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Abstract: In recent years, researchers have paid increasing attention on hyperspectral image (HSI)
classification using deep learning methods. To improve the accuracy and reduce the training samples,
we propose a double-branch dual-attention mechanism network (DBDA) for HSI classification in
this paper. Two branches are designed in DBDA to capture plenty of spectral and spatial features
contained in HSI. Furthermore, a channel attention block and a spatial attention block are applied to
these two branches respectively, which enables DBDA to refine and optimize the extracted feature
maps. A series of experiments on four hyperspectral datasets show that the proposed framework
has superior performance to the state-of-the-art algorithm, especially when the training samples are
signally lacking.

Keywords: hyperspectral image classification; deep learning; channel-wise attention mechanism;
spatial-wise attention mechanism

1. Introduction

Remote sensing images can be categorized by their spatial, spectral, and temporal resolutions [1],
and has been generally researched for many areas such as land-cover mapping [2], water monitoring [3],
and anomaly detection [4]. As a particular type of remote sensing images with high spectral resolution,
hyperspectral image (HSI) contains plentiful information both in the spectral and spatial dimension [5].
HSI has been used in many fields including vegetation cover monitoring [6], atmospheric environmental
research [7], and change area detection [8], among others. Supervised classification is an essential task
of HSI, and is the common technology used in the above applications. However, the over-redundancy of
spectral band information and limited training samples account for a huge challenge to HSI classification.

Early spectral-based attempts including support vector machines (SVM) [9], multinomial logistic
regression (MLR) [10,11], and random or dynamic subspace [12,13], focus on the spectral characteristics
of HSI. Nevertheless, another useful piece of information is that the adjacent pixels are possibly of the
same category, but the spectral-based methods ignore the high spatial correlation and local consistency
of HSI. Therefore, the increasing number of classification frameworks based on spectral-spatial
features have been presented. Two types of low-level features, morphological profiles [14] and Gabor
feature [15], were designed to represent the spatial information. Based on SVM, the morphological
kernel [16] and the composite kernel [17] methods were also proposed to exploit spectral-spatial
information. Although above attempts improve the accuracy of the classifier, these methods highly
depend on the hand-crafted descriptors.

Deep learning (DL) has shown powerful capabilities in automatically extracting nonlinear and
hierarchical features. A great surge of computer vision tasks have benefited from DL and made
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significant breakthroughs, such as objection detection [18], natural language processing [19], and image
classification [20]. As a typical classification tasks, HSI classification has been deeply influenced by DL
and has obtained excellent improvements.

In [21], Chen introduced stacked autoencoders (SAE) for extracting useful features. Similarly,
Tao [22] used two sparse SAEs to capture spectral and spatial information separately. Ma et al. [23]
proposed an updated deep auto-encoder (DAE) to extract spectral-spatial features, and designed a
novel synergic representation to handle the small-scale training set. Zhang et al. [24] used a recursive
autoencoder (RAE) to extracted high-level features from the neighborhoods of the target pixel and used
a new weighting scheme to fuse the spatial information. In [25], Chen et al. proposed a classification
method based on deep belief network (DBN) and restricted Boltzmann machine (RBM).

However, in the above-mentioned methods, the input is one-dimensional. Although the spatial
information is utilized, the initial structure is destroyed. Since convolutional neural networks (CNN)
could exploit spatial feature while retaining the original structure, some novel solutions have been
introduced with the advent of CNN. Zhao et al. [26] adopted CNN as a feature extractor in their
framework. Lee etal. [27] proposed a contextual deep CNN (CDCNN) with deeper and wider networks.
In [28], Chen et al. designed 3D-CNN-based feature extractor model integrated with regularization.

Although DL has brought promising improvements in HSI classification, the demand of DL
for training samples is enormous, while the cost of manual annotation is rather expensive for HSI.
Generally, deeper networks can capture finer features, but it will be harder to train deeper networks. The
emergence of the residual network (ResNet) [29] and the dense convolutional network (DenseNet) [30]
eases the difficulty of training of deeper networks. Inspired by the ResNet, Zhong et al. [31] proposed a
spectral-spatial residual network (SSRN), which is more effective with limited training samples. Wang
et al. [32] introduced DenseNet to their fast dense spectral-spatial convolution (FDSSC) algorithm.

To optimize the discrimination of extracted features, the attention mechanism was adopted to
refine the feature maps. Fang et al. [33] designed a 3-D dense convolutional network with spectral-wise
attention mechanism (MSDN-SA) based on DenseNet and attention mechanism. Ma et al. [34] proposed
a double-branch multi-attention mechanism network (DBMA) motivated by the convolutional block
attention module (CBAM) [35], and obtained the best classification results.

Inspired by the latest development of DL fields, some new methods could be observed in
the literature. Mou et al. [36] proposed a recurrent neural networks (RNN) framework for HSI
classification in which hyperspectral pixels were analyzed via the sequential perspective. Because
of the severe absence of labelled samples in HSI, semi-supervised learning (SSL) [37], generative
adversarial network (GAN) [38], and active learning (AL) [39] were introduced to alleviate this problem.
In [40], spectral-spatial capsule networks (CapsNets) were designed to weaken the complexity of the
network and enhance the accuracy of the classification. Furthermore, self-pace learning [41], self-taught
learning [42], and superpixel-based methods [43] are also worth noting.

In this paper, inspired by the state-of-the-art DBMA algorithm and an adaptive self-attention
mechanism dual attention network (DANet) [44], we design the double-branch dual-attention
mechanism network (DBDA) for HSI classification. The proposed framework contains two branches
named the spectral branch and spatial branch, which capture spectral and spatial features separately.
The channel-wise attention mechanism and spatial-wise attention mechanism are adopted to refine the
feature maps. By concatenating the output of the two branches, we obtain syncretic spectral-spatial
features. Finally, the classification results are determined using a softmax function. The three significant
contributions of this paper could be listed as follows:

e Based on DenseNet and 3D-CNN, we propose an end-to-end framework double-branch
dual-attention mechanism network (DBDA). The spectral branch and spatial branch of the
proposed framework can exploit features respectively without any feature engineering.

e A flexible and adaptive self-attention mechanism is introduced to both the spectral and spatial
dimensions. The channel-wise attention block is designed to focus on the information-rich spectral
bands, and the spatial-wise attention block is built to concentrate on the information-rich pixels.
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e The DBDA obtains the state-of-the-art classification accuracy in four datasets with limited training
data. Furthermore, the time consumption of our proposed network is less than the two compared
deep-learning algorithms.

The rest of this paper is arranged as follows: In Section 2, we illustrate the related work briefly.
The detailed structure of DBDA is given in Section 3. In Sections 4 and 5, we provide and analyze
the experimental results. Finally, a conclusion of the entire paper with a direction for future work is
presented in Section 6.

All of our code is available publicly at https://github.com/lironui/Double-Branch-Dual-Attention-
Mechanism-Network.

2. Related Work

In this section, we are going to make a brief introduction to the basic modules used in DBDA,
including the 3D-cube-based HSI classification framework, 3D-CNN with batch normalization, ResNet
and DenseNet, the channel-wise attention mechanism, and the spatial-wise attention mechanism. Since
both the number of the HSI spectrums and convolutional kernels could be referred to as channels,
we call the number of the HSI spectrums bands, and named the number of the convolutional kernels
channels to avoid confusion.

2.1. HSI Classification Framework Based on 3D-Cube

Unlike traditional pixel-based methods that only use spectral features, 3D-cube-based methods
like SSRN [31], FDSSC [32], DBMA [34], and our proposed framework exploit both spectral and
spatial information. The pixel-based methods use the pixel individually to train the network, but the
3D-cube-based methods take the target pixel and its adjacent pixels as input. Certainly, the labels
of adjacent central pixels are not fed into the network, and we only explore the abundant spatial
information around the target pixel. Generally, the difference between pixel-based methods and
3D-cube-based methods is the input size of the former is 1 x 1 x b, while that of the latter isp X p x b,
where p X p represents the number of neighboring pixels and b denotes the number of spectral bands.

2.2. 3D-CNN with Batch Normalization

3D-CNN with batch normalization (BN) [45] is a common element in 3D-cube-based deep learning
models. Inputting abundant labelled images, deep learning models with multiple nonlinear layers
can learn hierarchical representations, and the multilevel convolutional layers empower CNN to
learn characteristics under sparsity constraint more discriminatively. 1D-CNN and 2D-CNN only use
spectral features or capture local spatial features of the pixels. When classifying HSI that contains
plenty of both spatial and spectral information, 3D-CNN should be adopted to get reasonable results.
Therefore, we use 3D-CNN as the basic structure of the DBDA. Moreover, we add a BN layer in each
3D-CNN layer to improve the numerical stability.

