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Abstract: Landsat 5 has produced imagery for decades that can now be viewed and manipulated
in Google Earth Engine, but a general, automated way of producing a coherent time series from
these images—particularly over cloudy areas in the distant past—is elusive. Here, we create a land
use and land cover (LULC) time series for part of tropical Mato Grosso, Brazil, using the Bayesian
Updating of Land Cover: Unsupervised (BULC-U) technique. The algorithm built backward in
time from the GlobCover 2009 data set, a multi-category global LULC data set at 300 m resolution
for the year 2009, combining it with Landsat time series imagery to create a land cover time series
for the period 1986–2000. Despite the substantial LULC differences between the 1990s and 2009 in
this area, much of the landscape remained the same: we asked whether we could harness those
similarities and differences to recreate an accurate version of the earlier LULC. The GlobCover basis
and the Landsat-5 images shared neither a common spatial resolution nor time frame, But BULC-U
successfully combined the labels from the coarser classification with the spatial detail of Landsat.
The result was an accurate fine-scale time series that quantified the expansion of deforestation in the
study area, which more than doubled in size during this time. Earth Engine directly enabled the
fusion of these different data sets held in its catalog: its flexible treatment of spatial resolution, rapid
prototyping, and overall processing speed permitted the development and testing of this study. Many
would-be users of remote sensing data are currently limited by the need to have highly specialized
knowledge to create classifications of older data. The approach shown here presents fewer obstacles
to participation and allows a wide audience to create their own time series of past decades. By
leveraging both the varied data catalog and the processing speed of Earth Engine, this research can
contribute to the rapid advances underway in multi-temporal image classification techniques. Given
Earth Engine’s power and deep catalog, this research further opens up remote sensing to a rapidly
growing community of researchers and managers who need to understand the long-term dynamics
of terrestrial systems.

Keywords: land cover; time series; deforestation; cerrado; Brazilian Amazon; Bayesian statistics;
BULC-U; Mato Grosso; spatial resolution; Landsat; GlobCover

1. Introduction

Remote sensing is a crucial tool for observing and monitoring changes in land use and land
cover across large areas, allowing users to quantify changes across large regions using satellite images,
LIDAR images, and aerial photographs [1,2]. The Landsat series is the most complete and longest
running satellite imagery available (1972–present). Its opening to the public a decade ago has allowed
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access to a wealth of data for researchers [2–4] and opened up new avenues of research [5]. Given the
enormous data volume now available, however, it has remained a substantial challenge to quickly
and efficiently process Landsat images and create time series maps, particularly with legends that are
specific to a given project’s needs.

Time series of land use and land cover (LULC) allow researchers to identify and track changes in
land use patterns and to study the effects of land use in hydrological processes, ecosystem functions,
and biogeochemistry [3,6]. By providing opportunities to look reliably into the past [7–11], time series
have increasingly been used to provide models with better baselines to make estimates of deforestation
rates, land use, and effects of policy decisions [6,7,12,13]. While time series classifications, particularly
of forest loss/gain, are being produced and are of high interest, customizing a time series for a given
project’s needs is difficult due to the time and expertise required to create classifications and the
daunting complexity of making the results coherent between iterations [14].

In this study, we apply the Bayesian Updating of Land Cover: Unsupervised method (BULC-U),
the recent extension of the BULC algorithm to accommodate unsupervised classifications of Landsat
satellite imagery [15], to interpret imagery across the time period 1986–2000, and to create an annual
time series of major LULC categories of Forest, Deforested Land, and Shrubland/Grassland at 30 m
spatial resolution. With extensive field experience in northeastern Mato Grosso, Brazil (Figure 1), we
chose to study that region’s noteworthy changes in land cover and land use patterns during the late
1980s and 1990s.

Remote Sens. 2020, 12, x FOR PEER REVIEW 2 of 18 

 

enormous data volume now available, however, it has remained a substantial challenge to quickly 

and efficiently process Landsat images and create time series maps, particularly with legends that 

are specific to a given project’s needs. 

