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Abstract: Quantitative approaches to measuring and assessing terrestrial ecosystem resilience, which
expresses the ability of an ecosystem to recover from disturbances without shifting to an alternative
state or losing function and services, is critical and essential to forecasting how terrestrial ecosystems
will respond to global change. However, global and continuous terrestrial resilience measurement
is fraught with difficulty, and the corresponding attribution of resilience dynamics is lacking in
the literature. In this study, we assessed global terrestrial ecosystem resilience based on the long
time-series GLASS LAI product and GIMMS AVHRR LAI 3g product, and validated the results
using drought and fire events as the main disturbance indicators. We also analyzed the spatial and
temporal variations of global terrestrial ecosystem resilience and attributed their dynamics to climate
change and environmental factors. The results showed that arid and semiarid areas exhibited low
resilience. We found that evergreen broadleaf forest exhibited the highest resilience (mean resilience
value (from GLASS LAI): 0.6). On a global scale, the increase of mean annual precipitation had a
positive impact on terrestrial resilience enhancement, while we found no consistent relationships
between mean annual temperature and terrestrial resilience. For terrestrial resilience dynamics,
we observed three dramatic raises of disturbance frequency in 1989, 1995, and 2001, respectively,
along with three significant drops in resilience correspondingly. Our study mapped continuous
spatiotemporal variation and captured interannual variations in terrestrial ecosystem resilience. This
study demonstrates that remote sensing data are effective for monitoring terrestrial resilience for
global ecosystem assessment.

Keywords: terrestrial disturbance; leaf area index; remote sensing; spatiotemporal variation;
ecosystem resilience

1. Introduction

Terrestrial ecosystems face increasing pressure from both climate change and anthropogenic
activities [1-3]. As many environmental components are changing, it is less likely that an ecosystem
will remain unaffected. Thus, explaining the trends and processes of ecosystem changes within the
context of large-scale alterations of environmental conditions constitutes a research priority of global
relevance [4,5]. The concept of resilience has been proposed to analyze the response of ecosystems to
short-term climatic disturbances [6]. Resilience is quantified by measuring the rate of the ecosystem
required to return the ecosystem to the state that existed before the stress [7], and it generally focuses
on the disturbance from which the ecosystem could recover to its original state without leading
to ecosystem shift to an alternative state [6,8]. Many studies have quantified terrestrial ecosystem
resilience using in-situ data [9-13]. Field-measurement-based studies can have high accuracy and
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reliability. However, these methods have been applied mainly at the regional scale, and global resilience
measurement is almost absent from the literature.

Remote sensing can provide information over broad spatial extents that is difficult or impossible
to obtain from field studies [14]. Moreover, continuous remote sensing data, obtained over several
decades, enable the terrestrial ecosystem resilience measurement of long time-series [15]. Because
of the characteristics of remote sensing and the key role of vegetation in ecosystems, vegetation
has generally been the main object of satellite-based terrestrial resilience measurements [16]. Until
recently, satellite-based resilience measurements have been focused mainly on the recovery capability of
ecosystems to a specific type of disturbance. These methods generally detect the disturbance first then
monitor the response of vegetation. Ecosystem recovery capability from fire has been widely studied
in many types of terrestrial ecosystems [17-19], and measuring ecosystem recovery capability from
droughtis becoming a hot area of research [20]. In addition, various types of ecosystem resilience to other
disturbances have also been studied extensively [9,21,22]. Compared with field-measurement-based
research, remote sensing data increase the spatial coverage of resilience measurement. However,
remote-sensing-based studies that measure terrestrial resilience from one specific type of disturbance
are imperfect because ecosystems typically are being disturbed continuously, and because multiple
disturbances may have an interactive effect on the ecosystem. Thus, detecting a complete disturbance
and capturing the corresponding ecosystem anomaly are laborious tasks to achieve, especially at a
global scale.

To determine terrestrial ecosystem recovery capability to multiple disturbances, several studies
have directly detected anomalies of vegetation from remote sensing data to measure terrestrial
ecosystem resilience. Global engineering resilience has been mapped using the satellite Normalized
Difference Vegetation Index (NDVI) and reanalysis data [23]. Harris et al. used the length of time for
vegetation to recover from disturbances as an indicator of ecosystem resilience and investigated spatial
and temporal patterns of resilience of vegetation across southern Africa (1982-2006) [24]. Moreover,
recent studies have developed several satellite-based indexes, which have been demonstrated to be
potential key components of resilience. Seddon et al. [25] developed the Vegetation Sensitivity Index
(VSI), which identified the global terrestrial resilience of ecosystems during the period of 2000-2013.
Verbesselt et al. [26] measured the resilience of tropical forests using the temporal autocorrelation of
vegetation based on the critical slowing down theory. These studies enabled measurement of global
resilience, but the results are multiyear average values that cannot characterize the resilience variation
or underlying causes.