As shown in Figure 1, with 1, input feature maps at the size of p;; X pi X by, a 3D-CNN layer
contains ky,11 channels in the size of a1 X a1 X dyy11, which generates the n,,,1 output feature
maps of size pp+1 X Pm+1 X by+1. The ith output of the (m + 1)th 3D-CNN layer with BN could be
calculated as:

Xt = R(Y e X ey (1)
X" E(X™) o
 Var(X™)

in which X’]” € RPP* is the jth input feature map of the (m + 1)th layer, and X' is the output after
the BN in the mth layer. E(-) and Var(-) denote the expectation and variance function of the input
separately. H;"H and b;"“ represent the weights and biases of the (m + 1)th 3D-CNN layer, * is the
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3D convolutional operation, and R(-) denotes the activation function that introduces the nonlinear unit
of the network.

Am+1XAm+1XAm+1, Km+1

Xm Hm+1 Xm +1

3D-CNN + BN

pmxpmxbm’ Nm pm+1xpm+1 ><l:)m+1, Nm+1

Figure 1. The structure of 3D-convolutional neural networks (CNN) with a batch normalization
(BN) layer.

2.3. ResNet and DenseNet

Normally, the more convolutional layers, the better a network will perform. However, too
many layers may make the problems of vanishing and exploding gradients worse. ResNet [29] and
DenseNet [30] are valid and efficient methods to escape this dilemma.

Generally, a skip connection is added to the conventional CNN model in ResNet. As indicated
in Figure 2a, H denotes hidden block, which is a module containing convolutional layers, activation
layers, and BN layers. The skip connection, which could be regarded as an identity mapping, enables
the input data to pass directly through the network. The residual block is the basic unit in ResNet, and
the output of the /th residual block can be calculated as:

x; = Hy(x-1) + x4 3)

Based on ResNet, DenseNet connects all layers directly to ensure maximum information flow
between each layer of the network. Instead of combining features through summation like ResNet,
DenseNet combines features via concatenating them in the channel dimension. The dense block is the
basic unit in DenseNet, and the output of the /th dense block can be computed as:

x; = Hyxo, x1,...,%1-1] 4)

in which H; is a module including convolution layers, activation layers, and BN layers, and
Xo, X1,...,Xx—1 denote the feature maps generated by the preceding dense blocks. As shown in
Figure 2b, more connections ensure more information flow in the DenseNet. Specifically, DenseNet
with L layers owns L(L + 1) /2, while traditional convolutional networks with equal layers only have L
direct connections.

X2 X1 Xi
Hi2 > Hii Xo X1 X1 Xi
— Ho — H1 - Hi1 H —
(a) ResNet (b) DenseNet

Figure 2. The architecture of residual network (ResNet) and dense convolutional network (DenseNet).

The structure of the dense connection block used in our framework can be seen in Figure 3. The
Mish in Figure 3 means the activation function adopted in our framework, and the details about Mish
can be seen in Section 3.2.1. Supposing that the shape of the input feature maps is p X p X b with n
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channels, and that each convolution layer is composed of k kernels in the shape of 1 X 1 X d, then each
layer generates feature maps in the shape of p X p x b with k channels. However, a dense connection
concatenates feature maps at the channel dimension, so there is a linear relationship between the
number of channels and the number of convolution layers. The output with k;; channels generated by
an m-layers dense block can be formulated as:

km = b+ (m—1)xk ®)

where b represents the channel’s number in the input feature maps.

Kernel size is 1x1xd Dense block
Kernel number is k

Figure 3. The structure of the dense block used in our framework.
2.4. Attention Mechanism

A shortcoming of the 3D-CNN is that all the spatial pixels and spectral bands own the equivalent
weights in the spatial and spectral domains. Obviously, different spectral bands and spatial pixels
make different contributions to extracting features. The attention mechanism is a powerful technique
to deal with this problem. Motivated by the human visual perception process [46], the attention
mechanism is designed to focus more on the informative areas and takes less account of non-essential
areas. The attention mechanism has been used for image categorization [47] and was later proved
to be outstanding in other areas including image caption [48], text to image synthesis [49] and scene
segmentation [44], etc. In DANet [44], the channel attention block and spatial attention block can be
adopted to increase the weight of compelling channels and pixels. The two blocks will be introduced
in detail as the following.

2.4.1. Spectral Attention Block

As illustrated in Figure 4a, the channel attention map X € R is directly computed from the
initial input A € R™P*P, where p X p is the patch size of the input, and ¢ denotes the number of the
input channels. Concretely, a matrix multiplication between A and AT is operated, and to obtain the
channel attention map X € R, a softmax layer is connected as:

B exp(Al- X Aj)
B Zf:l exp(Ai X Aj)

(6)

xﬁ
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in which x;; means the ith channel’s influence on the jth channel. Then, the results of matrix
multiplication between XT and A are reshaped into R™**P. Finally, the reshaped results are weighted
by a parameter of scale a and added input A to acquire the final spectral attention map E € R™F*?:

Ej :aZiC:1<xjiAj)+Aj 7)

where « is initialized as zero and can be learned gradually. The final map E encompasses the weighted
summations of all channels’ features, which can describe long-range dependencies and boost the
discriminability about features.

I

>

A ‘ reshape reshape
—_ > cxC
reshape softmax i cxC
>(¥) > cxXpxp

CXpxp _ reshape & X
" transpose

reshape &
B tmnsllgoose (PXP)X(PXSP)
A reshape X, softmax
S .
> reshape
D reshape “;
— p>p

Channel matrix operation Y Channel attention convolution
matrix
Spatial matrix operation e ‘ layer
CXpo ;
® Matrix multiplication Spatial | pxp . The shape

@ Element-wise Sum g attention matrix | exe | of the data

Figure 4. The details of the spectral attention block and the spatial attention block.

2.4.2. Spatial Attention Block

As illustrated in Figure 4b, given an input feature map A € RP*¥, two convolution layers are
adopted to generate new feature maps B and C respectively, where {B, C} eR™P*?. Next, B and C
are reshaped into R™", where n = p X p is the number of pixels. Then a multiplication of matrices
is executed between B and C, and a softmax layer is attached subsequently to calculate the spatial
attention feature maps S € R™":

exp(B; + Cj)
Sjii = ©N
Y1 exp(Bi +Cj)
where s;; measures the impact of ith pixel to the jth pixel. The closer feature representations of the two
pixels signify a stronger correlation between them.

®)



Remote Sens. 2020, 12, 582 7 of 25

The initial input feature A is simultaneously fed into a convolution layer to obtain a new feature
map D € R™P*P which is reshaped into R™" subsequently. Then a multiplication of matrices is
performed between D and ST, and the result is reshaped into R™P* as:

Ej=pY. N (siDj) +A; )

where $ with a zero initial value can be learned to assign more weight gradually. By Equation (9), it
can be inferred that all positions and original features are added with a certain weight to get the final
feature E € RP*P. Therefore, long-range contextual information in the spatial dimension is modeled
as E.

3. Methodology

The procedure of the DBDA framework contains three steps: dataset generation, training and
validation, and prediction. Figure 5 illustrates the whole framework of our method.

Etep 2: Training 1

and Validati01|1_ _______________

Random
Division
_—

| Zval || —— Cross I
Validation |

|
Ir:/__:/__:;i |_ e N B B B I

I A
Corresponding : it%t I Classification
test | -
Labels \ | _tlest | Predict Result

|
l Step 3: PredictionJ

Figure 5. The procedure of our proposed double-branch dual-attention (DBDA) framework.

An HSI dataset X is supposed to be composed of N labelled pixels {x1, x7,...,x,} € RIXIxb where
b represents the bands, and the corresponding category label setis Y = {y1, y2,...,yn} € RIXIXc where
c denotes the numbers of land cover classes.

In the dataset generation step, p X p neighboring pixels of the center pixel x; is selected from the
original data to generate the 3D-cubes set {z1,2, ..., zx} € RP*PXb_If the target pixel is on the edge of
the image, the values of missing adjacent pixels are set as zero. The p, i.e., patch size, is set as 9 in our
framework. Then, the 3D-cubes set is randomly divided into training set Z,;,, validation set Z,,;, and
testing set Zj.st. Accordingly, their corresponding label vectors are divided into Yy, You, and Yies:.
Certainly, the labels of neighboring pixels are not visible to the network, we use the spatial information
around target pixel only.