Time series of land use and land cover (LULC) allow researchers to identify and track changes 

in land use patterns and to study the effects of land use in hydrological processes, ecosystem 

functions, and biogeochemistry [3,6]. By providing opportunities to look reliably into the past [7–11], 

time series have increasingly been used to provide models with better baselines to make estimates of 

deforestation rates, land use, and effects of policy decisions [6,7,12,13]. While time series 

classifications, particularly of forest loss/gain, are being produced and are of high interest, 

customizing a time series for a given project’s needs is difficult due to the time and expertise required 

to create classifications and the daunting complexity of making the results coherent between 

iterations [14]. 

In this study, we apply the Bayesian Updating of Land Cover: Unsupervised method (BULC-U), 

the recent extension of the BULC algorithm to accommodate unsupervised classifications of Landsat 

satellite imagery [15], to interpret imagery across the time period 1986–2000, and to create an annual 

time series of major LULC categories of Forest, Deforested Land, and Shrubland/Grassland at 30 m 

spatial resolution. With extensive field experience in northeastern Mato Grosso, Brazil (Figure 1), we 

chose to study that region’s noteworthy changes in land cover and land use patterns during the late 

1980s and 1990s. 

 

Figure 1. Study area (white rectangle) within Mato Grosso, Brazil. 

2. Materials and Methods 

2.1. Study Area 

The state of Mato Grosso in Brazil (Figure 1) has undergone extensive deforestation in past 

decades, particularly for cattle ranching and soy cultivation [16–18]. To test the accuracy of our 

algorithm to produce the time series, we chose a study area in eastern Mato Grosso covering 

approximately 2 × 104 km2 (166 km × 121 km) and encompassing four municipalities: Alto Boa Vista, 

Querência, Ribeirao Cascalheira, and Canarana, centered near 51.884°W, 12.601°S. The study area 

includes examples of the major tropical land covers: in the south and east, the native vegetation is 

predominantly savanna (a mixture of dense drought-deciduous forest and grasslands); in the north 

and west, the native vegetation is broadleaf evergreen forest, characteristic of the southern Amazon; 

the far eastern portion of the study area contains the Bananal seasonal grassland/wetland complex; 

and throughout are areas that are now deforested and converted to crops and pastures. To map the 

Figure 1. Study area (white rectangle) within Mato Grosso, Brazil.

2. Materials and Methods

2.1. Study Area

The state of Mato Grosso in Brazil (Figure 1) has undergone extensive deforestation in past decades,
particularly for cattle ranching and soy cultivation [16–18]. To test the accuracy of our algorithm
to produce the time series, we chose a study area in eastern Mato Grosso covering approximately
2 × 104 km2 (166 km × 121 km) and encompassing four municipalities: Alto Boa Vista, Querência,
Ribeirao Cascalheira, and Canarana, centered near 51.884◦W, 12.601◦S. The study area includes examples
of the major tropical land covers: in the south and east, the native vegetation is predominantly savanna
(a mixture of dense drought-deciduous forest and grasslands); in the north and west, the native
vegetation is broadleaf evergreen forest, characteristic of the southern Amazon; the far eastern portion
of the study area contains the Bananal seasonal grassland/wetland complex; and throughout are
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areas that are now deforested and converted to crops and pastures. To map the basic LULC changes
of the region, we were interested in distinguishing the changes among three categories: (1) Forest;
(2) Deforestation; and (3) Shrubland/Grassland mix.

2.2. BULC-U Algorithm

The BULC-U algorithm is an iterative algorithm developed in Google Earth Engine [19]. Adapted
from the BULC algorithm [20,21], BULC-U has recently been applied to the GlobCover 2009 data set,
in order to refine the spatial resolution of the 300 m GlobCover set to that of the Landsat imagery
which it is fed [15]. BULC-U operates on unsupervised classifications from any source, and both
BULC and BULC-U can run across very large regions in Earth Engine [14]. It was a relatively
straightforward exercise to refine the GlobCover 2009 data set using 2009 Landsat data; because they
were contemporaneous, there was substantial agreement between the data sets despite resolution
differences. In this study, we asked if the same process can employ the GlobCover 2009 set to render a
LULC time series both at a finer scale and two decades earlier.

