λ‖Q‖1 + 〈Λ3,∇1(F −S) −Q〉+
β3
2 ‖∇1(F −S) −Q‖

2
F + γ‖R‖1+

〈Λ4,∇3(F −S) −R〉+
β4
2 ‖∇3(F −S) −R‖

2
F + 〈Λ5,∇2S−O〉+

β5
2 ‖∇2S−O‖

2
F

(12)

where the βis are positive scalar parameters and the Λis (i = 1,2,3,4,5) are the scaled Lagrange multipliers.
1. O subproblem: This subproblem can be written as follows.

minO 〈Λ
k
2,Vk

⊙
|O|〉+

β2

2
‖V

k
⊙
|O|‖

2

F
+ 〈Λk

5,∇2S
k
−O〉+

β5

2
‖∇2S

k
−O‖

2
F (13)

It has a close-form solution [16]:

O
k+1 = sign

(
T

k
)
∗

|T
k
| −Λk

2

⊙
V

k

β5I
k + β2V

k ⊙(
V

k
)T (14)

where T k = β5∇2S
k + Λk

5I
k,I k is the unit tensor of the same size as Sk.

2. P subproblem: This subproblem is a non-convex optimization problem.

minP α‖P‖0 + 〈Λk
1,Sk

−P〉+
β1

2
‖S

k
−P‖

2
F (15)

According to [40,41], the Pk+1 can be updated as follows:

P
k+1 = hdthre

Sk +
Λk

1

β1
,

√
2α
β1

 (16)

where hdthre(x, T0) =

{
x, |x| ≥ T0

0, |x| < T0
is a hard-thresholding function, and T0 is a given positive threshold.
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3. S subproblem: This subproblem is a quadratic minimization problem.

minS 〈Λ
k
1,S−Pk

〉 +
β1
2 ‖S −P

k
‖

2
F + 〈Λ

k
3,∇1(F −S) −Q

k
〉

+
β3
2 ‖∇1(F −S) −Q

k
‖

2
F + 〈Λ

k
4,∇3(F −S) −Q

k
〉

+
β4
2 ‖∇3(F −S) −Q

k
‖

2
F + 〈Λ

k
5,∇2S−O

k
〉+

β5
2 ‖∇2S−O

k
‖

2
F

(17)

Based on 3D fast Fourier transform (FFT), the explicit close-form solution is as follows:

S
k+1 = ifft

(
f f t(Π1)

Π2

)
(18)

where Π1 = β1

(
P

k
−

Λk
1
β1

)
+ β3∇

T
1

(
∇1F

k
−Q

k +
Λk

3
β3

)
+ β4∇

T
3

(
∇3F

k
−R

k +
Λk

4
β4

)
+ β5

(
O

k
−

Λk
5
β5

)
, Π2 = β1 +

β3 f f t
(
∇1∇

T
1

)
+ β4 f f t

(
∇3∇

T
3

)
+ β5 f f t

(
∇2∇

T
2

)
, fft denotes 3-D FFT, ifft is inverse 3-D FFT.

4. V subproblem: By Lemma 2, the subproblem ofV is

minV〈1, 1−V〉+
(
V

⊙
|O

k
|, Λk

2

)
+

β2
2 ‖V

⊙
|O

k
|‖

2
2 (19)

which is equivalent to the following:

min0≤V≤1〈D
k,V〉+ β2

2 ‖V
⊙
|O

k
|‖

2
2 (20)

Based on the constraint 0 ≤ V ≤ 1, it still has a closed-form solution:

V
k+1 = min

(
1, max

(
0, −D

k

β2 |O
k
|
⊙
|O

k
|

))
(21)

whereDk = 1−Λk
2

⊙
|O

k
|.

5. R subproblem: when other variables are fixed, variable R can be updated by

minRγ‖R‖1 + 〈Λk
4,∇3

(
F

k
−S

k
)
−R

k
〉+

β4

2
‖∇3

(
F

k
−S

k
)
−R

k
‖

2

2
(22)

By using soft-threshold shrinkage operator [42], the solution is given by the following equation:

R
k+1 = soft

∇3
(
F

k
−S

k
)
+

Λk
4

β4
,
γ

β4

 (23)

where soft(a, x) = sign(a ) ∗max(0, |a− x|).
6. Q subproblem: Similar to optimization for variableR,Q can be updated by the following equation:

minQ λ‖Q‖1 + 〈Λ3,∇1
(
F −S

k
)
−Q〉+

β3

2
‖∇1

(
F −S

k
)
−Q‖

2

F
(24)

The closed-form solution is given by the following equation:

Q
k+1 = soft

(
∇1

(
F

k
−S

k
)
+

Λk
3
β3

, λβ3

)
(25)

7. Multiplier subproblems: The update form of Lagrange multipliers Λis (i = 1, 2, 3, 4, 5) are
as follows:

Λk+1
1 = Λk

1 + Sk
− Pk (26)

Λk+1
2 = Λk

2 + β2V
k
⊙
|O

k
| (27)

Λk+1
3 = Λk

3 +∇1
(
F

k
−S

k
)
−Q

k (28)
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Λk+1
4 = Λk

4 +∇3
(
F

k
−S

k
)
−R

k (29)

Λk+1
5 = Λk

5 +∇3S
k
−O

k (30)

All the subproblems have the closed-form solutions, which guarantee the accuracy of the model.
The GLTSA destriping algorithm is summarized in the following Algorithm 1. With regard to
computational complexity, for an HSI with dimensions of h×b×v, the time complexity of GLTSA is
proportional to O(hbv·log(hbv)).