In the training and validation steps, the training set is used to update the parameters for many
epochs, while the validation set is adopted to monitor the performance of models and to select the
best-trained model.

In the prediction step, the test set is chosen to verify the effectiveness of the trained model.

The commonly used quantitative indexes for HSI classification to measure the difference between
predicted results and real values is the cross-entropy loss function, which is defined as

C@ ) = Y ymflog Y e~ ) (10)
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where ¥ = [11,V2,...,yL] means the label vector predicted by the model and v = [y1,¥2,...yL]
represents the ground-truth label vector.

3.1. The Framework of the DBDA Network

The whole structure of the DBDA network can be seen in Figure 6. For convenience, we call
the top branch Spectral Branch and name the bottom branch Spatial Branch. The input is fed into
spectral branch and spatial branch respectively to get the spectral feature maps and spatial feature
maps. Then the fusion operation between spectral and spatial feature maps are adopted to get the
classification results.

The following parts introduce the spectral branch, Spatial Branch and spectral and spatial fusion
operation taking the Indian Pines (IP) dataset as an example; the patch size is assigned as 9 x 9 x 200.
To facilitate the understanding for the matrices mentioned below such as (9%x9x97, 24),the 9 x9 x 97
represent the height, width, and depth of the 3D-cube, and 24 represents the number of 3D-cubes
generated by 3D-CNN.

The IP dataset contains 145 x 145 pixels with 200 spectral bands, that is, the size of IP is
145 x 145 x 200. The details of IP can be seen in Table 3. There are only 10, 249 pixels have
corresponding labels, and the other pixels are background.

3.1.1. Spectral Branch with the Channel Attention Block

First, a 3D-CNN layer with a 1 X 1 X 7 kernel size is used. The down sampling stride is set to
(1,1,2), which could reduce the number of bands. Then, feature maps in the shape of (9 x9x 97, 24)
are captured. After that, the dense spectral block combined by 3D-CNN with BN is attached. Each
3D-CNN of the dense spectral block has 12 channels with a 1 x 1 x 7 kernel size. After attaching the
dense spectral block, the channels of feature maps increase to 60 calculated by Equation (5). Therefore,
we obtain feature maps with size of (9 x9x97, 60). Next, after the last 3D-CNN with kernel size
of 1x1x97,a (9%x9x1, 60) feature map is generated. However, the 60 channels make different
contributions to the classification. To refine the spectral features, the channel attention block illustrated
in Figure 4a and explained in Section 2.4.1 is adopted. The channel attention block reinforces the
informative channels and whittles the information-lacking channels. After obtaining the weighted
spectral feature maps by channel attention, a BN layer and a dropout layer are applied to enhance the
numerical stability and vanquish the overfitting. Finally, via a global average pooling layer, the feature
maps in the shape of 1 X 60 are obtained. The implementation of the spectral branch is available in
Table 1.

Table 1. The implementation details of the spectral branch.

Layer Name Kernel Size Output Size
Input - (9x9x%200)
Conv (I1x1x7) (9%x9x97,24)

BN-Mish-Conv (Ix1x7) (9%x9x97,12)
Concatenate - (9%x9x%x97,36)
BN-Mish-Conv (Ix1x7) (9%x9%97,12)
Concatenate - (9% 9%x97,48)
BN-Mish-Conv (1x1x7) (9%x9x%x97,12)
Concatenate - (9x9%97,60)
BN-Mish-Conv (1x1x97) (9%x9x1,60)
Channel Attention Block - (9%x9x1,60)

BN-Dropout-GlobalAveragePooling - (1x60)
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e o Tp . T —— T T T T |
 Spectral Branch Dense spectral block Kernel size is 1x1x7
Kernel number is 12

1x1x7,24 1x1x97,60
9x9x200 9x9x97,24 9x9x97,60 9x9x1,60
[ e

Channel Attention block

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Class 1
1x120
Class 2 softmax /
— ]

Class ¢

1x1x200,24

9x9x1,24 9x9x1,60

ernel size is 3x3x1
Dense spatial block Kernel number is 12

Spatial Branch !
- BN+Mish - 3D-CNN Channel Spatial
attention attention
D Global Average matrix [ | matrix
ropout Pooling Channel matrix Spatial matrix
(X) Matrix multiplication The < OPeraUOI;h . fOPGrahon
[Ox0x000! 1€ shape r— 7.5 5,1 theshapeo
@ Element-wise Sum 199200, of the data 1 DD7,24 | e layer

Figure 6. The structure of the DBDA network. The upper spectral branch composed of the dense spectral
block and channel attention block is designed to capture spectral features. The lower spatial branch
constituted by dense spatial block, and spatial attention block is designed to exploit spatial features.

3.1.2. Spatial Branch with the Spatial Attention Block

Meanwhile, the input data in the shape of 9 X 9 X 200 are delivered to the spatial branch, and the
initial 3D-CNN layer’s size is set to 1 x 1 X 200, which can compress spectral bands into one dimension.
After that, feature maps in the shape of (9 X9 x 1,24) are obtained. Then, the dense spatial block
combined by 3D-CNN with BN is attached. Each 3D-CNN in the dense spectral block has 12 channels
with a 3 x 3 x 1 kernel size. Next, the extracted feature maps in the shape of (9 X9 x 1,60) are fed
into the spatial attention block, as illustrated in Figure 4b and expounded in Section 2.4.2. With the
attention block, the coefficient of each pixel is weighted to get a more discriminative spatial feature.
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After capturing the weighted spatial feature maps, a BN layer with a dropout layer is applied. Finally,
the spatial feature maps in the shape of 1 x 60 are obtained via a global average pooling layer. The
implementation of the spatial branch is given in Table 2.

Table 2. The implementation details of the spatial branch.

Layer Name Kernel Size Output Size
Input - (9 x9x200)
Conv (1x1 % 200) (9x9x1,24)
BN-Mish-Conv (3x3x1) (9%x9x1,12)
Concatenate - (9%x9x1,36)
BN-Mish-Conv (Bx3x1) (9x9x1,12)
Concatenate - (9%x9x1,48)
BN-Mish-Conv (Bx3x1) (9x9x1,12)
Concatenate - (9x9x1,60)
Channel Attention Block - (9%x9x1,60)
BN-Dropout-GlobalAveragePooling - (1x60)

3.1.3. Spectral and Spatial Fusion for HSI Classification

With the spectral branch and spatial branch, several spectral feature maps and spatial feature maps
are obtained. Then, we perform a concatenation between two features for classification. Moreover,
the reason why the concatenation operation is applied instead of add operation is that the spectral
and spatial features are in the irrelevant domains, and the concatenate operation could keep them
independent while the add operation would mix them together. In the end, the classification result is
obtained via the fully connected layer and the softmax activation function.

For other datasets, network implementations are the same, and the only difference is the number
of spectral bands. The whole methodology flowchart of DBDA is shown in Figure 7.

—-

Dense spectral block

l —_ Softmax

Attention

Ve N\
Mechanism \Conca}t/ )

L — y 4

3D-cube ’_'

Classification
Result

Dense spatial block

- BN+Mish 3D-CNN - Dropout Global Average
Pooling

Figure 7. The flowchart for the DBDA methodology. The 3D-cube is fed into the spectral branch
(top) and spatial branch (bottom) respectively. The obtained features are concatenated to classify the
target pixel.
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3.2. Measures Taken to Prevent Overfitting

Numerous training parameters and limited training samples cause the network to be prone
overfitting. Thus, we take some measures to prevent overfitting.

3.2.1. A Strong and Appropriate Activation Function

The activation function brings the concept of nonlinearity to a neural network. An appropriate
activation function can accelerate the speed of the counter-propagation and convergence of the network.
The activation function we adopted is Mish [50], a self-regularized non-monotone activation function,
instead of the conventional ReLU(x) = max(0, x) [51]. The formula for the Mish is:

mish(x) = x X tanh(softplus(x)) = x; X tanh(In(1 + €¥)) (11)

where x represents the input of the activation. The comparison of Mish and ReLU can be seen in

Figure 8. Mish is upper unbounded, and lower bounded with a scope of [~ —0.31, co). The differential

coefficient definition of Mish is: .
w

) =55

where w = 4(x +1) + 4" + &3 + ¥ (4x + 6) and 6 = 2¢° + ¥ + 2.