In this study, we measured terrestrial ecosystem resilience by monitoring vegetation anomalies
caused by disturbances. Because of the characteristics of the remote sensing data, this study focused
only on disturbances that could lead to changes in vegetation. Resilience is related to the maximum
stress from which an ecosystem can recover and is negatively correlated with the time it takes for
an ecosystem to recover from disturbance [27,28]. Thus, we characterized the maximum stress from
which an ecosystem can recover (Ms) and the time required for the ecosystem to recover from this
maximum stress (Rt) as a ratio to measure terrestrial resilience [29]. Because Leaf Area Index (LAI) was
directly estimated from remote sensing data using physical models, and LAI exhibited high accuracy
for vegetation monitoring, we selected two LAI datasets (GLASS AVHRR LAI product and GIMMS
AVHRR LAI 3g product) and two disaster factors (drought and fire) in this study to monitor vegetation
anomalies, measure terrestrial ecosystem resilience, and analyze spatiotemporal variation. Overall,
this study had three specific objectives: (1) to map global terrestrial ecosystem resilience using an
advanced remote sensing product, (2) to characterize the spatiotemporal variations of global terrestrial
ecosystem resilience, and (3) to analyze impact of potential drivers on terrestrial resilience distribution
and variation.
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2. Materials and Methods

2.1. Remote Sensing Data

The Global LAnd Surface Satellite (GLASS) LAI dataset with Advanced Very High-Resolution
Radiometer (AVHRR) reflectance data, acquired from the Beijing Normal University, was used for this
study [30-32] (Table 1). This long time-series data spanned from 1982 to 2016 at a spatial resolution
of 0.05° over an eight-day interval. In the GLASS LAI dataset, the physical methods are based
on the inversion of canopy radiative transfer models through general regression neural networks
(GRNNs). The GLASS LAI are both spatially and temporally continuous compared with other global
remote-sensing LAI products. Moreover, the GLASS LAI dataset provides the longest time series,
approximately four decades, and has been widely used for global vegetation monitoring and ecosystem
assessment [33-35].

Table 1. Overview of data properties.

. Spatial Temporal
Index Source Base Period Resolution Resolution

Leaf Area Index GLASS AVHRR LAI 1982-2016 0.05° 8 days
GIMMS AVHRR LAI 3g 1982-2011 1/12° 15 days

Fire ATSR World Fire Atlas 2000-2009 0.05° monthly

Drought sc-PDSI 2000-2009 0.5° monthly
Land Cover MODIS MCD12Q1 2001-2012 1/12° yearly

Precipitation CRU TS4.01 Precipitation 1982-2011 0.5° monthly

Temperature CRU T54.01 Mean Temperature 1982-2011 0.5° monthly
Soil moisture USDA-NRCS 1997 1/30° yearly

The Global Inventory Monitoring and Modeling System (GIMMS 3g) LAI dataset with an
Advanced Very High-Resolution Radiometer (AVHRR), acquired from the National Oceanographic
and Atmospheric Administration (NOAA), was also used for the analysis. The GIMMS AVHRR
LAI 3g dataset spanned from 1982 to 2011 at a spatial resolution of 0.083° and a 15-day interval [36].
The GIMMS AVHRR LAI 3g selected the latest version, termed the third generation NDVI dataset
(GIMMS NDVI3g) as input data, which specifically aims to improve data quality in the high latitudes
where the growing season is shorter than two months. It has also improved calibration that is tied to
the Sea-Viewing Wide-Field-of-View Sensor, as opposed to earlier versions of GIMMS NDVI datasets
that were based on inter-calibration with the Systeme Probatoire d’Observation de la Terre (SPOT)
sensor. Moreover, the maximum value composite (MVC) method was adopted to remove atmosphere
noise. The GIMMS AVHRR LAI 3g dataset is one of the high-quality global LAI datasets [4,32].

Fire data were acquired from the Along Track Scanning Radiometer (ATSR) World Fire Atlas
(WFA). The ATSR-WFA provides a global fire monitoring service by using data acquired by the ATSR-2
and AATSR sensors from European Space Agency satellites. ATSR-WFA spanned from 1995 to 2012
at a spatial resolution of 0.05° over a one month interval [37]. This dataset consists of two versions
which were developed based on two different algorithms [38]. The version of algorithm 1 was used for
disturbance detection in this study.

Land-cover data were obtained from Global Mosaics of the standard Moderate-resolution Imaging
Spectroradiometer (MODIS) land cover type data product (MCD12Q1) for statistical analysis in this
study [39]. The dataset boundaries are -180.0° <= longitude <= 180.0°; -64.0° <= latitude <= 84.0°.
The MCD12Q1 dataset spans 2001 to 2012 at an annual time step. The land-cover dataset has two
version of spatial resolution, 5" * 5" and 0.5° * 0.5°, and the version of 0.5° spatial resolution was used
for analysis in this study. This dataset consists of 17 general land-cover types, which includes 11
natural vegetation classes, three developed and mosaicked land classes and three nonvegetated land
classes [40,41].



Remote Sens. 2020, 12, 595 4 0of 20

2.2. Climate and Soil Data

Droughts were quantified using monthly time-series data from the Self-Calibrating Palmer
Drought Severity Index (SC-PDSI) based on the Climatic Research Unit (CRU) TS3.10.01 datasets
from 2000 to 2009 at a 0.5° resolution [42]. The SC-PDSI replaced the empirically derived climatic
characteristic (K) and duration factors with values calculated automatically based on the historic
climatic data of a specific location [43]. The computation of the SC-PDSI involves the classification of
relative soil moisture conditions within 11 categories: extremely wet, severely wet, moderately wet,
slightly wet, incipient wet spell, near normal, incipient dry spell, slightly dry, moderately dry, severely
dry, and extremely dry [44].

