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Abstract: Multifractal Detrended Cross-Correlation Analysis (MF-DCCA) was applied to time
series of global methane concentrations and remotely-sensed temperature anomalies of the global
lower and mid-troposphere, with the purpose of investigating the multifractal characteristics of
their cross-correlated time series and examining their interaction in terms of nonlinear analysis.
The findings revealed the multifractal nature of the cross-correlated time series and the existence of
positive persistence. It was also found that the cross-correlation in the lower troposphere displayed
more abundant multifractal characteristics when compared to the mid-troposphere. The source of
multifractality in both cases was found to be mainly the dependence of long-range correlations on
different fluctuation magnitudes. Multifractal Detrended Fluctuation Analysis (MF-DFA) was also
applied to the time series of global methane and global lower and mid-tropospheric temperature
anomalies to separately study their multifractal properties. From the results, it was found that the
cross-correlated time series exhibit similar multifractal characteristics to the component time series.
This could be another sign of the dynamic interaction between the two climate variables.

Keywords: multifractal detrended cross-correlation analysis; methane; temperature; climate change;
climate dynamics

1. Introduction

Climate change studies depend, to a great extent, on the examination of the relationship between
different key components of the climate system. Atmospheric temperature and methane (CH4) are two
of the most important parameters examined in climate research. Air temperature variability and trends
at various atmospheric levels represent a crucial indicator of the warming or cooling of the Earth’s
atmosphere both at a global and regional scale [1–4]. In addition, adequate and in-depth knowledge of
temperature fluctuations is essential for validating the accuracy of climate models’ simulations [5–7].
The development of a climate data record of suitable length and reliability is required for the reliable
detection of changes in the Earth’s atmospheric temperature [8]. In this respect, microwave soundings
from space have proven successful in providing long-term temperature observations of the Earth’s
atmosphere. Indeed, since the beginning of the satellite era in the late 1970s, atmospheric temperatures
have been routinely monitored from space, until 2006 by the Microwave Sounding Unit (MSU), and later
by its successor, the Advanced Microwave Sounding Unit (AMSU), which is fully operational since
1998. The MSU/AMSU microwave sounders are cross-scanning instruments onboard polar-orbiting
weather satellites measuring the profile of temperature throughout the Earth’s atmosphere. Satellite
observations of temperature at different levels of the Earth’s atmosphere are considered to be a valuable
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tool in climate change studies, since they provide high-resolution measurements with global coverage
over a multidecadal time period [9].

Methane is a greenhouse gas with a significant contribution to the anthropogenic climate change
having a strong decadal imprint [10–12]. Although it absorbs infrared radiation more effectively than
carbon dioxide (CO2) [13,14], it remains in the Earth’s atmosphere for a relatively short period of
time [15–17]. Methane is produced by both anthropogenic activities and natural processes. The greatest
natural formation of CH4 occurs in wetlands due to the metabolic activity of anaerobic microorganisms
under hypoxic conditions. CH4 production in natural wetlands is responsible for approximately 30%
of its total emissions [18]. The anthropogenic sources of CH4 include fugitive releases from solid
materials used in the energy production industry, discharges from gas mining and its supply chain, as
well as emissions that are related to agricultural activity, livestock farming, and waste treatment [19].
Anthropogenic activities are responsible for more than half of the CH4 production from land and
oceans [18]. On the other hand, the reaction with the hydroxyl radical (OH) is considered to be the
basic sink of atmospheric CH4, a process that is subject to interannual fluctuations [20]. Apart from
destroying CH4, this reaction is one of the main sources of water vapor in the stratosphere [21].
Atmospheric CH4 concentrations have been systematically monitored through a global network of
surface air-sampling stations [22]. An overall increase by a factor of 2.5 has been observed during the
industrial era [23]. However, for reasons that still remain under scientific debate [24–26], global CH4

concentrations remained stagnant for almost a decade between the late 1990s and 2006 and experienced
continuous growth ever since [27–30].