(12)

2] — Mish

—— RelU
3_
2
1_.
0
_1_

-4 -2 0 2 4

Figure 8. The graph of the activation functions (Mish and ReLU).

ReLU is a piecewise linear function that prunes all the negative inputs. Thus, if the input is
nonpositive, then the neuron is going to “die” and cannot be activated anymore, even though negative
inputs might contain useful information. On the contrary, negative inputs are preserved as negative
outputs by Mish, which trades the input information and the network sparsity better.

3.2.2. Dropout Layer, Early Stopping Strategy and Dynamic Learning Rate Adjustment

A dropout layer [52] is adopted between the last BN layer and the global average pooling layer in
the spatial branch and spectral branch separately. Dropout is a simple but effective method to prevent
overfitting by dropping out units (hidden or visible) on a given percentage p at the training phase.
Moreover, the p is selected as 0.5 in our framework. The existence of dropout makes the presence of
other units unreliable, which prevents co-adaptation between units.

In addition, two training skills, the early stopping strategy, and the dynamic learning rate
adjustment method are also introduced to our model. Early stopping signifies if the loss function is no
longer decreasing for a certain number of epochs (the number is 20 in our model), then we would stop
the training process early to prevent overfitting and reduce the training time.
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The learning rate is a crucial hyper parameter to train a network, and dynamic learning rate can
help a network avoid some local minima. The cosine annealing [53] method is adopted to adjust the
learning rate dynamically as the following equation:

. 1, . ‘ T
M= Moin 5 (e = i) (1 + COS( = n)) (13)
1
where 7 is the learning rate within the ith run and [nfm.n, ni,mx] is the range of the learning rate. Ty,
accounts for the count of epochs that have been executed, and T; controls the count of epochs that will
be executed in a cycle of adjustment.

4. Experimental Results

To verify the accuracy and efficiency of the proposed model, experiments on four datasets are
designed to compare and validate the accuracy and efficiency between the proposed network and
other methods. The three quantitative metrics of overall accuracy (OA), average accuracy (AA), and
Kappa coefficient (K) are used to measure the accuracy of each method. Concretely, OA represents the
ratio of the true classifications of the entire pixels. AA means the average accuracy of all categories.
The Kappa coefficient reflects the consistency between the ground truth and classification result. The
higher the three metric values are, the better the classification result is. Meanwhile, we investigate the
running time for each framework to evaluate its efficiency.

For each dataset, a certain number of training samples and validation samples are randomly
selected from the labelled data on a certain percentage, and the rest of the samples are used to test
the performance of the model. Since the proposed DBDA can maintain excellent performance when
training samples are severely lacking, the amount of training samples and validation samples are set at
a minimal level.

4.1. The Introduction about Datasets

In this paper, four widely used HSI datasets, the Indian Pines (IP) dataset, the Pavia University (UP)
dataset, the Salinas Valley (SV) dataset, and the Botswana dataset (BS), are employed in the experiments.

Indian Pines (IP): Obtained through airborne visible infrared imaging spectrometer (AVIRIS)
sensor in north-western Indiana, the Indian Pines dataset is composed of 200 spectral bands with a
wavelength scope of 0.4 um to 2.5 um and 16 land cover classes. IP encompasses 145 x 145 pixels and
owns the resolution of 20 m/pixel.

Pavia University (UP): Gathered by the reflective optics imaging spectrometer (ROSIS-3) sensor
at the University of Pavia, northern Italy, the Pavia University dataset is composed of 103 spectral
bands with a wavelength scope of 0.43 um to 0.86 um and 9 land cover classes. UP encompasses
610 x 340 pixels and owns the resolution of 1.3 m/pixel.

Salinas Valley (SV): Collected by the AVIRIS sensor from Salinas Valley, CA, USA, the Salinas
Valley dataset is composed of 204 spectral bands with a wavelength scope of 0.4 um to 2.5 um and 16
land cover classes. SV encompasses 512 x 217 pixels and owns the resolution of 3.7 m/pixel.

Botswana (BS): Captured by the NASA EO-1 satellite over the Okavango Delta, Botswana, the
Botswana dataset is composed of 145 spectral bands with a wavelength scope of 0.4 um to 2.5 um and
14 land cover classes. BS encompasses 1476 x 256 pixels and owns the resolution of 30 m/pixel.

Deep learning algorithms are data-driven, which rely on plenty of labelled training samples. The
more labelled data are fed into training, the better accuracy is yielded. However, more data mean more
time consumption and higher computation complexity. It is worth noting that the proposed DBDA can
maintain excellent performance even though the training samples are very lacking. Therefore, the size
of training samples and validation samples are set at a minimal level in the experiments. For IP, we
select 3% samples for training, and 3% samples for validation. As the samples are enough for each
class of UP and SV, we only select 0.5% samples for training, and 0.5% samples for validation. For
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BS, the proportion of samples for training and validation is set to 1.2%. The reason why a decimal
appears is that the number of samples in BS is small, so we set the ratio as 1% with a ceiling operation.
Tables 3-6 list the samples of training, validation and testing for the four datasets.

Table 3. The samples for each category of training, validation and testing for the Indian Pines
(IP) dataset.

Order Class Total Number Train Val Test
1 Alfalfa 46 3 3 40
2 Corn-notill 1428 42 42 1344
3 Corn-mintill 830 24 24 782
4 Corn 237 7 7 223
5 Grass-pasture 483 14 14 455
6 Grass-trees 730 21 21 688
7 Grass-pasture-mowed 28 3 3 22
8 Hay-windrowed 478 14 14 450
9 Oats 20 3 3 14

10 Soybean-notill 972 29 29 914
11 Soybean-mintill 2455 73 73 2309
12 Soybean-clean 593 17 17 559
13 Wheat 205 6 6 193
14 Woods 1265 37 37 1191
15 Buildings-Grass-Trees-Drives 386 11 11 364
16 Stone-Steel-Towers 93 3 3 87
Total 10,249 307 307 9635

Table 4. The samples for each category of training, validation and testing for the Pavia University

(UP) dataset.

Order Class Total Number Train Val Test

1 Asphalt 6631 33 33 6565
2 Meadows 18,649 93 93 18,463

3 Gravel 2099 10 10 2079

4 Trees 3064 15 15 3034

5 Painted metal sheets 1345 6 6 1333

6 Bare Soil 5029 25 25 4979

7 Bitumen 1330 6 6 1318

8 Self-Blocking Bricks 3682 18 18 3646

9 Shadows 947 4 4 939
Total 42,776 210 210 42,356

4.2. Experimental Setting

To evaluate the effectiveness of DBDA, the deep-learning-based classifiers CDCNN [27], SSRN [31],
FDSSC [32], and the state-of-the-art double-branch multi-attention mechanism network (DBMA) [34]
are compared with our proposed framework. Furthermore, the SVM with RBF kernel [9] is also
taken into account. The patch size of each classifier is set according to its original paper. To compare
the training and testing consumptions of time, all experiments were executed on the same platform
configured with 32 GB of memory and an NVIDIA GeForce RTX 2080Ti GPU. All deep-learning-based
classifiers were implemented with PyTorch, and SVM was implemented with sklearn. Then, a brief
introduction to the above methods will be given separately.
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Table 5. The samples for each category of training, validation and testing for the Salinas Valley

(SV) dataset.
Order Class Total Number Train Val Test
1 Brocoli-green-weeds-1 2009 10 10 1989
2 Brocoli-green-weeds-2 3726 18 18 3690
3 Fallow 1976 9 9 1958
4 Fallow-rough-plow 1394 6 6 1382
5 Fallow-smooth 2678 13 13 2652
6 Stubble 3959 19 19 3921
7 Celery 3579 17 17 3545
8 Grapes-untrained 11,271 56 56 11,159
9 Soil-vinyard-develop 6203 31 31 6141
10 Corn-senesced-green-weeds 3278 16 16 3246
11 Lettuce-romaine-4wk 1068 5 5 1058
12 Lettuce-romaine-5wk 1927 9 94 1824
13 Lettuce-romaine-6wk 916 4 4 908
14 Lettuce-romaine-7wk 1070 5 5 1060
15 Vinyard-untrained 7268 36 36 7196
16 Vinyard-vertical-trellis 1807 9 9 1789
Total 54,129 263 348 53,603

Table 6. The samples for each category of training, validation and testing for the Botswana dataset

(BS) dataset.