Mean annual precipitation (MAP) and mean annual temperature (MAT) used in this study were
extracted from the monthly precipitation and monthly temperature datasets in the Climate Research
Unit (CRU) [45] version TS4.01, which spanned the 20th century and, therefore, covered our study
period (1982-2011) with a spatial resolution of 0.5°. MAP was calculated by summing monthly
precipitation to generate annual precipitation then averaging the annual precipitation. MAT was
calculated by averaging the monthly temperature to generate the annual temperature then averaging
the annual temperature. The gridded datasets were obtained from more than 4000 meteorological
stations and interpolated based on spatial autocorrelation functions [46,47]. These climate datasets
were thoroughly evaluated and applied in global ecology and climate studies [48-51].

Soil moisture data were obtained from the United States Department of Agriculture-Natural
Resources Conservation Service (USDA-NRCS) for statistical analysis in this study [52]. The global soil
moisture regime data are based on an interpolation of over 20,000 climatic stations that were input
into a soil water balance model to estimate soil moisture regimes. The soil moisture regime map data
are rasterized on a 2-min grid cell. This soil moisture data provide one of the few high-quality soil
moisture datasets on a global scale.

2.3. Methods

2.3.1. Data Preprocessing

To match all data we used in this study, we interpolated all datasets to a spatial resolution of 0.5°.
For fire data, we calculated the proportion of the fire area in each area of 0.5° * 0.5°. For the other data,
we used bilinear interpolation for resampling. Averaging on a pixel level to coarser spatial resolutions
is helpful for reducing data noise because the noise would be offset in the process of up-scaling the
resample [53].

As our study concentrated on only the disturbance that did not lead to ecosystem regime changes,
we derived the LAI grids, where the land-cover type was unchanged, from the GLASS LAI and GIMMS
AVHRR LAI 3g datasets for further analysis. An unchanged pixel is defined as a pixel always being
the same land-cover type during the 2001-2012 period. To diminish the impacts of disturbances caused
by human activities, the grids that had urban and built-up land-cover type were excluded in further
statistical analysis.

To increase the signal-to-noise ratio without greatly distorting the signal, a Savitzky-Golay filter
was used pixel by pixel for smoothing long time-series data before calculating resilience index [54-58].
In this study, we set the half-width of the smoothing window size to 3 to get a smoother result and a
higher computational efficiency.

2.3.2. A Satellite-Based Terrestrial Resilience Index

In this study, LAI was selected as the proxy of vegetation to measure the terrestrial resilience
because of its high accuracy on vegetation monitoring. Based on the concept of resilience which has
been put forward [54,55], we characterized terrestrial resilience as a ratio of the magnitude of maximum
stress from which the LAI can recover (Ms) to the length of time (Rt) required for the LAI to recover to
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its normal range. This index only focuses on the disturbances that lead to vegetation that is worse than
the normal level, and that do not cause ecosystem regime shifts [19,54].

We defined the LAI anomalies caused by disturbances that occurred when the LAI became lower
than its normal range. We used the mean and the standard deviation of LAI to scope the normal
variation range. In the period where the LAI was below the normal range, we detected the lowest
LAI and marked this time point as the starting point for recovery. At this time point, the difference
value between the lowest LAI and the normal range was defined as Ms (Figure 1), which denotes the
maximum stress from which an ecosystem can endure and recover. The time point where the LAI came
back to the normal range was defined as the end point of recovery, and the time span between start
point and end point was defined as Rt. These two components were combined into an overall definition
of terrestrial resilience. The ratio of Ms to Rt was defined as the terrestrial ecosystem resilience of the
start time point. The time-series LAI was continuously detected to find the next anomaly from the
time point behind the last end point.

e Mean LAI

Rt —_— LAl

Normal range of LAl

Leaf Area Index (LAI)

Ms

Time

Figure 1. Simplified process of ecosystem anomaly. The two components of terrestrial resilience can be
extracted: Rt is the recovery time and Ms is the maximum stress.

The time and duration of anomalies are different, indicating that in some years several anomalies
occur while in some years no anomalies occur. Some rules were set up for annual terrestrial resilience
calculation: The resilience values for which the recovery time crossed more than one year belonged to
the resilience of the start point (Figure 2). The resilience values for years where no anomaly was found,
or where the last recovery process covered the entire year, were set as equal to the resilience value of
the last year. The annual resilience values of years where more than one anomaly was found were
calculated by averaging the values of resilience detected in the year.

ResilienceA ResilienceB ResilienceC ResilienceE ResilienceD

Il l i l 1 I I I Tlme
Axis

Year1 Year2 Year3 Year4 Year5 Year6 Year7

Resilience of Year1 = ResilienceA
Resilience of Year2 = ResilienceB

Resilience of Year3 = i of Year2 =Resili B
Resilience of Year4 = ResilienceC
Resilience of Year5 = Resili of Year4 =Resili

Resilience of Year6 = (ResilienceD + ResilienceE)
Resilience of Year7 = Resilience of Year6 = (ResilienceD + ResilienceE)

Figure 2. The rule of annual terrestrial resilience calculation. The red dot is the start point of recovery
and the red line is the recovery time. The red “Resilience” is the resilience value calculated from
LAI anomaly.