Conventional statistical methods, which include the autocorrelation function or spectral analysis,
are not always capable of describing nonlinear processes that are characterized by non-stationarities.
In addition, traditional statistical methods usually examine time series over a single time scale and
neglect time series features over multiple time scales. The development of fractal theory has fortunately
offered robust alternatives for overcoming such limitations. The application of fractal methodology
relies on the segmentation of a time series into self-similar parts and the exploration of the power-law
behavior that reflects the scaling characteristics of the system examined. Kantelhardt et al. [31]
developed the MF-DFA to determine the scaling behavior of time series with statistical properties that
vary temporally. MF-DFA is a robust methodology and a valuable tool for time series analysis from a
non-linear perspective [32–40]. Podobnik and Stanley [41] introduced the Detrended Cross-Correlation
Analysis to detect the scaling properties in the cross-correlations between synchronous non-stationary
time series. Their methodology has found application in a variety of scientific fields, including
finance, physics, and earth sciences [42–46]. Finally, Zhou [47] proposed the Multifractal Detrended
Cross-Correlation Analysis (MF-DCCA) to study the multifractal characteristics in cross-correlations of
two nonstationary signals. MF-DCCA has been used in [48] to examine the cross-correlations between
meteorological parameters and air pollution, and in [49] to explore the cross-correlations between
sunspot numbers and river flow fluctuations from a multifractal perspective. Recently, Kar et al. [50]
also used the MF-DCCA between soil radon concentrations and land surface temperature. This study
focuses on the detection of cross-correlation scaling properties of global CH4 and remotely-sensed
global temperature anomalies, both in the lower and mid-troposphere. Thus, MF-DCCA was adopted
for these two significant components of the climate system to examine whether positive correlation
exists between them throughout the Earth’s atmosphere.

2. Materials and Methods

2.1. Data

Global mean monthly air temperature anomalies throughout the lower and mid-troposphere were
used over the period 1984–2018. The temperature anomalies data were acquired from Version 6.0 of the
University of Alabama in Huntsville (UAH) satellite temperature record [51]. The UAH dataset is based
on observations performed by the MSU and its successor, the AMSU. The instruments, which operate
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between 50 and 60 GHz, use microwave radiometry, in order to detect the thermal microwave radiance
that is emitted by oxygen (O2). Measurements of molecular oxygen’s microwave emission are used
to estimate the weighted averages of temperature at three extensive atmospheric layers, namely the
lower troposphere (LT), the mid-troposphere (MT) and the lower stratosphere. In general, oxygen
concentration remains relatively constant in the atmosphere and, consequently, O2 is considered a
secure temperature tracer. Details concerning the instruments’ calibration, data adjustments, and new
processing methodologies, which are associated with the version 6.0 of the dataset, are further discussed
in [51].

Globally-averaged mean monthly data of atmospheric CH4 dry air mole fractions, expressed
as parts per billion (ppb), were also acquired from NOAA’s Earth’s System Research Laboratory
(ESRL) for the same period (1984–2018). The global average values of CH4 are estimated through
weekly measurements from a subset of ESRL’s global network of air sampling sites [52]. This subset
includes surface stations at remote sites with a well-mixed marine boundary layer (MBL), whereas
stations, where altitude and anthropogenic or natural sources and sinks could affect the observations,
are excluded. The averaging methodology [53] involves fitting a smooth curve to the data at each site
to diminish the impact of synoptic atmospheric phenomena and data gaps, plotting the latitudinal
distribution of the smoothed values for weekly time steps per year and finally calculating the global
means from the latitude plot. Detailed information regarding the data uncertainties and processing
strategy can be found in [52,54].

The CH4 values and LT and MT temperature anomalies data were initially detrended,
using polynomial regression analysis (of third order) prior to the implementation of the MF-DFA and
MF-DCCA methodologies. Furthermore, the annual and semi-annual seasonal components that were
identified in the CH4 time series were eliminated, using the well-established Wiener filter [55]. Figure 1
depicts the initial and processed time series of global CH4 and global LT and MT temperature anomalies.
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Figure 1. Time series of initial (a–c) and processed (d–f) global CH4 and temperature anomalies of the
lower troposphere (LT) and mid-troposphere (MT).

2.2. Methodology

2.2.1. Multifractal Detrended Fluctuation Analysis (MF-DFA)

The multifractal properties for each parameter were investigated with MF-DFA [31]. The basic
steps of the method are the following:
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1. The profile X(i) is firstly constructed:

X(i) =
i∑

k=1

[xk − 〈x〉] (1)

where by xk and < x > the time series and its mean value are designated, respectively. The upper bound
of summation i takes values from 1 to N, which corresponds to the length of the time series.