Order Class Total Number Train Val Test
1 Water 270 3 3 264

2 Hippo grass 101 2 2 97

3 Floodplain grasses1 251 3 3 245

4 Floodplain grasses2 215 3 3 209

5 Reedsl 269 3 3 263

6 Riparian 269 3 3 263

7 Fierscar2 259 3 3 253

8 Island interior 203 3 3 197

9 Acacia woodlands 314 4 4 306
10 Acacia shrublands 248 3 3 242
11 Acacia grasslands 305 4 4 297
12 Short mopane 181 2 2 177
13 Mixed mopane 268 3 3 262

14 Exposed soils 95 1 1 93
Total 3248 40 40 3168

SVM: For SVM with a radial basis function (RBF) kernel, all individual pixels with their spectral
bands are fed in directly.

CDCNN: The architecture of the CDCNN is shown in [27], which is based on 2D-CNN and
ResNet. The size of input is 5 X 5 X b, where b denotes the number of spectral bands.

SSRN: The architecture of the SSRN is proposed in [31], which is based on 3D-CNN and ResNet.
The size of the inputis 7 X7 x b.

FDSSC: The architecture of the FDSSC can be seen in [32], which is based on 3D-CNN and
DenseNet. The size of the inputis 9 x9 xb.

DBMA: The architecture of the DBMA is presented in [34], which is based on 3D-CNN, DenseNet,
and an attention mechanism. 7 X 7 X b is the input patch size.

For CDCNN, SSRN, FDSSC, DBMA, and the proposed method, the batch size is set as 16, and the
optimizer is set to Adam with the 0.0005 learning rate. The upper limit of the early stopping strategy
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is set to 200 epochs. If the loss in the validation set no longer declines for 20 epochs, then we would
terminate the training phase.

4.3. Classification Maps and Categorized Results

4.3.1. Classification Maps and Categorized Results for the IP Dataset

The categorized results using different methods for the IP dataset are demonstrated in Table 7
where the best class-specific accuracy is in bold, and classification maps of the different methods and
ground truth are shown in Figure 9.

Table 7. The categorized results for the IP dataset with 3% training samples.

Class Color SVM CDCNN SSRN FDSSC DBMA Proposed

1 [ ] 24.24 0.00 100.0 85.42 93.48 100.0

2 58.10 62.36 89.14 97.20 91.15 88.49

3 L 64.37 57.00 77.49 94.45 99.58 97.12

4 37.07 37.50 88.95 100.0 98.57 100.0

5 87.67 88.16 96.48 100.0 97.45 100.0

6 [ 84.02 79.63 98.15 100.0 95.66 97.18

7 56.10 0.00 0.00 73.53 40.00 92.59

8 [ 89.62 84.02 84.54 99.78 100.0 99.78

9 L 21.21 0.00 0.00 100.0 38.10 100.0
10 [ 65.89 37.50 92.07 89.25 85.98 89.87
11 L 62.32 53.25 90.89 93.97 94.39 99.33
12 [ ] 52.40 42.96 84.19 95.41 89.92 98.50
13 [ ] 94.30 49 47 98.47 100.0 99.48 96.02
14 . 90.15 76.71 94.56 93.14 92.81 93.22
15 63.96 62.60 84.11 90.61 89.66 96.99
16 98.46 83.70 91.40 96.55 96.55 94.38
OA 69.41 62.32 89.81 94.87 93.15 95.38
AA 65.62 50.93 79.40 94.33 87.67 96.47
kappa 0.6472 0.5593 0.8839 0.9414 0.9219 0.9474

(a)

(e) SSRN (89.81%) (f) FDSSC (94.87%) (g) DBMA (93.15%)(h) Proposed (95.38%)

Figure 9. Classification maps for the IP dataset using 3% training samples. (a) False-color image.
(b) Ground-truth (GT). (c-h) The classification maps with disparate algorithms.

Our proposed framework obtains the best results with 95.38% OA, 96.47% AA, and 0.9474 Kappa,
which can be seen from Table 7.CDCNN based on 2D-CNN achieves the worst accuracy with 62.32%
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OA, due to the limited training samples and weak network structure. Although SVM performs better
than CDCNN with more than 7% in OA, the salt-and-pepper noise is severe, which can be seen in
Figure 9c. Because SVM uses no spatial neighborhood information. The 3D-CNN based models
far exceed SVM and CDCNN, owing to its incorporation of both spatial and spectral information
in the classification. FDSSC uses dense connection instead of residual connection, which enhances
the performance of the network and obtains more than 5% improvement in OA compared to SSRN.
Based on FDSSC, DBMA extracts the spatial and spectral features in two independent branches and
brings the attention mechanism in. However, when training samples are very lacking, DBMA might
overfit the training data. With our proposed framework DBDA, it can accomplish stable and reliable
performance with limited data duo to its flexible and adaptive attention mechanism, the appropriate
activation function, and the other measures to prevent overfitting.

Taking class 7, which only has three training samples in the IP dataset, as an example, our
method performs well and obtains an acceptable consequence of 92.59%, while the results of other
methods (SVM: 56.10%, CDCNN: 0.00%, SSRN: 0.00%, FDSSC: 73.53%, and DBMA: 40.00%) are not
very satisfactory.

Overall, the proposed model improves the OA by 2.23%, the AA by 8.80%, and the kappa by
0.0225 compared to DBMA.

4.3.2. Classification Maps and Categorized Result for the UP Dataset

The categorized results using different methods for the UP dataset are demonstrated in Table 8
where the best class-specific accuracy is in bold, and classification maps for the different methods and
ground truth are shown in Figure 10.

We can see that our proposed method obtains the best results regarding the three indexes
fromTable 8. Though our method cannot make every class precision best, the accuracy of each class
using our method exceeds 89%, which means our method is able to capture the distinctive features
between different classes.

Since the samples in the UP dataset are sufficient, there are enough samples for each class even if
we just choose 0.5% training samples. Thus, DBMA overcomes overfitting and performs better than
FDSSC because of its superior architecture. CDCNN with ample samples surpasses the performance
of SVM.

Table 8. The categorized results for the UP dataset with 0.5% training samples.

Class Color SVM CDCNN SSRN FDSSC DBMA Proposed
1 [ 82.87 85.74 99.15 96.88 94.86 89.03
2 88.07 94.45 98.06 97.57 96.57 98.32
3 | 70.84 32.59 96.64 89.97 100.0 98.70
4 95.61 97.46 99.86 99.21 97.44 98.42
5 92.24 99.10 99.85 99.55 95.69 99.78
6 [ 76.98 80.88 96.88 97.97 96.78 98.57
7 68.98 88.83 73.24 100.0 95.69 95.84
8 [ 71.14 66.19 82.36 70.97 78.93 89.47
9 [ 99.89 96.01 100.0 100.0 99.55 99.89

OA 84.29 87.70 95.59 94.43 94.72 96.00
AA 82.96 82.36 94.01 94.68 95.49 96.45

kappa 0.7883 0.8359 0.9415 0.9257 0.9295 0.9467
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Figure 10. Classification maps for the UP dataset using 0.5% training samples. (a) False-color image.

(b) Ground-truth (GT). (c-h) The classification maps with disparate algorithms.

4.3.3. Classification Maps and Categorized Results for the SV Dataset

The categorized results using the different methods for the SV dataset are demonstrated in Table 9
where the best class-specific accuracy is in bold, and classification maps of the different methods and

ground truth are shown in Figure 11.

Table 9. The categorized results for the SV dataset with 0.5% training samples.