The fluctuation amplitude of vegetation in different land-cover types were various when
disturbances occurred. Meanwhile, we found that large numbers of anomalies caused by disturbances
were neglected when we used standard deviations of LAI in different land-cover types. To include
more LAI anomalies caused by disturbances and exclude the LAI anomalies caused by data noise, a
parameter (3) was integrated into the equation to adjust the normal range for different land-cover types:

Ms = MEAN; — LAlj(oqest) — f X STD;

1
Resilience = Ms /Rt ™
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where Ms is the maximum amplitude of LAI when it is below the normal range, denoting the maximum
stress from which an ecosystem can endure and recover; LAI;j(joyest) i the LATin month j and year i,
which is the lowest LAl in the period of anomaly; MEAN; is the month j mean LAI in recent decades
(1982-2016 for GLASS LAI, 1982-2011 for GIMMS AVHRR LAI 3g); g is the parameter used to adjust
the normal range; STD; is the month j LAI standard deviation in recent decades (1982-2016 for GLASS
LAI, 1982-2011 for GIMMS AVHRR LAI 3g); and Rt is the length of time required for the LAI value to
recover to its normal range from the maximum stress.

The temporal resolution of two LAI datasets is different, causing the Rt to be a multiple of 8
(for GLASS LAI) and 15 (for GIMMS AVHRR LAI), respectively. In addition, the LAI values in the
same area among various LAI datasets are not exactly the same. Thus, a min—-max normalization was
applied to normalize the two annual terrestrial resiliences for comparison and validation, respectively.

2.3.3. Regression Analysis

Linear regression was used to simulate the terrestrial resilience trend for each pixel during the
study period, and the least squares method was used to determine the temporal trends:

nx Y.iq i X Resilience; — Y.; ;i Y.;; Resilience;
Ostope = @
slope . n 2
nX iy _( 1’:11)

where O,p, is the slope of the terrestrial resilience trend line, n is the number of simulated years, i is
the ordinal number of the year, and Resilience; is the terrestrial resilience value of i years. Oy, reflects
the trend of the terrestrial resilience during the study period.

Generalized additive regression models (GAM) is a generalized linear model in which the linear
predictor depends linearly on unknown smooth functions of some predictor variables, and interest
focuses on inference about these smooth functions [56,57]. GAM were originally developed by Trevor
Hastie and Robert Tibshirani to blend properties of generalized linear models with additive models [58].
The mathematical description of the GAM can be given as below:

fx) =a+ filv) + falxx) +..., filxi) + & ®3)

where «a is the usual model intercept, the functions f; are different nonlinear functions on variable x;
and are modeled by splines, x; through x; represent the i values for the predictor variables, and ¢; is the
random variable. In this study, f(x) is the terrestrial ecosystem resilience. The relationship between
terrestrial ecosystem resilience and mean annual precipitation (MAP) and mean annual temperature
(MAT) was assessed by GAM.

3. Results

3.1. Model Determination and Validation

Terrestrial resilience generated from remote sensing data generally consists of real terrestrial
resilience and sensor and data noise [59]. In this study, we applied three methods to reduce the influence
of noise on terrestrial resilience measurement, namely, resampling to coarser spatial resolutions, a
Savitzky-Golay filter, and 3 optimization. In order to find the optimal , drought and fire were selected
as the two main disturbances [13]. We selected 52 natural disturbances from 24 points globally in the
period of 1982-2011 (Table 2), since the variation ranges of LAI are various within different land-cover
types [30]. All points were located in national parks in areas without artificial disturbance, and the
24 points covered the all land-cover types (Figure 3). We observed whether the LAI anomalies and
fire or drought were matched by varying the value of 3. The optimal value of 3 would lead to a high
proportion of anomaly with disturbance and a low proportion of anomaly without disturbance. Finally,
we determined the 3 for each land-cover type (Table 3).
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Table 2. The reference points.

Name Coordinate Disturbance Time Disturbance Type
Yellowstone national park 44°45’'N; 110°15'W 1988, 1994, 2008 Drought
ITha do bananal 9°45’S; 49°45'W 1994, 1995 (fire) Drought, Fire
Abumonbazi reserve 3°15’N; 21°45'E 1986, 1994 Drought
Three river headwater 33°45’N; 94°15'E 1995, 2007 Drought
Khan khentii national park 46°45’'N; 119°45’E 1992, 1993, 2007 Drought
Southern tanami reserve 21°15’S; 129°45'E 1988, 2005, 1995 Drought
Indigenous protected area 0°45’S; 65°15'W 1982, 1991, 2005 Drought
Kenozersky national park 61°45'N; 38°15'E 1992, 2008 Drought
Wabakimi provincial park 50°45’N; 89°45'W 1999, 2004, 2009 Drought
defensores del chaco national park 20°15’S; 60°15'W 1993, 2007, Drought
Turgaiskiy national park 48°45'N; 61°45'E 1994, 2001, 2006, 2008 Drought
Quetico provinvial park 48°15’N; 91°15'W 1988, 2007 Drought
Baishuijiang nature reserve 32°45'N; 104°45'E 1989, 2006 Drought
Gemsbok national park 24°45'S; 21°15'E 1985, 2007 Drought
Upenba national park 8°45’S; 26°45’'E 1994, 1999 Drought
Mavinga national park 16°15’S; 21°15'E 2005 Drought
Witjira national park 26°15’S; 135°45'E 1994 Drought
Lorentz national park 4°15'S; 137°45'E 2003 Drought
Angoran protected area 36°45’N; 47°30’E 1997, 1999, 2008 Drought
Lower rio grande valley 26°30’N; 98°45'W 2011 Drought
Floresta national park 2°45'N; 61°45'W 1997, 2003 Fire
Laguna del Tigre national 17°45'N; 90°45'W 1998, 2003, 2005 Fire
Okefenokee national wildlife refuge 30°15’N; 82°15’'W 2007 Fire
Machaquila national wildlife refuge 16°15’'N; 89°45'W 1998, 2000 Fire

-140° W -100°W -60°W -20°W

20°E 50°E 80°E 110°E

Figure 3. Locations of reference sites.