2. X(i) is partitioned into an integer number of NS = int(N/s) non-intersecting segments, all of
which have the same length s, i.e., time scale. However, for time series with length N not divisible
exactly by s, not all profile points will be considered. For this reason, the segmentation procedure is
also repeated for the retrograde time series of the profile. Thus, we get 2NS segments in total.

3. Within each segment, a second-order (m = 2) polynomial X̃v is fitted to the profile, representing
the local trend, where v = 1, . . . , 2NS is the number of each segment. The local trend is then subtracted
from the profile and, thus, second-order trends are eliminated from the profile.

4. The detrended variance F2(s,v) is then calculated:

F2(s, v) =


1
s

s∑
i=1

{
X[(v− 1)s + i] − X̃v (i)

}2
, f or v = 1, . . . , Ns

1
s

s∑
i=1

{
X[(N − (v−Ns)s + i] − X̃v (i)

}2
, f or v = Ns + 1, . . . , 2Ns

(2)

5. Considering the average of all segments, we get the qth order fluctuation function:

Fq(s) =

 1
2NS

2Ns∑
v=1

[
F2(s, v)

] q
2


1
q

(3)

For q = 0, we have,

F0(s) = exp

 1
4NS

2Ns∑
v=1

ln
[
F2(s, v)

] (4)

Fq(s) is determined only for s ≥ m+2. For q = 2, the MF-DFA results are identical to the DFA
procedure [56–60].

6. Fq(s) is computed for all values of s. The scaling behavior of Fq(s) is examined through the
plot of log(Fq(s)) against log(s) for each moment q. For time series that are long-range correlated,
Fq(s) follows a power law:

Fq(s) ∼ sh(q) (5)

For monofractal time series, the scaling exponent h(q) remains constant and it is equal to the
Hurst exponent H. For multifractal time series, h(q) depends strongly on q, i.e., the scaling behavior
is different for fluctuations of different magnitude. In these cases, h(q) is the generalized form of the
Hurst exponent. For q > 0, h(q) reflects the scaling characteristics of partitions with large fluctuations.
On the other hand, for q < 0, h(q) reflects the scaling properties of partitions with small fluctuations.

Ignoring the dependency of h(q) on q and supposing that h(q) = H, for values of H between 0 and
0.5, the time series is characterized by long-range negative correlation, denoting an anti-persistent
character; for H > 0.5, it is characterized by long-range positive correlation (persistent behavior);
for H = 0.5 it is considered to be uncorrelated, i.e., white noise.

Using the relationship τ(q) = qh(q)−1 and applying a Legendre transformation, we get

τ′(q) = α (6)

Additionally,
f (a) = qα− τ(q) = q[α− h(q)] + 1 (7)



Remote Sens. 2020, 12, 557 5 of 13

The entity α describes the singularity strength, while f (α) represents the subset of the time series
that is characterized by α. The plot of f (α) against α is the multifractal spectrum and it provides
insights regarding the multifractal traits of the time series. The value of f (α) reaches its peak when the
derivative of f (α) with respect to α equals zero, i.e., d f (α)/dα = 0. From Equation (7), this happens for
q = 0 and, thus, f (α)max equals 1. When the above condition is satisfied, α is called the dominant Hurst
exponent α0 and corresponds to the prevailing scaling behavior. Along with α0, the spectral width is
also a key feature. It can be estimated by fitting a second-order polynomial around α0, as proposed
by [61] and measuring the distance between αmax and αmin, the two points where the fitting curve
intersects the horizontal axis:

P(α) = A(α− α0)
2 + B(α− α0) + C (8)

A multifractal spectrum with a broad width indicates rich multifractality in the time series.
On the other hand, smaller widths are associated with a more monofractal character of the time series.
Furthermore, another aspect of the multifractal spectrum’s shape is its truncation type. The left side
of the curve corresponds to positive values of q, whereas the right side of the curve is related to the
negative values of q. Thus, a left-truncated spectrum indicates a multifractal structure with insensitivity
to the large local fluctuations. A right-truncated spectrum, on the other hand, indicates a multifractal
structure that is insensitive to the small local fluctuations. Finally, a symmetrical multifractal spectrum
suggests that the time series shows the same sensitivity to both small and large local fluctuations.