To create the time series, we first ran BULC-U in reverse time order, meaning that the latest
classifications (from the year 2000) were fed to BULC-U first. The remaining classifications were then
processed by BULC-U by comparing each to the GlobCover data set, following Lee et al. (2018). This
produced a relatively rough 1984 LULC classification that, with the exception of some unwanted noise,
looked very much like a single classified Landsat image’s classification from 1984; we saved that to
the Earth Engine asset manager. After that spin-up, we ran BULC-U in the second, forward-running
stage of the process, comparing each unsupervised LULC classification against the putative 1984
classification, creating a time series that stabilized by 1986, and ran to the end of 2000.

2.3. GlobCover Base Image

The research community has produced several planetary-scale LULC classifications using an
accumulation of images near a nominal date of interest, e.g., [22,23]. One such planetary-scale data
set is GlobCover 2009, a global classification made by interpreting imagery from the MERIS sensor
with 300 m pixels, with an overall accuracy of 58% for 20+ LULC classes across the globe [24]. With its
2009 nominal date, the classification distinguishes among 22 possible classes of LULC. In this study
area, the GlobCover 2009′s categories were dominated by a few classes: Rainfed Croplands (6.2%);
Mosaic Cropland/Vegetation (14%); Mosaic Vegetation/Cropland (13.6%), Closed to Open Broadleaved
Evergreen or Semi-deciduous Forest (32.4%); Closed Broadleaved Deciduous Forest (12.1%); Closed to
Open Shrubland (17%); and mosaic classes. As outlined in Lee et al. [15], we remapped pixels of most
mosaic types (particularly, the Mosaic Cropland/Vegetation type) to be NoData, meaning that their
type was unknown a priori. As a result, part of BULC-U’s function was to reveal the non-mosaic classes
contained in the ~100 30 m pixels contained within each 300 m GlobCover pixel. Additionally, as in
Lee et al. [15], Cropland/Mosaic Vegetation mosaic was the usual label chosen in GlobCover for what
could be seen in finer-scale Landsat images as being Cropland or Pasture, and so it was remapped to
the Deforested Land class for forming the “base image”, the best initial estimate of LULC in the study
area. BULC-U would then use the spectral characteristics of these pixels to inform its creation of the
series from the much earlier period.

GlobCover’s coarse spatial resolution was especially strong at identifying large areas of intact Forest
(e.g., north and east of the intersection of A2 and B3 in Figure 2), large expanses of Shrubland/Grassland
(e.g., D5 in Figure 2), and areas where Deforested Land (in this region, loss of Forest for either cropland
or pasture) dominated the land cover across large areas (C2 in Figure 2). GlobCover was less successful
in capturing fine-scale LULC, however, and it had a 69.1% overall accuracy [15] within the study area.
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Figure 2. Base image used as a seed for the Bayesian Updating of Land Cover: Unsupervised method
(BULC-U). GlobCover 2009 (above) and a Landsat 5 image from 2009 (below).

2.4. Imagery

We identified a time series of 58 relatively clear (less than 10% cloud cover) Landsat 5 satellite
images between 1984 and 2000, from between the dry season months of May and September (Table 1),
for an average of about 3.5 images annually for each study pixel. In these images, Thematic Mapper
bands four, five, and seven (near-IR, near-IR and mid-IR) were the clearest and used for the segmentation
and classification described below.
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Table 1. Dates of Landsat 5 satellite imagery for BULC-U time series creation.