Algorithm 1. The GLTSA destriping algorithm

Input: The observed degraded image with stripe F , parameters α,γ, λ,βi(i = 1, 2, 3, 4, 5), the maximum
number of iterations Nmax=103, and the calculation accuracy tol = 10−4.
Output: The stripes S
Initialize:
(1) k=0,V0 = 1, S0 = F ;
While |

(
F −S

k
)
−

(
F −S

k−1
)
|/|

(
F −S

k
)
| > tol and k < Nmax do;

(2) Update Ok+1 by Equation (14);
(3) Update Pk+1 by Equation (16);
(4) Update Sk+1 using 3-D FFT by Equation (18);
(5) UpdateVk+1 by Equation (21);
(6) Update Rk+1 by Equation (23);
(7) Update Qk+1 by Equation (25);
(8) Update the multipliers Λk+1

i , i = 1, 2, 3, 4, 5 by Equations (26)–(30).
End While

4. Experiment Results

To verify the effectiveness of GLTSA on simulated and real data, we compared with six state-of-the-art
methods. The first four methods belong to band-by-band restoration matrix-based methods, including
the unidirectional total variation model (UTV) [14], Directional L0 Sparse (DL0S) Model [16], the wavelet
Fourier adaptive filter (WFAF) [22], and statistical gain estimation (SGE) [23]. The other three methods are
tensor-based or tensor-like-based methods, including anisotropic spectral–spatial TV (ASSTV) model [19],
Low-Rank Tensor Decomposition (LRTD) [20] model, and Low-Rank Multispectral Image Decomposition
(LRMID) model [34]. The codes of WFAF, UTV, ASSTV, and LRMID can be downloaded from the website
(http://www.escience.cn/people/changyi/codes.html). The code of DL0S can be downloaded from the website
(http://www.escience.cn/people/dengliangjian/codes.html). The code of LRTD is available on the website
(https://www.researchgate.net/profile/Yong_Chen96). In the simulated experiments, we add periodic and
non-periodic stripes, as suggested in [34]. Before this, it is necessary to determine two indicators of the stripes:
(1) the intensity represents the stripes’ absolute mean value (denoted by I) and (2) the ratio (or percentage)
of the stripe area to the whole image (denoted by r). We selected several typical combinations of I and
r in the simulated experiments, that is I ∈ {20,50,100}, r∈{0.2,0.4,0.6,0.8, 0 - 1 }, where r = 0 − 1 indicates
that the percentage of stripes varies from band to band. The test data are normalized to a range of 0 to 1.
In the following experiments, we manually tuned the parameters. For the experiments, we used MATLAB
(R2016a) on a desktop with 8Gb RAM and Inter(R) Core(TM) CPU i5-4590: @3.30 GHz.

4.1. Simulated Data Experiments

In the simulated experiments, we generated periodic stripes and non-periodic stripes under
different intensities and ratios. We used the Hyperspectral Digital Imagery Collection Experiment
(HYDICE) image dataset of the Washington DC Mall (WDCM in short) as the ground truth image,
which is available on website (https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html).
There are 191 spectral bands, and its spatial resolution is 1208 × 307 pixels. Because the original image
is too large, which is very expensive in terms of computational cost, a sub-image of size 256 × 256 × 10
is extracted for the simulated experiment.

http://www.escience.cn/people/changyi/codes.html
http://www.escience.cn/people/dengliangjian/codes.html
https://www.researchgate.net/profile/Yong_Chen96
https://engineering.purdue.edu/biehl/MultiSpec/hyperspectral.html
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(a) Visual effect comparison: To evaluate the destriping effectiveness of GLTSA, we simulated
many degraded cases. We selected one representative band of WDCM to show the destriping results.
The original images are presented in Figures 5a and 6a, and the images are degraded by periodic
stripes (I = 60, r = 0.8) and non-periodic stripes (I = 60, r = 0.4) are listed in Figures 5b and 6b,
respectively. The destriping results obtained by different methods are illustrated in Figures 5c–j and
6c–j, where significant differences in visual quality can be observed.

When the intensity and ratio are low, most of the comparative methods obtain similar visual quality
comparable to the proposed method. But when the intensity and ratio are high, most of the comparative
methods have poor results, in both cases of the periodic and non-periodic stripes. For example, the result
images are distorted, blurred, and over-smoothed in Figure 5c–e. LRTD has obtained satisfactory results due
to that it directly processes the data cubes instead of a band-by-band process. There are almost no obvious
residual stripes in DL0S, LRMID, and LRTD. Even though the LRMID, DL0S, and LRTD achieve similar
visual quality as the proposed method, there are still residual stripes in the images from the enlarged part
(yellow box), especially in the non-periodic stripes case (see Figure 6g–i). The results show that GLTSA can
effectively remove stripes and retain more details and structure.

respectively. The destriping results obtained by different methods are illustrated in Figures 5c–j and 
6c–j, where significant differences in visual quality can be observed. 