Class Color SVM CDCNN SSRN FDSSC DBMA Proposed

1 . 99.85 0.00 100.0 100.0 100.0 100.0

2 98.95 64.82 100.0 100.0 99.51 99.17

3 [ 89.88 94.69 89.72 99.44 98.92 97.74

4 97.30 82.99 94.85 98.57 96.39 95.95

5 93.56 98.24 99.39 99.87 96.39 99.29

6 [ 99.89 96.51 99.95 99.97 99.17 99.92

7 91.33 95.98 99.75 99.75 96.80 99.83

8 [ 74.73 88.23 88.60 99.60 95.60 95.97

9 [ 97.69 99.26 98.48 99.69 99.22 99.37
10 . 90.01 67.39 98.81 99.02 96.20 96.72
11 L 75.92 72.03 93.30 92.77 82.29 93.72
12 ] 95.19 75.49 99.95 99.64 99.17 100.0
13 [ ] 94.87 95.71 100.0 100.0 98.91 100.0
14 [ 89.26 94.92 97.86 98.05 98.22 96.89
15 75.86 51.88 89.96 74.58 84.71 93.42
16 99.03 99.62 100.0 100.0 100.0 100.0
OA 88.09 77.79 94.72 94.99 95.44 97.51
AA 91.45 79.86 96.66 97.56 96.34 98.00
kappa 0.8671 0.7547 0.9412 0.9444 0.9493 0.9723
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(c) SVM (88.09%)  (d) CDCNN (77.79%)

(€) SSRN (94.72%)  (f) FDSSC (94.99%)  (g) DBMA (95.44%)  (h) Proposed (97.51%)

Figure 11. Classification maps for the UP dataset using 0.5% training samples. (a) False-color image.
(b) Ground-truth (GT). (c-h) The classification maps with disparate algorithms.

We can see that our proposed method obtains the best results regarding the three indexes from
Table 9, and the accuracy of each category classified by our method exceeds 93%.

Similarly, because of the sufficient samples in the SV dataset, 0.5% training samples are enough.
Thus, DBMA once again performs better than FDSSC. However, the SV dataset owns 16 classes while
the UP dataset only has 9 classes, so CDCNN obtains a weaker performance than SVM.

4.3.4. Classification Maps and Categorized Result for the BS Dataset

The categorized results using different methods for the BS dataset are demonstrated in Table 10
where the best class-specific accuracy is in bold, and classification maps of the different methods and
ground truth are shown in Figure 12.

Since the BS dataset is small and only with 3, 248 labelled samples, just 40 samples are selected as
the training set and 40 samples are chosen as the validation set. Nonetheless, our method achieves
96.24% OA performance, 2.81% higher than DBMA. One reason is that our method can capture spatial
and spectral features more effectively.
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Table 10. The categorized results for the BS dataset with 1.2% training samples.

Class Color SVM CDCNN SSRN FDSSC DBMA Proposed
1 . 100.0 94.60 94.95 97.41 97.77 95.64
2 97.56 68.64 100.0 98.95 88.89 98.99
3 [ 86.35 81.11 91.42 100.0 100.0 100.0
4 63.51 65.45 97.34 93.03 92,51 91.30
5 84.33 89.10 92.42 80.74 93.51 95.58
6 [ 61.27 69.28 66.39 84.93 68.94 82.23
7 82.09 80.07 100.0 84.62 100.0 100.0
8 [ 63.46 89.36 100.0 93.36 96.10 95.63
9 L 63.53 55.53 90.75 88.44 85.15 96.50
10 [ 65.74 81.69 86.83 99.59 97.60 98.79
11 L 93.91 92.48 100.0 99.67 99.66 99.67
12 [ 90.70 90.91 100.0 100.0 97.79 100.0
13 [ ] 73.62 88.59 94.83 81.59 100.0 100.0
14 [ 92.98 100.0 100.0 100.0 100.0 100.0
OA 77.21 80.90 91.89 91.57 93.43 96.24
AA 79.93 81.92 93.92 93.02 94.14 96.74
kappa 0.7532 0.7930 0.9121 0.9086 0.9.89 0.9593

£ g
S8 L

| (a) False C(l(f image. o (b) GT

(0) SVM (77.21%) (d) CDCNN (80.90%)

(e) SSRN (91.89%) () FDSSQ(91 57%)
(g) DBMA (93.43%) (h) Proposed(% 24%)

Figure 12. Classification maps for the BS dataset using 1.2% training samples. (a) False-color image.
(b) Ground-truth (GT). (c-h) The classification maps with disparate algorithms.

4.4. Investigation of Running Time

The above experiments prove that our proposed method can achieve a higher degree of accuracy
with less data. However, a good method should balance the accuracy and efficiency properly. This
part is executed to measure the efficiency of each method. Tables 11-14 list the consumptions of time
for the six algorithms on the IP, UP, SV, and BS datasets.

Since we use SVM as a pixel-based model, it spends less time than 3D-cube-based models in most
cases. On account of 2D-CNN containing less parameters to be trained, CDCNN takes less time than
3D-CNN-based models.
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Table 11. Training and testing consumption of support vector machines (SVM), contextual deep
convolutional neural networks (CDCNN), spectral-spatial residual network (SSRN), fast dense
spectral-spatial convolution (FDSSC), double-branch multi-attention (DBMA), and our method on the
IP dataset using 307 training samples (3%) in 16 classes.

Dataset Algorithm Training Times (s) Testing Times (s)
SVM 20.10 0.66
CDCNN 11.13 1.54
Indian Pines SSRN 46.03 2.71
FDSSC 105.05 4.86
DBMA 94.69 6.35
Proposed 69.83 5.60

Table 12. Training and testing consumption of SVM, CDCNN, SSRN, FDSSC, DBMA, and our method
on the UP dataset using 210 training samples (0.5%) in nine classes.

Dataset Algorithms Training Times (s) Testing Times (s)
SVM 3.38 2.29
CDCNN 10.26 4.92
. S SSRN 9.93 6.41

P 8} t

avia Tniversity FDSSC 26.01 11.56
DBMA 21.02 11.17
Proposed 18.46 13.32

Table 13. Training and testing consumption of SVM, CDCNN, SSRN, FDSSC, DBMA, and our method
on the SV dataset using 263 training samples (0.5%) in 16 classes.

Dataset Algorithms Training Times (s) Testing Times (s)
SVM 9.35 3.89
CDCNN 9.82 6.14
Salinas SSRN 73.75 13.99
FDSSC 99.91 25.57
DBMA 105.30 31.82
Proposed 71.18 23.93

Table 14. Training and testing consumption of SVM, CDCNN, SSRN, FDSSC, DBMA, and our method
on the BS dataset using 40 training samples (1.2%) in 14 classes.

Dataset Algorithms Training Times (s) Testing Times (s)
SVM 0.93 0.15
CDCNN 11.10 1.33
Botswana SSRN 8.87 1.37
FDSSC 17.84 1.45
DBMA 13.67 2.04
Proposed 17.19 1.90

For 3D-CNN-based models, the proposed method consumes less training time compared to
FDSSC and DBMA while obtaining better performance because of its higher rate of convergence. Even
though SSRN is quicker than our method, the accuracy of our method is superior. That is, our method
can balance the accuracy and efficiency better.

5. Discussion

In this part, further assessments of DBDA are conducted. First, different proportions of training
samples are fed into the network, and the results reflect that our method can maintain effectiveness
especially when the training samples are severely limited. Second, the results of ablation experiments
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confirm the necessity of the attention mechanism. Third, the results of the different activation functions
show that Mish is a better choice than ReLU for DBDA.

5.1. Investigation of the Proportion of Training Samples

As we mentioned, deep learning is a data-driven algorithm that depends on large amounts of
high-quality labelled dataset. In this part, we investigate the scenarios for different proportions of
training samples.

Figure 13 demonstrates the experimental results. For the IP and BS datasets, we use 0.5%, 1%, 3%,
5%, and 10% samples as the training sets, respectively. For the UP and SV datasets, we use 0.1%, 0.5%,
1%, 5%, and 10% of samples as the training sets, respectively.

100 B 100 —

=t=DBDA

— - - Ze—DBDA [ ——DBMA
z 60 a o - <ome DBMA g . FDSSC
50 B LibS ~ SSRN
= T CSSRN & CDCNN
40 CDCNN 65

—SVM
= <SVM

0.50% 1% 5% 10% 0.10% 0.50% 1% 5% 10%
percentage of training samples(%) percentage of training samples(%)

(@) (b)

100 B atan: | 100

—4—DBDA
80 ~ 80
— --4-- DBMA L.
:i 75 g 4 # i a-- DBMA
o 70 EDSSC 70 / FDSSC
65 —® -SSRN 65 o — RN
60 CDONN 60 / CDCNN
» —= «SVM » N — -SVM
0 50 1
0.10% 0.50% 1% 5% 10% 0.50% 1% 10%
percentage of training samples(%) percentage of training samples(%)
(©) (d)

Figure 13. The OA results of SVM, CDCNN, CDCNN, SSRN, FDSSC, DBMA and our proposed method
with varying proportions of training samples on the (a) IP, (b) UP, (c) SV and (d) BS.