Table 3. Beta coefficient in resilience calculation.

150°E 180

Land-Cover Type

Beta Coefficient (for GLASS LAI)

Beta Coefficient (for GIMMS LAI 3g)

Barren or sparsely vegetated
Cropland and natural vegetation
Cropland
Permanent wetlands
Grassland
Savannas
Woody savannas
Open shrublands
Closed shrubland
Mixed forest
Deciduous broadleaf forest
Deciduous needleleaf forest
Evergreen broadleaf forest
Evergreen needleleaf forest

0.4
0.5
0.45
0.45
0.35
0.35
0.35
0.55
0.55
0.6
0.6
0.6
0.6
0.6

0.35
0.4
0.4

7 of 20

With the optimal beta (), global resilience was calculated. We took two approaches to validate
the result. Firstly, we compared the resilience calculated from GLASS LAI and GIMMS AVHRR LAI
3g (Figure 4). Secondly, the pattern of terrestrial resilience was compared with previous researches.

Ecosystem resilience was a relatively loose concept without physical meaning, and previous studies
were based on similar but different theoretical hypotheses; therefore, only the pattern of resilience was
compared to evaluate global terrestrial ecosystem resilience. Keersmaecker et al. quantified global
vegetation resilience using the 1981-2006 GIMMS NDVI dataset and analyzed the average situation of
resilience during this period [23]. Similar patterns between our ecosystem resilience and this vegetation
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resilience were observed (Figure 5). These two datasets showed relatively high resilience in central and
western Europe and the northern Great Lakes, and low resilience in western Australia. In addition,
Harris et al. used decay times of NDVI trends as a means to characterize the potential resilience of
key biomes in southern Africa, and these results showed a pattern similar to our result [24]. Overall,
the methods used in this study were reasonable for mapping global terrestrial ecosystem resilience.
In addition, our method of determining global terrestrial ecosystem resilience avoided the null value
areas that existed in the results of previous studies, and the method improved the temporal resolution
of terrestrial ecosystem resilience from a multiyear average to annum.

0.2 04 06 08 1.0
1 L 1

Resilience from AVHRR GIMMS LAl

0.0

T T T T T T
0.0 0.2 0.4 06 08 1.0

Resilience from GLASS LAl

Figure 4. Terrestrial ecosystem resilience (from GLASS LAI) vs terrestrial ecosystem resilience (from

GIMMS AVHRR LAI 3g).
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Figure 5. Distribution of terrestrial ecosystem resilience. (a) terrestrial resilience from GLASS
LAI (b) terrestrial resilience from GIMMS AVHRR LAI 3g, (c) global vegetation resilience from
Keersmaecker et al., and (d) Southern Africa ecosystem resilience from Harris et al.
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3.2. Spatial Distribution and Temporal Variation of Satellite-Based Terrestrial Resilience

The annual mean terrestrial resilience was divided into five categories globally: low resilience (values
of 0.0-0.2), relatively low resilience (0.2-0.4), medium resilience (0.4-0.6), relatively high resilience (0.6-0.8),
and high resilience (0.8-1). Half of the resulting pixels showed low and relatively low resilience, and these
were located in arid, semiarid, and temperate regions. Regions with medium resilience were found in
Europe and tropical regions, more specifically, in the Amazon, central Africa, southeastern Australia,
the Caribbean, and Southeast Asia. The pattern of relatively high resilience areas was similar to that
of medium resilience areas, but with some subtle differences. For example, the area of relatively high
resilience was only one-third as large as the area of medium resilience. Very few groups of terrestrial
pixels, except those located in the Amazon and Southeast Asia, showed high resilience according to the
multiyear average terrestrial resilience. Consequently, our model did not provide information regarding
the resilience of regions consisting mostly of desert or of extremely sparse vegetation.