When the intensity and ratio are low, most of the comparative methods obtain similar visual 
quality comparable to the proposed method. But when the intensity and ratio are high, most of the 
comparative methods have poor results, in both cases of the periodic and non-periodic stripes. For 
example, the result images are distorted, blurred, and over-smoothed in Figure 5c–e. LRTD has 
obtained satisfactory results due to that it directly processes the data cubes instead of a band-by-band 
process. There are almost no obvious residual stripes in DL0S, LRMID, and LRTD. Even though the 
LRMID, DL0S, and LRTD achieve similar visual quality as the proposed method, there are still 
residual stripes in the images from the enlarged part (yellow box), especially in the non-periodic 
stripes case (see Figure 6g–i). The results show that GLTSA can effectively remove stripes and retain 
more details and structure. 
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Figure 5. Destriping results of band 5 for the periodic stripes case (r = 0.8 and I = 60): (a) original, (b) 
degraded with periodic stripes, (c) UTV, (d) WFAF, (e) SGE, (f) ASSTV, (g) LRMID, (h) DL0S, (i) 
LRTD, and (j) GLTSA. 
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Figure 5. Destriping results of band 5 for the periodic stripes case (r = 0.8 and I = 60): (a) original,
(b) degraded with periodic stripes, (c) UTV, (d) WFAF, (e) SGE, (f) ASSTV, (g) LRMID, (h) DL0S,
(i) LRTD, and (j) GLTSA.
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Figure 5. Destriping results of band 5 for the periodic stripes case (r = 0.8 and I = 60): (a) original, (b) 
degraded with periodic stripes, (c) UTV, (d) WFAF, (e) SGE, (f) ASSTV, (g) LRMID, (h) DL0S, (i) 
LRTD, and (j) GLTSA. 
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Figure 6. Destriping results of band 5 for the non-periodic stripes case (r = 0.4 and I = 60): (a) original, 
(b) degraded with non-periodic stripes (case I = 60, r = 0.4), (c) UTV, (d) WFAF, (e) SGE, (f) ASSTV, 
(g) LRMID, (h) DL0S, (i) LRTD, and (j) GLTSA. 

(b) Qualitative Assessment: For the evaluation of GLTSA, we adopt the mean cross-track profile 
(MCTP) to compare the performance. The curves in Figures 7 and Figure 8 represent the MCTPs of 
Figure 5 and Figure 6, respectively. The horizontal axis indicates the column number, while the 
vertical axis denotes the mean digital number value of each column. The existence of stripes results 
in rapid fluctuations (blue curve) in Figure 7a; the stripes are more or less suppressed by the eight 
methods as shown in Figure 7b–i. From Figure 7b–d, we can see that UTV, WFAF, and SGE methods 
fail to restore original MCTP (green curve). There are still fluctuations in Figure 7e,f. This indicates 
that the images estimated by these methods are distorted or blurred. Although the profiles produced 
by DL0S and LRTD are better than other methods, the MCTP of GLTSA is closer to the original, 
showing no difference with the results listed in Figure 5. A similar case is shown in Figure 8.

Figure 6. Destriping results of band 5 for the non-periodic stripes case (r = 0.4 and I = 60): (a) original,
(b) degraded with non-periodic stripes (case I = 60, r = 0.4), (c) UTV, (d) WFAF, (e) SGE, (f) ASSTV,
(g) LRMID, (h) DL0S, (i) LRTD, and (j) GLTSA.

(b) Qualitative Assessment: For the evaluation of GLTSA, we adopt the mean cross-track profile
(MCTP) to compare the performance. The curves in Figures 7 and 8 represent the MCTPs of Figures 5 and 6,
respectively. The horizontal axis indicates the column number, while the vertical axis denotes the mean digital
number value of each column. The existence of stripes results in rapid fluctuations (blue curve) in Figure 7a;
the stripes are more or less suppressed by the eight methods as shown in Figure 7b–i. From Figure 7b–d,
we can see that UTV, WFAF, and SGE methods fail to restore original MCTP (green curve). There are still
fluctuations in Figure 7e,f. This indicates that the images estimated by these methods are distorted or
blurred. Although the profiles produced by DL0S and LRTD are better than other methods, the MCTP of
GLTSA is closer to the original, showing no difference with the results listed in Figure 5. A similar case is
shown in Figure 8.
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Figure 7. (a) Degraded with periodic stripes (case I = 60, r = 0.8), (b) UTV, (c) WFAF, (d) SGE, (e) ASSTV, (f) LRMID, (g) DL0S, (h) LRTD, and (i) GLTSA.
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Figure 8. (a) Degraded with non-periodic stripes (case I = 60, r = 0.4), (b) UTV, (c) WFAF, (d) SGE, (e) ASSTV, (f) LRMID, (g) DL0S, (h) LRTD, and (i) 
GLTSA. 