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

5/24 5/17 6/2 6/18 5/24 5/25 5/25 5/17 6/1 6/2 6/10 6/26 5/16 6/18 6/2 6/26 6/9
6/25 8/21 9/6 8/5 6/25 6/26 7/28 6/2 6/17 6/18 6/26 7/28 6/17 7/4 6/18 7/28 7/27

8/21 7/11 8/5 8/20 7/4 7/28 9/30 7/3 8/5 8/5 8/29
9/6 7/27 9/5 7/20 8/13 8/21 8/21

8/12 8/5 9/30 9/6 9/22
9/6

2.5. Segmentation & Classification

Using the segmentation and classification tools in ArcGIS 10.3, we converted the 58 multi-band
Landsat 5 satellite images into 58 unsupervised classifications, which we refer to as “Events”, following
the BULC and BULC-U work flow [15,20] (Figure 3).
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Figure 3. Unsupervised Landsat classifications from four dates in the mid-1980s, used as inputs in
BULC-U for fusing Landsat and GlobCover data as described in the text.

Using the Segment Mean Shift tool [25] in ArcGIS 10.3, we identified features in each image
that were spectrally distinct and spatially contiguous, with each class being spectrally uniform
with little speckling for each class. After identifying the segments, each band was re-computed
using the mean value within the segment as the value for all pixels within the segment. Next, we
performed unsupervised classification of each segmented image using the ISODATA [26] unsupervised
classification tool. Through trial and error, we identified that using 20 unsupervised classes produced
spectrally and spatially distinct classifications. The number of pixels in each class was large enough
that BULC-U could relate them to the coverage in the GlobCover 2009 image, but small enough that
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each unsupervised class tended to be dominated by just one of the LULC classes tracked through
the study.

2.6. Validation

To understand BULC-U’s ability to build from the GlobCover 2009 classification to track land
cover change and stability in different decades, we assessed the classifications in the three specified
categories, which could be easily observed in imagery with relatively little evaluator confusion. For
estimation of area and map accuracy, the standard practices derived by Stehman [27] and Olofsson et
al. [28] were used. This included creating a probability sample and calculating the inclusion probability
of each point that was selected for inspection as part of the validation. We stratified a collection of
reference points using the BULC-U map for 1986: 53 points from the Deforested Land stratum, 71 from
the Forest stratum, and 100 from the Shrubland/Grassland stratum. The accuracy of the BULC-U time
series was assessed in detail for the years at either end of the time series: 1986 and 2000. An evaluator
unassociated with the project evaluated each point’s reference category using a clear Landsat image
from 1986 and from 2000. We used the equations of Stehman [27] to calculate unbiased estimates of the
overall accuracy and each LULC category’s area, user’s accuracy, and producer’s accuracy, along with
estimates of error in these quantities.

3. Results

3.1. BULC-U Classification Sequence

The 1986–2000 BULC-U land-cover time series indicates a landscape in substantial transition,
from one dominated by Forest and Shrubland/Grassland to a more even mix among Deforested Land,
Forest, and Shrubland/Grassland (Figures 4–6). BULC-U produced a time series of 58 land-cover
classifications, dating from 1986 (Figure 4) to 2000 (Figure 5). At either end of the sequence, BULC-U
successfully captured large changes in the landscape, such as the establishment of contiguous fields
in sectors D1 and E1, A1, and A2. It was also able to capture finer-scale deforestation in sectors B2
and C2, as well as in A4 and A5. Much of the Forest category, particularly in 1986, occurred in large,
spectrally steady patches that were easy to capture with the unsupervised classifications that feed
BULC-U. When visually inspecting the results at either end of the sequence, it was rare to find errors
in any of the categories in which, for example, an area recognizable as having been deforested had
been missed by BULC-U and incorrectly labeled as Shrubland/Grassland or Forest.

The total percentage of the Deforested Land class increased substantially during the study period
across the study area, for an overall increase of 3400 km2 (13% to 32% in the unbiased estimator of
Stehman 2014) and came principally from the Forest class. The Forest class experienced a nearly
equivalent decline (55.0% to 38%). The unbiased estimate of the Shrubland/Grassland category was
effectively steady throughout the study: from 32.1% to 30.2% of the area.
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Figure 6. BULC-U classification between 1987–1999 and LULC proportions estimated for each year.
The 1986 and 2000 proportions are unbiased estimates following Stehman 2014; the intervening years
are estimated directly from BULC-U classifications for that year.