To compare the terrestrial resilience in different ecosystems, the mean resilience values of different
land-cover types were determined (Figure 6). Most forest ecosystems (e.g., broadleaf forest) showed
relatively high resilience; however, deciduous needleleaf forest showed relatively low resilience.
The gap in resilience between deciduous needleleaf forest and deciduous broadleaf forest was huge; in
resilience from GIMMS AVHRR LAI 3g, the resilience of deciduous needleleaf forest was 58% lower
than that of deciduous broadleaf forest. The resilience of mixed forest (mean resilience value (from
GLASS LAI): 0.52) was slightly lower than that of deciduous broadleaf forest. Among the shrubland,
open shrubland had a slightly lower value of resilience than that of close shrubland. Woody savannas
and savannas showed large uncertainty on resilience value between the results from GLASS LAI and
GIMMS AVHRR LAI 3g. In resilience from GLASS LA, the resilience value of woody savannas was
almost the same as the resilience value of savannas. However, in resilience from GIMMS AVHRR LAI
3g, resilience of savannas was only half of the woody savannas’ resilience. Resilience of grassland and
cropland from GLASS LAI were lower than that from GIMMS AVHRR LAI 3g. The resilience value of
barren or sparsely vegetated was relatively low.
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Figure 6. Terrestrial resilience in different land-cover types. The bars represents the mean terrestrial
resilience in different land cover types.
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This study adopted a linear regression model to characterize the variation of global terrestrial
resilience. Figure 7 shows the results of the per-pixel linear trend analysis based on the results of
two terrestrial resilience datasets. The blue and red colors indicate decreasing and increasing trends,
respectively. Resilience decrease mainly appeared in the upper northern latitudes of Europe and, most
notably, in Russia, western Finland, Sweden, Romania, eastern France, western Germany, eastern
Poland, and Bulgaria. A trend of decline was also found in eastern North America, the Caribbean,
southeastern Latin America, and southeastern China—regions that had a rather strong rate of decline of
more than 2%/year (terrestrial ecosystem resilience from GLASS LAI). A trend of increase in resilience
was found in central India, southern Africa, southern Latin America, and western America—regions
that had a rate of increase of more than 2%j/year (terrestrial ecosystem resilience from GLASS LAI). A
relatively large discrepancy between resilience calculated from GLASS LAI and resilience calculated
from GIMMS AVHRR LAI 3g was observed in most of Mexico and northern Australia, where the
resilience trend calculated from GLASS LAI was higher than that calculated from GIMMS AVHRR LAI
3g. By comparison, the resilience trend calculated from GLASS LAI and resilience trend calculated from
GIMMS AVHRR LAI 3g achieved good consistency at the middle and high latitudes of the Northern
and Southern Hemispheres. This is probably because the time period and quality of LAI products
were different [32].
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Figure 7. Change rate of terrestrial ecosystem resilience. (a) Terrestrial resilience from GLASS LAI (b)
terrestrial resilience from GIMMS AVHRR LAI 3g. Non-significant pixels have been masked.

In order to compare the variation of terrestrial resilience in different ecosystems, the mean resilience
variation of different land-cover types was also calculated using the results from GLASS LAI (Figure 8).
Among these ecosystems, resilience in evergreen broadleaf forest, deciduous broadleaf forest, and
closed shrubland showed strong fluctuations. The fluctuation of resilience in evergreen broadleaf forest
and deciduous needleleaf forest started to weaken in the 21st century, while the fluctuation of resilience
in closed shrublands became strong after 2003. Resilience in woody savannas and savannas showed a
continuous relatively strong fluctuation in recent decades. Resilience in evergreen needleleaf forest,
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mixed forest, cropland, and cropland/natural vegetation mosaic showed similar variation patterns,
which decreased during the 20th century but started to increase in the 21st century. Resilience in
deciduous needleleaf forest, open shrublands, and barren or sparsely vegetated land have remained
steady in recent decades. Resilience in grassland and permanent wetlands has exhibited fluctuations,
but has not shown obvious changes or trends in recent decades.
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Figure 8. Annual variations of terrestrial resilience in different land-cover types.
3.3. Driving Factors of Satellite-Based Terrestrial Resilience

On a global scale, mean annual precipitation (MAP) had a significant influence on terrestrial
resilience. The latter manifests high sensitivity to precipitation for MAP values below 2000 mm.
Within that high sensitivity range, we found that terrestrial resilience on a global scale was negative
and decreased markedly as MAP dropped below around 500 mm (Figure 9). Above that value, the
resilience transitions to positive. The impact of mean annual precipitation on terrestrial resilience
remained steady and positive, with mean annual precipitation in the range of 2000 to 3000 mm. We
found a huge uncertainty of MAP impact on terrestrial resilience between resilience from GLASS LAI
and resilience from GIMMS AVHRR LAI 3g when MAP rose above 3000 mm.

The sensitivity of the terrestrial resilience to mean annual temperature (MAT) was not as strong
as to mean annual precipitation (MAP). We found contrasting results of mean annual temperature’s
impact on terrestrial resilience between resilience from GLASS LAI and resilience from GIMMS AVHRR
LAI 3g when mean annual temperature fell below around -5°C. As mean annual temperature rose,
the effect of mean annual temperature on terrestrial resilience started to become vanishingly small.
The negative effect of mean annual temperature was observed on terrestrial resilience when mean
annual temperature rose up over 25°C on a global scale.

We found that soil condition exhibits a potential influence on terrestrial resilience. In most udic
regimes, terrestrial resilience was high, while terrestrial resilience in most aridic regimes was low
(Figures 7 and 10). For permafrost and inter forest regimes, the value of terrestrial resilience had large
uncertainty and was not the main focus in this study, since effects of snow on remote sensing data
were relatively large.

In addition to the effects of precipitation and temperature, we also found heavy fluctuations of
terrestrial resilience were related to disturbance frequency. In recent decades, we observed three heavy
fluctuations of natural disturbance frequency in 1989, 1995, and 2001, respectively. In each year of



Remote Sens. 2020, 12, 595 12 of 20

dramatically increasing disturbance frequency, the terrestrial resilience always significantly went down
(Figure 11). This relationship from GLASS LAI was more obvious than that from GIMMS AVHRR LAI
3g. Moreover, the correlation between terrestrial resilience and disturbance frequency was undefined
when all the data of past three decades were taken into account.