 

Figure 8. (a) Degraded with non-periodic stripes (case I = 60, r = 0.4), (b) UTV, (c) WFAF, (d) SGE, (e) ASSTV, (f) LRMID, (g) DL0S, (h) LRTD, and (i) GLTSA.
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(c) Quantitative comparison: To verify the robustness of GLTSA under different noise levels,
we adopted five acknowledged quantitative indices, namely the mean peak signal-to-noise ratio
(MPSNR) [43], mean structural similarity (MSSIM) [43], feature similarity (MFSIM) [44], mean spectral
angle mapper (SAM) [45], and erreur relative globale adimensionnelle de synthese (ERGAS, relative
dimensionless global error in synthesis, in English) [46]. The definitions of these indexes are as follows:

MPSNR =
1
b

b∑
i=1

10log10
2552

× ni

‖ûi − ui‖
2

where b represents the number of spectral bands, ûi and ui are the restored image and the original clean
image of i-th band (they are of the same size), and ni represents the total number of pixels of image
of ui.

SSIM =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) , MSSIM =
1
b

b∑
i=1

SSIMi

where µx and µy represent the average value of x and y images; σx and σy stand for the variance of x
and y images; and σxy is the covariance of these two images. C1 and C2 are constant here.

FSIM =

∑
x∈Ω SL(x)·PCm(x)∑

x∈Ω PCm(x)
, MFSIM =

1
b

b∑
i=1

FSIMi

where Ω means the whole image spatial domain, SL(x) is the similarity of images f 1 and f 2 at each
location x, and PCm(x) is the weight of SL(x) in the overall similarity between images f 1 and f 2.

SAM = arccos


∑n

i=1 xiyi√∑n
i=1 x2

i

√∑n
i=1 y2

i


where S1 = (x1, x2, . . . , xn) and S2 = (y1, y2, . . . , yn) represent the spectral vectors at the same location
in HSI.

ERGAS = 100
h
v

√√√
1
b

b∑
i=1

(
RMSE(xi)

µ(i)

)2

where h, v, and b are defined above. RMSE(xi) denotes the root-mean-square error (RMSE) for image xi,
and µ(i) denotes the mean of image yi.

The MPSNR and MSSIM are used to measure the performance of spatial information, while the
global performance of spectral distortion is evaluated by SAM and ERGAS. The larger the MPSNR
and MSSIM values, the smaller the SAM and ERGAS values, and both are indicating that the effect
of destriping is better. Tables 1 and 2 list the quantitative indices of all the destriping methods
with simulated periodic and non-periodic stripes, respectively. The boldface digits in Tables 1 and 2
represent the best results. GLTSA outperforms LRTD, DL0S in these indices except only a few cases.
As the intensity and ratio of stripes increases, the values of MPSNR and MSSIM decrease, while the
GLTSA shows stable results, indicating robustness. The SAM and ERGAS values of GLTSA are the
smallest among all compared methods; this indicates that the spectral distortion of GLTSA is the lowest.
The quantitative evaluation results are in line with the visual effects.
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Table 1. The mean values of indices of WDCM with periodic stripe.

I 20 60 100

r 0.2 0.4 0.8 0–1 0.2 0.4 0.8 0–1 0.2 0.4 0.8 0–1

MPSNR

Noisy 29.10 26.09 23.08 26.51 19.56 16.55 13.54 15.28 15.12 12.11 9.10 11.94
SGE [23] 39.82 38.85 39.87 39.24 37.95 33.93 38.42 37.81 34.07 15.15 10.31 18.27

WFAF [22] 31.58 31.36 31.51 31.36 31.08 29.59 30.43 30.52 30.29 27.39 28.87 29.01
UTV [14] 25.85 25.85 25.85 25.84 25.85 25.84 25.85 25.85 25.85 25.84 25.85 25.85

ASSTV [19] 36.70 36.70 36.34 36.57 36.70 36.71 34.64 36.17 36.72 36.73 32.07 36.18
LRMID [34] 42.46 42.39 42.41 42.43 42.33 42.38 37.61 41.92 42.16 41.96 25.18 41.05
LRTD [20] 49.86 48.85 42.10 47.86 49.81 48.95 41.76 48.98 49.81 49.01 41.66 48.67
DL0S [16] 43.74 41.85 39.14 42.18 43.76 41.86 39.11 42.16 43.77 41.91 39.10 42.81

Ours 50.90 47.95 42.55 48.28 54.22 47.97 42.33 50.19 53.79 50.12 42.32 50.94

MSSIM

Noisy 0.8452 0.7429 0.5846 0.7752 0.5003 0.2883 0.1753 0.4235 0.3201 0.1185 0.0765 0.2894
SGE [23] 0.9907 0.988 0.9909 0.9906 0.9845 0.9602 0.9868 0.9764 0.9712 0.2951 0.1096 0.7698

WFAF [22] 0.9483 0.9474 0.9484 0.9486 0.9469 0.9384 0.9456 0.9482 0.9441 0.9218 0.9398 0.9367
UTV [14] 0.9022 0.9022 0.9022 0.9022 0.9022 0.9022 0.9022 0.9022 0.9021 0.9022 0.9021 0.9022