3.2. Time Series Accuracy

Following the protocol of Stehman [27] for unbiased estimation of accuracy and area, the time
series starting point (1986) and ending point (2000) had an overall accuracy of 89% and 80%, respectively
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(Figure 7). This marked a substantial improvement over the GlobCover accuracy of below 70%, even
in the same simple categories (Figure 2). Some of this improvement is likely due to an improved ability
to resolve LULC types at the finer 30 m resolution, given the inherent challenge of the relatively coarse
300 m dataset to represent fine-scale patterns. More importantly, the BULC-U process labeled about
100 times more points (as the spatial resolution was increased tenfold) more accurately in an earlier,
lesser-mapped time period.

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 18 

 

an improved ability to resolve LULC types at the finer 30 m resolution, given the inherent challenge 

of the relatively coarse 300 m dataset to represent fine-scale patterns. More importantly, the BULC-U 

process labeled about 100 times more points (as the spatial resolution was increased tenfold) more 

accurately in an earlier, lesser-mapped time period. 

Given the apparent high visual agreement between the BULC-U classifications and evidence 

from Landsat, it was surprising to see several low per-class user’s and producer’s accuracy values 

indicated for the 1986 and 2000 classifications (Figure 7). For the Forest class, there were few omission 

errors in either date, and commission errors in the class were mostly when true Shrubland/Grassland 

was misclassified as Forest. Shrubland/Grassland per-class accuracies were more variable, with true 

Shrubland/Grassland much more likely to be misclassified as Forest by BULC-U than as the 

Deforested Land class. For pixels mislabeled as Shrubland/Grassland on BULC-U maps, they were 

much more likely to be true Deforested Land than Forest on both dates. The low producer’s 

accuracies of Deforested Land were surprising and, at first, concerning that the model failed to 

capture large amounts of true forest loss in the region. On both dates, true deforestation was very 

rarely misclassified as Forest; instead, where a Deforested Land pixel was mislabeled in BULC-U, it 

was nearly certain to have been mislabeled as Shrubland/Grassland. On re-inspecting the Landsat 

imagery from 1986 and 2000, it was difficult to find locations that we would indicate on Landsat 

imagery as deforested land but that were classified as Shrubland/Grassland or Forest. After isolating 

the misclassified true-deforestation points for close inspection, two factors mitigate the Deforested 

Land accuracy values that were lower than expected. First, the reference protocol for labelling 

Deforested Land was relatively vague and did not encourage the evaluator to look at multiple dates 

to detect deforestation. There may be, at least, some true Deforested Land pixels that were mislabeled 

by the evaluator as Shrubland/Grassland. Second, around half of the misclassifications in the 1986 

map were, unluckily, at the edge of land clearly being actively managed, open land whose use was 

difficult to discern. The evaluator was not permitted to skip edge points in lieu of finding another 

point. As a result, though the producer’s accuracy values would suggest that a large amount of 

deforestation was missed on both dates, we were unconvinced; instead, it appeared to us that the 

accuracy values imperfectly summarized that category. Coupled with the relatively high estimated 

error around the values for the Deforested Land and Shrubland/Grassland classes, this may be 

symptomatic of the known challenges of accurately estimating uncertainties in relatively small 

classes [29]. 

 

Figure 7. Accuracy assessment (unbiased) of BULC-U 1986 and BULC-U 2000 within the study area. 

Protocol following Stehman (2014). 

3.3. Fine-Scale LULC Time Series 

Although the proportion of Deforested Land increased roughly linearly through time across the 

entire study area (Figure 6), a finer-scale tracking of land-cover change shows that this linear increase 

was composed of differing rates of conversion to Deforested Land in time and space. The area that 

later formed the town of Querência (Figures 5 and 6, near the edge of sectors B2 and C2) expanded 

considerably through the study period, and was captured well by BULC-U with respect to 

contemporaneous Landsat imagery (Figure 8) throughout the time series. 