Effect of MAP on Resmeznce (from GLASS LAl)
Effect of MAT on Resmeznce (from GLASS LAl)
Effect of MAP on Resilience (from AVHRR LAI)
Effect of MAT on Resilience (from AVHRR LAI)
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Figure 9. Resilience as a function of mean annual precipitation (MAP) and mean annual temperature
(MAT) on a global scale. The black solid lines represent the mean curve from an ensemble of six curves.
The dashed lines highlight the range of the individual ensemble members. The distributions of the
available MAP and MAT observations are indicated by the density of the vertical lines above the x-axis.
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Figure 11. Annual variations of global terrestrial resilience and disturbance. The annual terrestrial
ecosystem resilience was calculated by averaging the values of resilience detected each year.
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4. Discussion

4.1. Satellite-Based Terrestrial Resilience

Many different theories and potential methodologies of resilience have been developed since the
concept of ecosystem resilience was put forward [6,60-64]. Because ecosystem resilience is a broad
concept, previous researches has developed many proxy indicators that have been used to present
the recovery capability of ecosystem (e.g., resilience, resistance, return interval) [8,13,59,65-69]. Every
proxy indicator can reflect the recovery capability of an ecosystem based on different perspectives,
although the similar calculation methods of these indicators. In our study, we measured the terrestrial
resilience from the site at which the LAI began recovery, indicating that the resilience we measured did
not include a capability of resistance. This can explain how deciduous needle-leaf forest had a strong
capability to resist natural disasters but, in our study, had a low resilience value.

Despite many theories and methodologies for resilience measurement, long time-series terrestrial
ecosystem resilience monitoring has faced several obstacles [70,71]. One of the main obstacles is
choosing the appropriate data to represent the state of the ecosystem. The development of remote
sensing has provided long time-series data of earth’s surface [31,72]. Among advanced remote sensing
products, LAI exhibits very high precision and long time series [25,72-74]. Compared with Gross
Primary Productivity (GPP) and biomass, LAI is a measurable index in the field, and LAl is directly
estimated from remote sensing data using physical models, while GPP and biomass are usually
generated from LAI, NDVI or other vegetation indexes and based on statistical modeling [75-77]. For
this reason, LAI was selected to measure terrestrial resilience in this study.

4.2. Distribution and Variation of Satellite-Based Terrestrial Resilience

In this study, we measured terrestrial resilience in a broad sense to monitor the ability of an
ecosystem to return to equilibrium or a steady state following disturbances [29,78]. Previous studies
have suggested that terrestrial resilience can be affected by several component, such as climate,
hydrology, radiation, and soil condition [9,19,79]. Climate, in particular, has a significant effect on
terrestrial resilience [80,81]. Diaz-Delgado found that rainfall had a positive effect on ecosystem
resilience response to fire in Mediterranean forest communities [19]. In tropical areas, mean annual
precipitation has been found to have a positive effect on vegetation resilience [26,82]. Our study found
that mean annual precipitation has more significant impact on terrestrial resilience than mean annual
temperature globally in the most recent four decades. Moreover, huge uncertainty of MAP impact on
terrestrial resilience between resilience from GLASS LAI and resilience from GIMMS AVHRR LAI 3g
was observed when MAP rose above 3000 mm. This is probably due to the influence of clouds and haze
in areas with more than 3000 mm MAP, increasing the uncertainty of the LAI datasets [9,26]. Patterns
of relationships between terrestrial resilience and climate condition varied among different regions
(Figure 12). In deciduous needleleaf forest and savannas, mean annual precipitation did not show a
significant impact on terrestrial resilience. The growth of deciduous needleleaf forest is limited by
temperature because of its location. For savannas, the increase of precipitation has a contrasted impact
on its growth between the wet season and dry season [83,84]. It is worth noting that mean annual
precipitation not always has positive effect on all terrestrial ecosystems. Our study found in deciduous
broadleaf forest, mixed forest, and closed shrublands that the effect of mean annual precipitation began
to convert to negative when mean annual precipitation was excessive.
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Figure 12. Resilience as a function of MAP and MAT on a global scale in different land-cover types.
The black solid lines represent the mean curve from an ensemble of six curves. The dashed lines
highlight the range of the individual ensemble members. The distributions of the available MAP and
MAT observations are indicated by the density of the vertical lines above the x-axis.

In our study, no consistent relationships were found between mean annual temperature and
terrestrial resilience on a global scale. This was also indirectly confirmed by a previous study that
analyzed the relationship between temperature and tropical vegetation resilience [26,85]. Precipitation
and temperature both have a huge influence on the state of vegetation, while the impact of mean
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annual temperature is insignificant on terrestrial resilience that was generated from the vegetation
index. There are probably two reasons for this: firstly, the impact of mean annual temperature was
offset when it was calculated on a global scale because the impacts of mean annual temperature were
contrast among different ecosystems; secondly, the range of temperature variation was narrower and
the process of temperature influence slow and long, which is not reflected in statistical results based on
nearly four decades of data.