2.2.2. Multifractal Detrended Cross-Correlation Analysis (MF-DCCA)

The MF-DCCA method [47] is used to measure the long-range cross-correlations between two
time series, xk and yk, of equal length N. Steps 1–3 are similar to MF-DFA and they are applied for each
time series, separately. Subsequently, their detrended covariance is determined:

F2(s, v)

=


1
s

s∑
i=1

{
X[(v− 1)s + i] − X̃v(i)

} {
Y[(v− 1)s + i] − Ỹv(i)

}
, f or v = 1, . . . , Ns

1
s

s∑
i=1

{
X[(N − (v−Ns)s + i] − X̃v(i)

}{
Y[(N − (v−Ns)s + i] − Ỹv(i)

}
, f or v = Ns + 1, . . . , 2Ns

(9)

While considering the average of all segments, the qth order fluctuation function of the detrended
covariance is calculated:

Fq(s) =

 1
2NS

2Ns∑
v=1

[
F2(v, s)

] q
2


1
q

(10)

For q = 0, we get

F0(s) = exp

 1
4NS

2Ns∑
v=1

ln
[
F2(v, s)

] (11)

Similarly to the MF-DFA analysis, the scaling behavior of the covariance fluctuations is examined
by analyzing the plot of log(Fq(s)) versus log(s). A long-range correlation is inferred if the fluctuation
function of the covariance is related to time scale via a power law, i.e.,

Fq(s) ∼ shxy(q) (12)

In this case, hxy represents the cross-correlation exponent. For x = y, that is, the two time series are
identical, the procedure is simplified to MF-DFA. For hxy > 0.5, increasing values of one time series
are expected to be followed by increasing values of the other (persistent behavior). For 0 < hxy < 0.5,
increasing values of one time series are expected to be followed by decreasing values of the other
(antipersistent behavior). Finally, for hxy = 0.5, the two time series are considered to be long-range
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uncorrelated. The discussion concerning the multifractal spectrum characteristics, mentioned at the
MF-DFA method description, is also valid for the MF-DCCA spectrum.

Finally, the source of multifractality is an important issue that should be examined when coping
with multifractal systems. The multifractal characteristics of a time series may derive either from a broad
probability density function or from different long-range correlations. The origins of multifractality can
be investigated by randomly reordering (shuffling) the values of the two time series prior to applying
MF-DFA and MF-DCCA. If the multifractal properties are strongly preserved, then multifractality in the
time series originates from a broad probability density function. On the other hand, if the multifractality
is prominently diminished, then multifractal properties mainly originate from long-range correlations
of different fluctuation magnitudes.

3. Results and Discussion

3.1. MF-DFA Results

Herein, MF-DFA is applied on the time series of global methane and global LT and MT temperature
anomalies and the findings are discussed. Indicatively, Figure 2 illustrates the plots that are derived
from the MF-DFA analysis on the detrended and deseasonalized values of global CH4. The three
types of plots are the plot of log(Fq(s)) against log(s) (Figure 2a), the plot of h(q) against q (Figure 2b),
and the multifractal spectrum f (a) against α (Figure 2c). The time scales used both in the MF-DFA
and MF-DCCA range between 30 months (s ≈ 101.5) and N/5, i.e., 84 months (s ≈ 101.9), where, by N,
the length of the time series is represented. The values of q also range from −5 to +5 by steps of 0.1.
From the examination of Figure 2a, it is observed that log(Fq(s)) linearly increases with log(s). It is
important to mention that the slopes are different for each q; this is a sign that the time series of CH4
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Furthermore, by computing the slopes of Fq(s) for each q, the values of h(q) are estimated.
From Figure 2b, it can be observed that h(q) depends on q. This also reveals the multifractal character
of CH4. In addition, h(q) > 0.5 for all moments q, and, therefore, long-range positive correlations are
identified in the CH4 time series. Moreover, it can be noted that the values of h(q) for q < 0 are greater
than the corresponding values for q > 0. This result permits to assume that the small fluctuations (q < 0)
display more abundant multifractal features and, therefore, a greater level of complexity than the large
fluctuations (q > 0). The application of MF-DFA to the time series of both LT and MT temperature
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anomalies produced similar results. The presence of scaling features and multifractality in temperature
time series is well documented [38,39,62,63].