ASSTV [19] 0.9833 0.9833 0.9812 0.9842 0.9833 0.9833 0.968 0.9846 0.9834 0.9834 0.9329 0.9792
LRMID [34] 0.9954 0.9954 0.9955 0.9955 0.9953 0.9954 0.9802 0.9911 0.9949 0.9945 0.6796 0.9843
LRTD [20] 0.999 0.9986 0.9941 0.9992 0.999 0.9987 0.9937 0.9979 0.999 0.9987 0.9936 0.9989
DL0S [16] 0.9968 0.9951 0.9918 0.9978 0.9968 0.9951 0.9918 0.9952 0.9968 0.9951 0.9918 0.9966

Ours 0.9988 0.9967 0.9942 0.9941 0.9995 0.9985 0.9948 0.9989 0.9995 0.9989 0.9948 0.9996

MFSIM

Noisy 0.9271 0.856 0.8662 0.9158 0.8157 0.6427 0.694 0.8319 0.748 0.5372 0.6032 0.7384
SGE [23] 0.9927 0.9907 0.993 0.9928 0.9876 0.9714 0.9905 0.9901 0.9756 0.6516 0.6304 0.8542

WFAF [22] 0.9626 0.9617 0.9623 0.9681 0.9605 0.954 0.9583 0.9598 0.9571 0.9418 0.9522 0.9568
UTV [14] 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422

ASSTV [19] 0.9822 0.9822 0.9819 0.9823 0.9822 0.9822 0.9799 0.9831 0.9822 0.9823 0.9778 0.9818
LRMID [34] 0.9965 0.9965 0.9966 0.9966 0.9963 0.9964 0.9932 0.9961 0.9958 0.9952 0.982 0.9967
LRTD [20] 0.9994 0.9991 0.9969 0.9989 0.9993 0.9991 0.9966 0.9967 0.9993 0.9991 0.9965 0.9989
DL0S [16] 0.9969 0.9956 0.9933 0.9958 0.9969 0.9956 0.9932 0.9958 0.9969 0.9956 0.9932 0.9959

Ours 0.9989 0.9967 0.9955 0.9988 0.9996 0.998 0.9954 0.9989 0.9995 0.9988 0.9954 0.9992
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Table 1. Cont.

I 20 60 100

r 0.2 0.4 0.8 0–1 0.2 0.4 0.8 0–1 0.2 0.4 0.8 0–1

SAM

Noisy 0.177 0.356 0.452 0.378 0.387 0.776 0.931 0.814 0.494 0.991 1.139 1.024
SGE [23] 0.020 0.043 0.015 0.031 0.057 0.128 0.040 0.098 0.100 0.840 1.090 0.911

WFAF [22] 0.025 0.048 0.030 0.038 0.053 0.122 0.065 0.079 0.080 0.186 0.097 0.137
UTV [14] 0.049 0.049 0.049 0.049 0.050 0.050 0.051 0.051 0.051 0.052 0.052 0.052

ASSTV [19] 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.036 0.035
LRMID [34] 0.038 0.039 0.039 0.039 0.040 0.040 0.050 0.046 0.042 0.045 0.169 0.064
LRTD [20] 0.023 0.026 0.033 0.029 0.023 0.026 0.033 0.028 0.023 0.026 0.033 0.029
DL0S [16] 0.011 0.021 0.028 0.023 0.011 0.021 0.028 0.019 0.011 0.021 0.028 0.018

Ours 0.013 0.027 0.030 0.025 0.006 0.017 0.031 0.013 0.007 0.012 0.031 0.014

ERGAS

Noisy 131.10 185.40 262.20 241.61 393.29 556.19 786.59 581.47 655.48 926.98 1311.0 986.87
SGE [23] 38.16 42.68 37.96 39.58 47.46 75.30 44.83 56.24 77.76 653.70 1141.4 878.94

WFAF [22] 98.71 101.21 99.50 100.98 104.69 124.43 112.74 118.36 115.71 161.12 135.79 152.68
UTV [14] 191.27 191.27 191.27 191.27 191.28 191.33 191.29 191.30 191.30 191.44 191.33 191.38

ASSTV [19] 56.22 56.20 58.38 56.28 56.19 56.14 70.14 59.34 56.09 56.00 93.45 65.97
LRMID [34] 30.80 31.00 31.00 30.91 31.37 31.08 49.89 35.94 31.91 32.16 205.92 49.78
LRTD [20] 17.11 19.05 31.03 24.61 17.15 19.04 32.06 26.25 17.15 19.03 32.38 29.37
DL0S [16] 24.68 30.42 41.73 32.84 24.62 30.34 41.98 36.27 24.56 30.18 42.00 38.57

Ours 10.83 18.95 29.04 21.06 7.46 20.51 30.66 23.58 7.89 12.42 30.69 26.75

The boldface digits in Table 2 represent the best results.

Table 2. The mean values of indices of WDCM with non-periodic stripe.