0

0.2

0.4

0.6

0.8

1

Producer's accuracy
Deforestation

Producer's accuracy
Forest

Producer's accuracy
Shrubland/Grassland

User's accuracy
Deforestation

User's accuracy
Forest

User's accuracy
Shrubland/Grassland

Overall Area Deforestation Area Forest Area
Shrubland/Grassland

BULC 1986 BULC 2000

Figure 7. Accuracy assessment (unbiased) of BULC-U 1986 and BULC-U 2000 within the study area.
Protocol following Stehman (2014).

Given the apparent high visual agreement between the BULC-U classifications and evidence
from Landsat, it was surprising to see several low per-class user’s and producer’s accuracy values
indicated for the 1986 and 2000 classifications (Figure 7). For the Forest class, there were few omission
errors in either date, and commission errors in the class were mostly when true Shrubland/Grassland
was misclassified as Forest. Shrubland/Grassland per-class accuracies were more variable, with true
Shrubland/Grassland much more likely to be misclassified as Forest by BULC-U than as the Deforested
Land class. For pixels mislabeled as Shrubland/Grassland on BULC-U maps, they were much more
likely to be true Deforested Land than Forest on both dates. The low producer’s accuracies of Deforested
Land were surprising and, at first, concerning that the model failed to capture large amounts of true
forest loss in the region. On both dates, true deforestation was very rarely misclassified as Forest;
instead, where a Deforested Land pixel was mislabeled in BULC-U, it was nearly certain to have been
mislabeled as Shrubland/Grassland. On re-inspecting the Landsat imagery from 1986 and 2000, it
was difficult to find locations that we would indicate on Landsat imagery as deforested land but that
were classified as Shrubland/Grassland or Forest. After isolating the misclassified true-deforestation
points for close inspection, two factors mitigate the Deforested Land accuracy values that were lower
than expected. First, the reference protocol for labelling Deforested Land was relatively vague and
did not encourage the evaluator to look at multiple dates to detect deforestation. There may be, at
least, some true Deforested Land pixels that were mislabeled by the evaluator as Shrubland/Grassland.
Second, around half of the misclassifications in the 1986 map were, unluckily, at the edge of land
clearly being actively managed, open land whose use was difficult to discern. The evaluator was not
permitted to skip edge points in lieu of finding another point. As a result, though the producer’s
accuracy values would suggest that a large amount of deforestation was missed on both dates, we
were unconvinced; instead, it appeared to us that the accuracy values imperfectly summarized that
category. Coupled with the relatively high estimated error around the values for the Deforested Land
and Shrubland/Grassland classes, this may be symptomatic of the known challenges of accurately
estimating uncertainties in relatively small classes [29].

3.3. Fine-Scale LULC Time Series

Although the proportion of Deforested Land increased roughly linearly through time across
the entire study area (Figure 6), a finer-scale tracking of land-cover change shows that this linear
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increase was composed of differing rates of conversion to Deforested Land in time and space. The
area that later formed the town of Querência (Figures 5 and 6, near the edge of sectors B2 and C2)
expanded considerably through the study period, and was captured well by BULC-U with respect to
contemporaneous Landsat imagery (Figure 8) throughout the time series.
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The area that became Querência began 1986 almost entirely covered by Forest, and the amount of
Deforested Land doubled from 5.2% of the surrounding area (half the regional average at that time)



Remote Sens. 2020, 12, 688 12 of 18

to 10.5% between 1986 and 1988 (Figure 9). Agricultural expansion continued, but slowed until 1995
(Figure 9), after which it accelerated substantially between 1996 and 1998 (Figure 10), ending the period
having 32.6% Deforested Land, a value higher than the regional average and more than six times the
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Figure 10. Land cover in Querência during 1996–2000, encompassing the second period of rapid
deforestation expansion at the expense of forest.