Previous researches have suggested that soil condition has a significant influence on terrestrial
resilience. Soil can provide essential nutrition to vegetation for recovery from disturbances [52,86].
In this study, we found that resilience was higher in most udic moisture regimes and lower in most
aridic moisture regimes (Figure 10). Moreover, the results of the global mean resilience showed that
savannas had low resilience. This agrees with the results of Ponce-Campos, who studied ecosystem
resilience under large-scale alteration of the hydroclimatic conditions [79]. They found that savanna
water-use efficiency decreased with increasing aridity, which indicates a low resilience of savannas
to drought. This could be considered evidence of a relationship between terrestrial resilience and
soil moisture regimes, because savanna ecosystems are located largely in aridic moisture regimes at a
global scale.

Several studies have found a positive correlation between the time interval between wildfires
and terrestrial ecosystem resilience, which indicates that the occurrence of frequent wildfires leads
to low resilience [19]. Wildfire can alter ecosystem heterogeneity and also lead to degradation
of ecosystem function. Although spatial heterogeneity can enhance the terrestrial resilience of an
ecosystem [87], a degraded ecosystem may have lower resilience [80]. For this reason, the relationship
between disturbances and resilience remains unclear. In this study, to explore the relationship
between disturbance frequency and terrestrial ecosystem resilience, we calculated the number of
annual anomalies in recent decades (Figure 11). We observed three dramatic rises of disturbance
frequency and three significant drops of resilience correspondingly. The reason for this is probably
the dramatically increasing frequency of disturbance changes soil characteristics, reducing nutrient
availability, and increasing soil susceptibility, which might prolong the time required for recovery
from a disturbance. Furthermore, the short-term spatial legacies of disturbance can persist for years to
decades [2]. High-frequency disturbances have an interaction effect and create a novel disturbance
with potential impacts on the ecosystem [88]. Furthermore, the correlation between terrestrial resilience
and disturbance frequency was undefined when all the data of past three decades were taken into
account. This is probably because the impacts of disturbance frequency’s slight fluctuation on terrestrial
resilience can be offset by other environmental factors.

For the resilience variation among various ecosystems, we found the fluctuation of resilience in
evergreen broadleaf forest and deciduous needleleaf forest have started to weaken in 21st century, while
the fluctuation of resilience in closed shrublands became strong after 2003. Resilience in evergreen
needleleaf forest, mixed forest, cropland, and cropland/natural vegetation mosaic decreased in the 20st
century, then started to increase in the 21st century. Obvious change was not found from precipitation
and soil conditions in these ecosystems [89]. This is probably because of the effects of El Nifio, which
was strongly monitored in 1997 and 1998 and led to disturbance frequency change [90]. Other causes
need to be analyzed by future works.

In our study, we did not measure terrestrial resilience in certain highly managed ecosystems
such as cropland/natural vegetation mosaic or urban and built-up areas, because they are not natural
ecosystems. They might be well organized and highly productive, but they are subject to collapse
without management due to their lack of a capacity to recover from disturbance [29,91].

4.3. Limitations and Recommendations for Future Research

Although remote sensing has advantages for large-scale and long-term environmental monitoring
and leads to outstanding global terrestrial resilience measurement performance compared with field
studies, it has three known limitations. Firstly, imperfect removal of cloud and noise in remote sensing
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products can affect terrestrial ecosystem resilience measurement, although these products promote
high accuracy [26]. Secondly, remote sensing products cover relatively limited aspects, focusing mainly
on vegetation, compared with the complexity of ecosystems [92]. Finally, the limitation of the number
of field studies constrains extensive validation. In addition, a lack of uniformity of terrestrial resilience
leads to a low availability of extant field data.

To make large-scale resilience monitoring more applicable globally, it is urgent to collect more
resilience-related information for ecosystem resilience measurement. Most previous studies have used
mainly temporal indicators to measure ecosystem resilience (e.g., temporal autocorrelation, temporal
variance), but recent evidence has shown that spatial pattern dynamics could lead the change of
resilience [8]. Several spatial indicators have been developed, and this facilitates more comprehensive
methods of resilience measurement based on multi-indicators. Future research will consider both
temporal information and spatial information when developing resilience indexes to improve the
accuracy of global resilience measurement.

5. Conclusions

Terrestrial ecosystem resilience is an important component of ecosystem health and ecosystem
function. The identification of large-scale metrics to quantify terrestrial ecosystem resilience and its
dynamics remains a vital strategy for global ecosystem assessment. In this study, we mapped global
terrestrial ecosystem resilience based on the long time-series GLASS LAI and GIMMS AVHRR LAI 3g
products. The result showed that, globally, evergreen broadleaf forest exhibited the highest resilience
and deciduous needleleaf forest exhibited the lowest resilience. On a global scale, the increase of mean
annual precipitation has a positive effect on terrestrial resilience enhancement, while we found no
consistent relationships between mean annual temperature and terrestrial resilience. For terrestrial
resilience dynamics, we observed three dramatic raises of disturbance frequency in 1989, 1995, and
2001, respectively, and three significant drops of resilience correspondingly. On a regional scale, the
distribution and dynamic of resilience have also been analyzed based on different land cover. Our
study avoided the problems of some areas having null values encountered in previous studies, and
this method improved the time scale of terrestrial ecosystem resilience to the interannual scale. This
study demonstrated that satellites are effective for monitoring terrestrial resilience for global ecosystem
assessment. With the availability of longer records of remotely sensed products, future research will
consider both temporal information and spatial information when developing resilience indexes, which
will improve the accuracy of resilience measurement.
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