I 20 60 100

R 0.2 0.4 0.8 0–1 0.2 0.4 0.8 0–1 0.2 0.4 0.8 0–1

MPSNR

Noisy 29.12 26.09 23.08 27.13 19.58 16.55 13.54 17.34 15.14 12.12 9.1 12.85
SGE [23] 37.05 36.28 34.01 36.89 30.18 28.47 23.41 29.19 22.59 16.29 9.97 17.92

WFAF [22] 31.12 30.78 30.19 30.85 28.41 26.97 25.07 27.38 25.63 23.63 21.3 24.11
UTV [14] 25.85 25.84 25.82 25.84 25.84 25.74 25.62 25.78 25.83 25.55 25.29 25.68

ASSTV [19] 35.83 35.97 34.22 36.12 32.15 31.37 26.86 31.62 28.48 26.83 21.84 27.38
LRMID [34] 39.72 39.66 35.95 39.67 32.47 30.33 25.26 31.95 27.22 24.28 19.51 25.91
LRTD [20] 47.88 43.96 30.5 44.98 47.78 42.34 23.36 44.68 47.85 40.23 19.56 41.38
DL0S [16] 42.88 41.3 31.45 42.88 42.87 40.94 26.98 41.67 42.11 37.68 23.13 40.62

Ours 48.59 43.52 36.44 46.25 53.01 42.81 31.09 47.39 52.52 46.9 26.24 47.19
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Table 2. Cont.

I 20 60 100

R 0.2 0.4 0.8 0–1 0.2 0.4 0.8 0–1 0.2 0.4 0.8 0–1

MSSIM

Noisy 0.8599 0.7598 0.6133 0.8367 0.5333 0.336 0.1664 0.4168 0.3684 0.1716 0.0552 0.2168
SGE [23] 0.9871 0.9858 0.979 0.9862 0.9524 0.9334 0.8209 0.9258 0.8191 0.5056 0.0767 0.6729

WFAF [22] 0.9457 0.9443 0.9425 0.9455 0.9216 0.9088 0.8864 0.9094 0.8786 0.8429 0.7849 0.8581
UTV [14] 0.9022 0.9022 0.902 0.9021 0.9022 0.901 0.8994 0.9011 0.902 0.8986 0.8936 0.8988

ASSTV [19] 0.9801 0.9805 0.9719 0.9779 0.9555 0.9432 0.8569 0.9412 0.8965 0.8448 0.6567 0.8567
LRMID [34] 0.9923 0.9918 0.9808 0.9919 0.9552 0.9174 0.7831 0.9239 0.851 0.7309 0.4985 0.7862
LRTD [20] 0.9985 0.9962 0.9373 0.9968 0.9985 0.9948 0.8043 0.9913 0.9985 0.9922 0.6691 0.9936
DL0S [16] 0.9963 0.9946 0.9736 0.9949 0.9962 0.9945 0.9402 0.9938 0.9952 0.9909 0.8781 0.9917

Ours 0.9991 0.9961 0.9884 0.9989 0.9994 0.9958 0.9733 0.9987 0.9993 0.9979 0.9299 0.9981

MFSIM

Noisy 0.9317 0.8819 0.8275 0.8897 0.8104 0.7021 0.6324 0.7168 0.7421 0.6159 0.5437 0.6348
SGE [23] 0.9912 0.9906 0.9867 0.9921 0.9771 0.9667 0.9065 0.9698 0.9066 0.7551 0.5874 0.7965

WFAF [22] 0.9616 0.9611 0.9597 0.9612 0.9542 0.9488 0.9369 0.9514 0.9421 0.9285 0.9043 0.9341
UTV [14] 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422 0.9422

ASSTV [19] 0.98 0.9803 0.9759 0.9796 0.9664 0.9585 0.9111 0.9559 0.9359 0.9082 0.8165 0.9167
LRMID [34] 0.9946 0.9945 0.9873 0.9937 0.9705 0.651 0.8784 0.9367 0.9144 0.8628 0.7514 0.8934
LRTD [20] 0.9988 0.9969 0.9619 0.9971 0.9988 0.9955 0.8802 0.9959 0.9988 0.9935 0.8022 0.9945
DL0S [16] 0.9966 0.9955 0.9848 0.9962 0.9966 0.9954 0.9751 0.9956 0.9963 0.9942 0.9533 0.9939

Ours 0.9993 0.9965 0.9918 0.9989 0.9995 0.9962 0.9884 0.9981 0.9993 0.9981 0.9772 0.9979

SAM

Noisy 0.187 0.309 0.44 0.338 0.447 0.706 0.921 0.769 0.593 0.912 1.129 0.927
SGE [23] 0.063 0.081 0.107 0.089 0.187 0.237 0.4 0.243 0.387 0.732 1.1 0.933

WFAF [22] 0.066 0.086 0.1 0.088 0.183 0.236 0.269 0.247 0.29 0.365 0.419 0.387
UTV [14] 0.05 0.054 0.058 0.056 0.056 0.087 0.111 0.091 0.066 0.126 0.166 0.134

ASSTV [19] 0.035 0.035 0.035 0.035 0.037 0.035 0.081 0.051 0.068 0.068 0.231 0.098
LRMID [34] 0.04 0.039 0.041 0.040 0.053 0.06 0.153 0.073 0.122 0.184 0.387 0.214
LRTD [20] 0.023 0.027 0.055 0.037 0.023 0.027 0.188 0.068 0.023 0.026 0.3 0.187
DL0S [16] 0.016 0.031 0.139 0.069 0.016 0.034 0.236 0.088 0.024 0.061 0.362 0.195