The growth of Deforested Land in the town of Querência occurred around a center point, especially
during the early boom (Figure 9). The majority of the growth was in smaller fields which were created
sporadically around the center, notably including a large field deforested in 1988. Large Forest patches
still occupied a majority of the area in 1990 but the continuous Forest was starting to become isolated
in patches due to ongoing Deforested Land expansion. By 1996, large patches of Forest had become
even more isolated (Figure 10) and smaller patches had become isolated and fragmented. By 1998
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(Figure 10), many remaining small forest patches had disappeared. The pattern continued to 2000, as
Deforested Land further encroached on Forest.

4. Discussion

The BULC-U algorithm fused Landsat data with the GlobCover 2009 land cover classification, a
moderately accurate (~50%) single year land cover classification, to create a high-accuracy time series
classification for a two-decade period. Using automatically created unsupervised classifications of
imagery from the Landsat 5 satellite, the BULC-U algorithm tracked changes and updated the running
classification as new satellite images were inputted, creating a time series of classifications that retained
good accuracy at the year 2000 end date.

4.1. Deforestation Expansion

The GlobCover 2009 product has provided impressive, much-needed information on land use at a
snapshot in time, but what is missing from such static LULC maps is a fine-scale record of the history
of change. Although Landsat data has been available for many years, constructing high resolution
time-series with legends tailored to a particular use for anything but small areas has been too difficult
because of the expertise required. This time series in Mato Grosso revealed a steady increase in the
conversion of natural landscapes between 1986 and 2000, with roughly 13% of the study area in
Deforested Land category in 1986 and nearly 32% in 2000. Almost all of that increase came at the
expense of the Forest category. Since the mid-1970s, Brazil’s Amazon-Cerrado agricultural frontier has
been among the planet’s largest and most important zones of deforestation, agricultural expansion, and
agricultural intensification. Through policy, applied research, and infrastructure development, Brazil
has transformed itself from a food importer to one of the world’s agricultural powerhouses [18,30].
Amidst this growth in agricultural output, more than 750,000 km2 of land was deforested in the
Brazilian Amazon alone [31].

Class proportions in the BULC-U changed in a coherent manner throughout the time series
and did not flip unstably or unpredictably between states during the study period (Figure 6). The
realistic trajectories of the classes and tracking with Landsat imagery suggest that the time series of
BULC-U classifications was largely accurate in its progression of land cover change. The endpoints
of the time series (1986 and 2000) were validated and have high fidelity with the spatial patterns
apparent on contemporaneous Landsat images (Figures 4 and 5). Together, this suggests that, while
it was impractical to individually validate each of the 58 classifications independently for this study,
the intermediate steps plausibly have similar accuracy compared to each of the end dates. This is
due, in part, to the mechanics of BULC-U: in tracking a vector of class probabilities in each pixel,
the classifications are buffered by design against inconsistencies in a given Event classification, with
transient errors or unusual images less likely to cause dramatic shifts in the BULC-U classification.

Although end-of-year classifications are shown here for simplicity, BULC-U produces complete
classifications for each of the 58 irregularly spaced time steps, updating the estimates with the
introduction of each new piece of evidence from Landsat. Because the classifications were at a
sub-annual time step, the dynamics of deforestation and change occurring in land cover can be
quantified at an even finer temporal granularity (about semi-annual) than that shown here. The
BULC-U algorithm was able to track deforestation events in the study area soon after they occurred,
with forests cleared for new fields and the expansion of existing fields (e.g., Figure 9). This type of time
series information can be valuable, providing, for example, knowledge of when a municipality or state
crossed a given threshold of deforestation, which may have implications for the local climate [32] or
for regional compliance with Brazilian Forest Code legislation. Furthermore, knowing the time since
deforestation occurred in a location or region can help in understanding the subtler ecological changes
that may be occurring, such as longer-term CO2 emissions from soils in pastures and croplands [33,34]
or biodiversity in a fragmented landscape [35].
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4.2. Finer Scale Land Cover Changes