As we expected, the accuracy improves with increase in the number of training samples.
All 3D-based methods, including SSRN, FDSSC, DBMA, and the proposed framework can obtain
near-perfect performances as long as enough samples (about 10% of the whole dataset) are provided.
At the same time, the performance gaps between different models are narrowed according to the
increases in training samples. Nevertheless, our method outpaces other methods, especially when
samples are insufficient. Since it is costly to label the dataset, our proposed method can save labor
and cost.

5.2. Effectiveness of the Attention Mechanism

To verify the effectiveness of the attention mechanism, we remove the spatial-attention module,
spectral-attention module, and both attention modules of the DBDA respectively, and compare the
performance between these three “incomplete DBDA” and the “complete DBDA”.

From Figure 14, we can conclude that the existence of the spatial attention mechanism and the
spectral attention mechanism does promote the accuracy on four datasets.
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Figure 14. Effectiveness of the attention mechanism (results of different attention mechanisms).

Averagely, the attention mechanism improves 4.69% OA on four datasets. Furthermore, a single
spatial attention mechanism (average 2.18% improvement) performs better than a single spectral
attention mechanism (average 0.97% improvement) upon most occasions.

5.3. Effectiveness of the Activation Function

In Section 3.2.1, we illustrate why we adopted Mish as the activation function rather than the
generally used ReLU. Here, we will compare the performance between DBDA based on Mish and
DBDA based on ReLU. Figure 15 shows the classification OA of them.

8
m DBDA-BASED-RELU

97
l DBDA-BASED-MISH

9
94 I II | II

dataset

OA(%)

Figure 15. Effectiveness of the activation function (results on different activation functions).

As shown in Figure 15, DBDA based on Mish surpasses DBDA based on ReLU. Specifically, there
are 2.27%, 2.01%, 4.00% and 1.24% OA improvements on the IP, UP, SV, and BS datasets, respectively.
Since Mish can quicken counter-propagation, the difference in performance occurs.

6. Conclusions

In this paper, we proposed an end-to-end framework double-branch dual-attention mechanism
network for HSI classification. The input of the DBDA framework is original 3D pixel data without any
cumbersome pre-processing to reduce dimensionality. Based on densely connected 3D-CNN layers
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with BN, we designed two branches that capture spectral and spatial features respectively. Meanwhile,
a flexible and adaptive self-attention mechanism was applied to spectral branch and spatial branch,
respectively. Mish was introduced as the activation function to accelerate the counter-propagation and
convergence processes. Dynamic learning rates, early stopping, and dropout layers were also adopted
to prevent overfitting.

Extensive experimental results demonstrate that our proposed framework surpasses the
state-of-the-art algorithm, especially when training samples are finite and limited. Meanwhile,
the consumption of time is also decreased in comparison to FDSSC and DBMA, as the attention blocks
and the activation function Mish accelerate the convergent speed of the model. Accordingly, we draw
a conclusion that the structure of our method is more preferable for HSI classification.

A future direction of our work is applying our proposed framework to other hyperspectral images,
not just process the above-mentioned open-source datasets. Moreover, it is also an attractive challenge
to reduce the training time.

Author Contributions: Conceptualization, R.L.; formal analysis, R.L.; funding acquisition, S.Z.; methodology,
R.L.; validation, R.L.; writing—original draft, R.L. and C.D.; writing—review and editing, S.Z., C.D., Y.Y., and X.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundations of China (No. 41671452).

Acknowledgments: I am indebted to my mentor, Shunyi Zheng, who supported my work strongly. I would also
like to express my gratitude to Chenxi Duan, my morning sunlight who revised my manuscript earnestly.

Conflicts of Interest: The authors declare no conflicts of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the
decision to publish the results.

References

1.  Zhong, Y.;Ma, A.; Ong, Y,; Zhu, Z.; Zhang, L. Computational intelligence in optical remote sensing image
processing. Appl. Soft Comput. 2018, 64, 75-93. [CrossRef]

2. Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very deep convolutional neural
networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sens. 2018,
10, 1119. [CrossRef]

3.  Pipitone, C.; Maltese, A.; Dardanelli, G.; Brutto, M.; Loggia, G. Monitoring water surface and level of a
reservoir using different remote sensing approaches and comparison with dam displacements evaluated via
GNSS. Remote Sens. 2018, 10, 71. [CrossRef]

4. Zhao, C.; Wang, Y.; Qi, B.; Wang, J. Global and local real-time anomaly detectors for hyperspectral remote
sensing imagery. Remote Sens. 2015, 7, 3966-3985. [CrossRef]

5. Li, Z.; Huang, L.; He, J]. A Multiscale Deep Middle-level Feature Fusion Network for Hyperspectral
Classification. Remote Sens. 2019, 11, 695. [CrossRef]

6. Awad, M.; Jomaa, I.; Arab, F. Improved Capability in Stone Pine Forest Mapping and Management in
Lebanon Using Hyperspectral CHRIS-Proba Data Relative to Landsat ETM+. Photogramm. Eng. Remote Sens.
2014, 80, 725-731. [CrossRef]

7. Ibrahim, A.; Franz, B.; Ahmad, Z.; Healy, R.; Knobelspiesse, K.; Gao, B.; Proctor, C.; Zhai, P. Atmospheric
correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal
Ocean (HICO). Remote Sens. Environ. 2018, 204, 60-75. [CrossRef]

8. Marinelli, D.; Bovolo, F.; Bruzzone, L. A novel change detection method for multitemporal hyperspectral
images based on binary hyperspectral change vectors. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4913-4928.
[CrossRef]

9. Melgani, F; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines.
IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778-1790. [CrossRef]

10. Li, J.; Bioucas-Dias, J.; Plaza, A. Semisupervised hyperspectral image segmentation using multinomial
logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085-4098. [CrossRef]


http://dx.doi.org/10.1016/j.asoc.2017.11.045
http://dx.doi.org/10.3390/rs10071119
http://dx.doi.org/10.3390/rs10010071
http://dx.doi.org/10.3390/rs70403966
http://dx.doi.org/10.3390/rs11060695
http://dx.doi.org/10.14358/PERS.80.8.725
http://dx.doi.org/10.1016/j.rse.2017.10.041
http://dx.doi.org/10.1109/TGRS.2019.2894339
http://dx.doi.org/10.1109/TGRS.2004.831865
http://dx.doi.org/10.1109/TGRS.2010.2060550

Remote Sens. 2020, 12, 582 24 of 25

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Li, J.; Bioucas-Dias, J.; Plaza, A. Spectral-spatial hyperspectral image segmentation using subspace
multinomial logistic regression and Markov random fields. IEEE Trans. Geosci. Remote Sens. 2011,
50, 809-823. [CrossRef]

Du, B.; Zhang, L. Random-selection-based anomaly detector for hyperspectral imagery. IEEE Trans. Geosci.
Remote Sens. 2010, 49, 1578-1589. [CrossRef]

Du, B.; Zhang, L. Target detection based on a dynamic subspace. Pattern Recognit. 2014, 47, 344-358.
[CrossRef]

Li, J.; Marpu, P; Plaza, A.; Bioucas-Dias, ].; Benediktsson, J. Generalized composite kernel framework for
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816-4829. [CrossRef]

Li, W.; Du, Q. Gabor-filtering-based nearest regularized subspace for hyperspectral image classification.
IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1012-1022. [CrossRef]

Fang, L.; Li, S.; Duan, W.; Ren, ]J.; Benediktsson, J. Classification of hyperspectral images by exploiting
spectral-spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53,
6663—-6674. [CrossRef]

Camps-Valls, G.; Gomez-Chova, L.; Mufioz-Mari, J.; Vila-Frances, J.; Calpe-Maravilla, J. Composite kernels
for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2006, 3, 93-97. [CrossRef]

Li, P; Chen, X.; Shen, S. Stereo r-cnn based 3d object detection for autonomous driving. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16-20 June 2019;
pp. 7644-7652.

Zhang, W.; Feng, Y.; Meng, F,; You, D.; Liu, Q. Bridging the Gap between Training and Inference for Neural
Machine Translation. arXiv 2019, arXiv:1906.02448.

Durand, T.; Mehrasa, N.; Mori, G. Learning a Deep ConvNet for Multi-label Classification with Partial Labels.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16-20 June 2019; pp. 647-657.

Chen, Y,; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep learning-based classification of hyperspectral data. IEEE .
Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094-2107. [CrossRef]

Tao, C.;Pan, H.; Li, Y.; Zou, Z. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder
for hyperspectral imagery classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2438-2442.