Ours 0.015 0.027 0.057 0.028 0.007 0.015 0.148 0.041 0.008 0.017 0.275 0.086

ERGAS

Noisy 131.20 185.49 262.28 188.39 393.61 556.4 786.85 586.24 656.01 927.46 1311.4 951.44
SGE [23] 52.87 57.43 74.51 60.12 117.20 141.0 261.77 156.85 282.73 581.81 1187.8 786.75

WFAF [22] 103.96 108.04 115.9 109.87 143.46 167.88 210.53 189.67 200.30 247.29 325.82 258.97
UTV [14] 191.23 191.52 191.81 191.64 191.35 193.56 196.04 194.35 191.69 197.60 204.23 197.64

ASSTV [19] 61.60 60.54 73.4 62.88 92.64 101.09 169.59 121.07 140.85 170.36 302.18 188.69
LRMID [34] 39.81 40.06 59.9 42.81 89.02 113.91 203.93 128.94 162.79 228.39 395.39 235.67
LRTD [20] 18.85 25.83 111.55 61.86 18.94 29.99 253.94 94.38 18.89 37.27 393.12 125.74
DL0S [16] 27.11 32.40 101.17 58.94 27.20 33.81 169.91 87.14 31.19 51.03 264.12 119.68

Ours 15.07 25.11 56.66 30.45 9.36 28.16 105.40 56.97 9.81 17.96 188.68 86.47

The boldface digits in Table 2 represent the best results.
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4.2. Experiments on Real Data

In this experiment, we choose two real image datasets. The first one is Urban data from
Hyperspectral Digital Imagery Collection Experiment (HYDICE). Some bands are degraded with
non-periodic stripes. The original size is 307 × 307 × 210, and a sub-image with the dimensions 307
× 307 × 8 (from band 1 to band 8) is extracted for the experiment. The original data are available
on the website (http://www.erdc.usace.army.mil/). The second data are collected by EO-1 Hyperion
L1R-level sensor. These data were captured in Australia on December 4, 2010. The size of original
image is 3858 × 256 × 242, and a sub-image of 400 × 225 × 10 (from band 54 to band 63) is used in our
experiment, which is available online (http://remote-sensing.nci.org.au/). The data are normalized to
[0,1] before processing.

The results of all the methods on the two real data are displayed in Figures 9 and 10. From Figures
9b–d and 10b–d, UTV, WFAF, and SGE result in the distortion of details and structure. Erroneous horizontal
stripes are introduced by ASSTV, LRMID, and LRTD, as shown in Figures 9e–h and 10e–h. DL0S can
eliminate most of the stripes, but still leave some obvious stripes, as shown in Figures 9h and 10h. Regardless
of the level of image quality, GLTSA is able to remove the stripes effectively, while retaining the details.
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Figure 9. Destriping results of the first real data 1. (a) Original; and destriping results by (b) UTV, (c) 
WFAF, (d) SGE, (e) ASSTV, (f) LRMID, (g) DL0S, (h) LRTD, and (i) GLTSA. 
Figure 9. Destriping results of the first real data 1. (a) Original; and destriping results by (b) UTV,
(c) WFAF, (d) SGE, (e) ASSTV, (f) LRMID, (g) DL0S, (h) LRTD, and (i) GLTSA.
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Figure 10. Destriping results of the second real data. (a) Original; and destriping results by (b) UTV, 
(c) WFAF, (d) SGE, (e) ASSTV, (f) LRMID, (g) DL0S, (h) LRTD, and (i) GLTSA. 
Figure 10. Destriping results of the second real data. (a) Original; and destriping results by (b) UTV,
(c) WFAF, (d) SGE, (e) ASSTV, (f) LRMID, (g) DL0S, (h) LRTD, and (i) GLTSA.

The MCTPs of Figures 9 and 10 are shown in Figures 11 and 12, respectively. The MCTP of the
Urban data is shown in Figure 11a, while Figure 11b–i shows the MCTPs of the compared methods.
The profiles of LRMID and LRTD have obvious fluctuations, which indicate residual stripes, and the
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profiles of WFAF and UTV show over-smoothing, which suggests details are lost. Figure 11i indicates
that GLTSA can realize the desired result, while keeping more details.
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Figure 11. Spatial mean cross-track profiles for the first real data: (a) original real image; and 
destriping results by (b) UTV, (c) WFAF, (d) SGE, (e) ASSTV, (f) LRMID, (g) DL0S, (h) LRTD, and (i) 
GLTSA. 

 
(a) 

 
(b) 

 
(c) 

50 100 150 200 250 300
Column Number

0

0.05

0.1

0.15

0.2

0.25

0.3
Original

M
ea

n 
Va

lu
e

50 100 150 200 250 300
Column Number

0

0.05

0.1

0.15

0.2

0.25

0.3
WFAF

M
ea

n 
Va

lu
e

M
ea

n 
Va

lu
e

M
ea

n 
Va

lu
e

M
ea

n 
Va

lu
e

M
ea

n 
Va

lu
e

M
ea

n 
Va

lu
e

M
ea

n 
Va

lu
e

M
ea

n 
Va

lu
e

M
ea

n 
Va

lu
e

Figure 11. Spatial mean cross-track profiles for the first real data: (a) original real image; and destriping
results by (b) UTV, (c) WFAF, (d) SGE, (e) ASSTV, (f) LRMID, (g) DL0S, (h) LRTD, and (i) GLTSA.
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Figure 12. Spatial mean cross-track profiles for the second real data: (a) real image; and destriping 
results by (b) UTV, (c) WFAF, (d) SGE, (e) ASSTV, (f) LRMID, (g) DL0S, (h) LRTD, and (i) GLTSA. 
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Figure 12. Spatial mean cross-track profiles for the second real data: (a) real image; and destriping
results by (b) UTV, (c) WFAF, (d) SGE, (e) ASSTV, (f) LRMID, (g) DL0S, (h) LRTD, and (i) GLTSA.