The BULC-U time series reveals locations where, at finer spatial scales, LULC change occurred
at varying rates through the study period, even though the full study area’s rate of conversion to
agriculture was roughly linear through time (Figures 6 and 9). In the town of Querência, the history of
agricultural expansion contributed to—but can be seen here to be distinct from—the regional expansion
pattern. Conversion rates were sporadic, probably in response to large and local scale social and
economic drivers, with rapid conversion occurring between 1987 and 1988 and between 1996 and 1998,
and slower conversion rates between 1991 and 1995. Knowing how local and regional deforestation
and conversion rates changed may help researchers to better understand the social and economic
drivers of deforestation—e.g., is the price of commodities or legislation in a particular year or location
reflected in subsequent deforestation rates with a time lag [30,36,37]? The high spatial and temporal
resolution of the BULC-U time series make such analyses more feasible.

4.3. Forest Fragmentation

Forest fragmentation decreases biodiversity, disrupts ecosystem function, and increases forest
degradation and carbon emissions [38–40]. The BULC-U time series shows the short-term, fine-scale
patterns of deforestation and fragmentation. In areas like Querência, forest remained the dominant
land cover by the end of the study in 2000, but the forest had become increasingly fragmented,
especially during the latter half of the period. Larger patches were more fragmented and smaller
patches in the area disappeared with the continuing expansion of agriculture (Figure 10). This ability
to identify and date patterns of forest fragmentation and agricultural expansion can be a valuable
tool for conservation management, biodiversity research, land use management, and policy decisions.
In possible future work, techniques such as network theory and circuit theory could be applied to the
time series classification created by BULC-U to quantify decreases in connectivity and fragmentation
at each time step, thereby creating greater conservation value.

4.4. Earth Engine/Generality

This study focused on the categories of Deforested Land, Forest, and Shrubland/Grassland through
time, but the BULC-U algorithm’s application to create time series is not limited to these specific
LULC classes. Rather, users can create time series of any phenomena that can be reliably mapped
from imagery or, more generally, mapped by any method with periodic updates. This means, for
example, that if the changes in a specific grassland were of interest and reliably (though not always
perfectly) detectable, a user of this approach could trace change and stability of that class, along with
other classes of interest, through time. This generality opens possibilities for users to create LULC
classifications targeted to their particular needs and could be relevant for those interested in changes
beyond the more familiar forest/non-forest distinctions.

Earth Engine facilitated this research in two specific ways. First, as the pre-eminent cloud
computing platform for satellite imagery, it permitted the analyses to be run with ease from any
computer. Recent advances in Earth Engine’s web presence mean that BULC-U could potentially be
offered for exploration to a wider audience of non-expert stakeholders. Second, Earth Engine’s speed
permitted very rapid prototyping, in which one could quickly view the outcomes of different modeling
scenarios (for example, to explore the outcome of adding cloudier images to the mix to increase the
temporal resolution at the potential cost of decreased accuracy). Additionally, the mid-2018 addition
of segmentation algorithms, like those used here, mean that this entire workflow could conceivably be
done at the same time in a single browsing session [41,42].

5. Conclusions

The BULC-U technique applied here represents a novel way to accurately create sub-annual
time-series land cover classifications and quantify land cover change in past time periods. Because
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the algorithm operates on unsupervised classifications, it permits users to map land cover change
using only a base map and the statistical characteristics of unclassified satellite imagery, with little
manual user involvement to classify individual events. The high-resolution time series provides more
information than would otherwise be possible in coarser products with discrete large time jumps. Our
application of the technique to eastern Mato Grosso illustrates the potential value of time series in land
cover mapping. Eastern Mato Grosso, on average, had a large and steady decline in forest cover from
1986. But the higher spatial resolution time series produced by BULC-U clearly showed the regional
and temporal nuances—rapid change took place at fine scales in individual years, springing up around
growing towns, with multi-year slowdowns in conversion before another rapid growth phase. This
fine-scale depiction of change, when combined with socio-economic data, can be valuable in the
future for understanding how macro-scale drivers (e.g., fluctuating commodities prices, environmental
legislation, or market forces) influence local land use decisions.
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