Ma, X.; Wang, H.; Geng, ]. Spectral-spatial classification of hyperspectral image based on deep auto-encoder.
IEEE ]. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4073-4085. [CrossRef]

Zhang, X,; Liang, Y.; Li, C.; Hu, N; Jiao, L.; Zhou, H. Recursive autoencoders-based unsupervised feature
learning for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2017, 14,1928-1932. [CrossRef]
Chen, Y.; Zhao, X,; Jia, X. Spectral-spatial classification of hyperspectral data based on deep belief network.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381-2392. [CrossRef]

Zhao, W.; Du, S. Spectral-spatial feature extraction for hyperspectral image classification: A dimension
reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544-4554. [CrossRef]
Lee, H.; Kwon, H. Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans.
Image Process. 2017, 26, 4843—4855. [CrossRef] [PubMed]

Chen, Y,; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral
images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232-6251.
[CrossRef]

He, K.; Zhang, X.; Ren, S.; Sun, ]J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June-1 July 2016;
pp. 770-778.

Huang, G,; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21-26
July 2017; pp. 4700-4708.

Zhong, Z.; Li, J.; Luo, Z.; Chapman, M.; Weinberger, Q. Spectral-spatial residual network for hyperspectral
image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847-858.
[CrossRef]

Wang, W.; Dou, S.; Jiang, Z.; Sun, L. A Fast Dense Spectral-Spatial Convolution Network Framework for
Hyperspectral Images Classification. Remote Sens. 2018, 10, 1068. [CrossRef]


http://dx.doi.org/10.1109/TGRS.2011.2162649
http://dx.doi.org/10.1109/TGRS.2010.2081677
http://dx.doi.org/10.1016/j.patcog.2013.07.005
http://dx.doi.org/10.1109/TGRS.2012.2230268
http://dx.doi.org/10.1109/JSTARS.2013.2295313
http://dx.doi.org/10.1109/TGRS.2015.2445767
http://dx.doi.org/10.1109/LGRS.2005.857031
http://dx.doi.org/10.1109/JSTARS.2014.2329330
http://dx.doi.org/10.1109/JSTARS.2016.2517204
http://dx.doi.org/10.1109/LGRS.2017.2737823
http://dx.doi.org/10.1109/JSTARS.2015.2388577
http://dx.doi.org/10.1109/TGRS.2016.2543748
http://dx.doi.org/10.1109/TIP.2017.2725580
http://www.ncbi.nlm.nih.gov/pubmed/28708555
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1109/TGRS.2017.2755542
http://dx.doi.org/10.3390/rs10071068

Remote Sens. 2020, 12, 582 25 of 25

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

53.

Fang, B.; Li, Y.; Zhang, H.; Chan, J. Hyperspectral Images Classification Based on Dense Convolutional
Networks with Spectral-Wise Attention Mechanism. Remote Sens. 2019, 11, 159. [CrossRef]

Ma, W.; Yang, Q.; Wu, Y.; Zhao, W.; Zhang, X. Double-Branch Multi-Attention Mechanism Network for
Hyperspectral Image Classification. Remote Sens. 2019, 11, 1307. [CrossRef]

Woo, S.; Park, J.; Lee, J.; Kweon, I. Cbam: Convolutional block attention module. In Proceedings of the
European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8-16 October 2018;
pp- 3-19.

Mou, L.; Ghamisi, P.; Zhu, X. Deep recurrent neural networks for hyperspectral image classification. IEEE
Trans. Geosci. Remote Sens. 2017, 55, 3639-3655. [CrossRef]

Tan, K.; Hu, J.; Li, J.; Du, P. A novel semi-supervised hyperspectral image classification approach based on
spatial neighborhood information and classifier combination. ISPRS . Photogramm. Remote Sens. 2015, 105,
19-29. [CrossRef]

Zhang, M.; Gong, M.; Mao, Y.; Li, ].; Wu, Y. Unsupervised feature extraction in hyperspectral images based on
wasserstein generative adversarial network. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2669-2688. [CrossRef]
Haut, ]J.; Paoletti, M.; Plaza, J.; Li, J.; Plaza, A. Active learning with convolutional neural networks for
hyperspectral image classification using a new bayesian approach. IEEE Trans. Geosci. Remote Sens. 2018, 56,
6440-6461. [CrossRef]

Paoletti, M.; Haut, J.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, ].; Pla, F. Capsule networks for hyperspectral
image classification. leee Trans. Geosci. Remote Sens. 2018, 57, 2145-2160. [CrossRef]

Yang, S.; Feng, Z.; Wang, M.; Zhang, K. Self-paced learning-based probability subspace projection for
hyperspectral image classification. IEEE Trans. Neural Netw. Learn. Syst. 2018, 30, 630-635. [CrossRef]
Kemker, R.; Kanan, C. Self-taught feature learning for hyperspectral image classification. IEEE Trans. Geosci.
Remote Sens. 2017, 55, 2693-2705. [CrossRef]

Chen, Z; Jiang, J.; Zhou, C.; Fu, S.; Cai, Z. SuperBF: Superpixel-Based Bilateral Filtering Algorithm and Its
Application in Feature Extraction of Hyperspectral Images. IEEE Access 2019, 7, 147796-147807. [CrossRef]
Fu, J,; Liu, J.; Tian, H.; Li, Y,; Bao, Y,; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA,
16-20 June 2019; pp. 3146-3154.

Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of the ICML 2015 32nd International Conference on Machine Learning, Lile,
France, 6-11 July 2015; pp. 1-9.

Rensink, R. The dynamic representation of scenes. Vis. Cogn. 2000, 7, 17-42. [CrossRef]

Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. In Proceedings of the Advances in
Neural Information Processing Systems, Montreal, QC, Canada, 8-13 December 2014; pp. 2204-2212.

Xu, K;; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell:
Neural image caption generation with visual attention. In Proceedings of the International Conference on
Machine Learning, Lille, France, 6-11 July 2015; pp. 2048-2057.

Xu, T.; Zhang, P; Huang, Q.; Zhang, H.; Gan, Z.; Huang, X.; He, X. Attngan: Fine-grained text to image
generation with attentional generative adversarial networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018; pp. 1316-1324.

Misra, D. Mish: A Self Regularized Non-Monotonic Neural Activation Function. arXiv 2019, arXiv:1908.08681.
Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3-6
December 2012; pp. 1097-1105.

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929-1958.

Loshchilov, I.; Hutter, F. Sgdr: Stochastic gradient descent with warm restarts. arXiv 2016, arXiv:1608.03983.

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3390/rs11020159
http://dx.doi.org/10.3390/rs11111307
http://dx.doi.org/10.1109/TGRS.2016.2636241
http://dx.doi.org/10.1016/j.isprsjprs.2015.03.006
http://dx.doi.org/10.1109/TGRS.2018.2876123
http://dx.doi.org/10.1109/TGRS.2018.2838665
http://dx.doi.org/10.1109/TGRS.2018.2871782
http://dx.doi.org/10.1109/TNNLS.2018.2841009
http://dx.doi.org/10.1109/TGRS.2017.2651639
http://dx.doi.org/10.1109/ACCESS.2019.2938397
http://dx.doi.org/10.1080/135062800394667
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	HSI Classification Framework Based on 3D-Cube 
	3D-CNN with Batch Normalization 
	ResNet and DenseNet 
	Attention Mechanism 
	Spectral Attention Block 
	Spatial Attention Block 


	Methodology 
	The Framework of the DBDA Network 
	Spectral Branch with the Channel Attention Block 
	Spatial Branch with the Spatial Attention Block 
	Spectral and Spatial Fusion for HSI Classification 

	Measures Taken to Prevent Overfitting 
	A Strong and Appropriate Activation Function 
	Dropout Layer, Early Stopping Strategy and Dynamic Learning Rate Adjustment 


	Experimental Results 
	The Introduction about Datasets 
	Experimental Setting 
	Classification Maps and Categorized Results 
	Classification Maps and Categorized Results for the IP Dataset 
	Classification Maps and Categorized Result for the UP Dataset 
	Classification Maps and Categorized Results for the SV Dataset 
	Classification Maps and Categorized Result for the BS Dataset 

	Investigation of Running Time 

	Discussion 
	Investigation of the Proportion of Training Samples 
	Effectiveness of the Attention Mechanism 
	Effectiveness of the Activation Function 

	Conclusions 
	References