Since there is a lack of ground-truth images as reference data, we adopt two non-reference
destriping indices, including the inverse coefficient of variation (ICV) [38] and mean relative deviation
(MRD) [38]. The definitions of these two indices are introduced in [38]:

ICV =
Rm

Rs
(31)

MRD =
1

MN

∑
i

|xi − yi|

yi
× 100% (32)

where Rm and Rs represent the mean and standard deviation of pixel values in the same region of the
destriping and original images, respectively; and xi and yi are the pixel values in the destriping and
original images, respectively.

Table 3 lists the results of two non-reference indices. The best results are given in bold. The GLTSA
outperforms the compared methods in most cases. The best results of compared methods have
only little difference with ours. The GLTSA outperforms on destriping the state-of-the-art methods
for comparison.

Table 3. The MICV and MMRD index results of the real data experiments.

Dataset Index UTV WFAF SGE ASSTV LRMID DL0S LRTD GLTSA

(1)
MICV 28.176 60.871 58.947 90.526 98.618 118.856 110.054 121.248

MMRD
(%) 0.2013 0.1504 0.1706 0.1206 0.0951 0.0538 0.0864 0.0547

(2)
MICV 16.315 31.056 30.842 36.118 46.211 53.137 53.204 52.176

MMRD
(%) 0.0913 0.0844 0.0901 0.0628 0.0251 0.0198 0.0365 0.0139

4.3. Analysis for Parameter Settings

At present, the selection of regularization parameters automatically or adaptively of different
sensors is still a difficulty for many algorithms, which will be further researched in our future work.
In this paper, the distributional properties of sparsity, smoothness, and spatial–spectral continuity
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are constructed as constraint terms to estimate the stripe component. Our model contains eight
regularization parameters (12): α,γ, λ and βi (i = 1, 2, 3, 4, 5). Since the noise intensity and proportion
of stripes have many different combinations, we tuned them empirically to obtain a more accurate
estimation. To find the appropriate parameter values, we chose the mean PSNR (MPSNR) as the
selection criterion to evaluate and analyze the effect. We conducted experiments on different simulated
data. To show the influence of parameter tuning, we used the WDCM dataset as an example. It is
obvious that the optimal values of eight parameters are in the eight-dimensional parameter space,
but it will be time-consuming. To mitigate this problem, we adopt a greedy algorithm to determine the
optimal value of parameters in turn. Experiment results show that, although the parameters obtained
by this method are not globally optimum, the destriping results are still excellent.

The function curve of MPSNR values and the regularization parameters, λ, is plotted in Figure 13a;
the results show that, when λ increases from 0.6 to 1.2, the MPSNR is obviously improved, and then
the MPSNR reduces slightly when λ is further increased. That is to say, the highest MPSNR value of
λ is reached near 1.2. The function curve of MPSNR values with parameter γ is listed in Figure 13b.
With the increase of γ, the highest MPSNR value is reached near 1. It shows similar trends as λ. Since
there are many degradation scenarios in our implementation, the parameters are not fixed; they are
varied in the [1.1, 1.3] range for λ and [0.8, 1] for γ. The relationship between MPSNR and the parameter
α is depicted in Figure 13c. It is observed that MPSNR does not change much with the change of α.
This means that the GLTSA is robust with α. In fact, the image with severe stripes will prefer a larger
γ and λ but a lower α. The value of α is fixed within the range of [10–5, 10–4].

The relationship between MPSNR and the parameters β1, β2, β3, β4, and β5 are listed in Figure 13d–h,
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Table 4. Comparison of running time on WDCM dataset with periodic and non-periodic stripe
(in seconds).

Stripe Type UTV WFAF SGE ASSTV LRMID DL0S LRTD GLTSA

Periodic 10.94 8.89 3.99 92.14 209.12 179.85 785.98 182.33
non-periodic 11.23 9.18 4.37 95.33 214.51 183.64 789.46 186.75

5. Conclusions

This paper presents a tensor sparse approximation model for HSI destriping. The characteristics
of image and stripe are simultaneously modeled under tensor-based sparse approximation framework.
More specially, the `0-norm of stripes and its gradient are used to characterize the global sparsity of
the stripes and local smoothness along stripes direction. The `1-norm of the gradients of underlying
images in spatial and spectral are utilized to depict the continuity. The tensor-based PADMM
algorithm is adopted to handle the non-convex tensor optimization model. Experiment results have
demonstrated that GLTSA has better striping performance and lower spectral distortion compared
with the existing methods.
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