Significant information concerning the multifractal properties can also be acquired from the
singularity spectra of CH4, LT, and MT temperature anomalies (Table 1). The values of α0 for the
three climate variables are 1.714, 1.387, and 1.441, respectively. Thus, α0 > 0.5 for all parameters,
which signifies that they have positive long-range correlations. The corresponding w values are 0.790,
1.108, and 1.128, respectively, which reflects that the temperature anomalies time series show higher
levels of multifractality when compared to CH4. This finding further highlights the importance of
examining their cross-correlation scaling properties for the study of the climate system dynamics.
The global temperature is regulated by global energy balance and its fluctuations are influenced by
multi-scale complex interactions of atmospheric processes and a number of climate factors (e.g., solar
radiation, greenhouse gasses, aerosols, planetary albedo, and clouds) [64–67]. On the other hand,
methane affects the climate directly and indirectly via chemical reactions [68].

Table 1. Multifractal characteristics for CH4 and temperature anomalies of the global LT and MT along
with their cross-correlations (CC).

Parameter CH4
Temperature

Anomalies (LT)
Temperature

Anomalies (MT) CC (LT) CC (MT)

α0 1.714 1.387 1.441 1.558 1.582
w 0.790 1.108 1.128 0.887 0.757

3.2. MF-DCCA Results

3.2.1. Lower Troposphere

In this section, the results of the application of the MF-DCCA procedure are presented. MF-DCCA
was initially applied to reveal the multifractal structure of the cross-correlations between global CH4

and temperature anomalies of the global LT. Figure 3a portrays the way that log(Fq(s)) changes with
log(s) for a multitude of moments q. It can be observed from the plot that log(Fq(s)) increases linearly
with log(s). Therefore, Fq(s) and s are related with a power-law mechanism. The values of hxy(q) were
obtained, in a similar way to the MF-DFA procedure using a linear fit. Figure 3b depicts the graphical
representation of hxy(q) against q. It is clear that hxy(q) decreases with q. This is a sign of the presence
of multifractality in the cross-correlations. All of the hxy(q) values were found to be greater than 0.5,
which designates the positive persistence of the cross-correlated time series. At this point, it should be
noticed that CH4 global concentration increases evoke a temperature increase. However, according
to [69,70], the increase of temperature due to global warming is also likely to increase methanogenesis
in wetlands, which is, among others, a significant source in the CH4 global cycle. Increased natural
CH4 emissions from wetlands may trigger further increases in global temperature within this feedback
loop. It can also be observed from Figure 3b that the values of hxy(q) are greater for negative moments q.
Therefore, it is inferred that the cross-correlated time series show a stronger multifractal character for
small fluctuations in contrast to large fluctuations. Figure 3c provides further information regarding
the multifractal properties of the cross-correlated time series. More precisely, the parabolic shape and
the multifractal spectral width confirm the presence of rich multifractality. Additionally, no prominent
signs of truncation are evident from a visual inspection of the plot. The symmetric shape of the
parabola denotes that the cross-correlated time series exhibits equal sensitivity to the small and large
local fluctuations. Table 1 depicts the main multifractal characteristics and their values. It can be
observed that both values of αo and w of the cross-correlated time series lie between the corresponding
values of the initial time series.



Remote Sens. 2020, 12, 557 8 of 13

1.5 1.6 1.7 1.8 1.9
log(s )

-0.4

-0.2

0

0.2

0.4

0.6

0.8

lo
g

(F
q

(s
))

(a)

q=-5
q=-2
q=0
q=2
q=5

1.5 1.6 1.7 1.8 1.9
log(s )

-0.4

-0.2

0

0.2

0.4

0.6

0.8

lo
g

(F
q

(s
))

(d)

q=-5
q=-2
q=0
q=2
q=5

-5 -4 -3 -2 -1 0 1 2 3 4 5
q

1.3

1.4

1.5

1.6

1.7

1.8

h
xy

(q
)

(b)

-5 -4 -3 -2 -1 0 1 2 3 4 5
q

1.3

1.4

1.5

1.6

1.7

1.8

h
x
y

(q
) (e)

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

f
(

)

(c)

0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

f
(

)

(f)

Figure 3. Multifractal Detrended Cross-Correlation Analysis (MF-DCCA) results between global CH4

and global LT (left) and MT (right) temperature anomalies; (a,d) Plots of log(Fq(s)) against log(s);
(b,e) Plot of hxy(q) against q; and, (c,f) Multifractal spectrum f (a) against a.

3.2.2. Mid-Troposphere

MF-DCCA was also applied between global CH4 and temperature anomalies of the global MT
to explore the cross-correlations of global CH4 and temperature anomalies at higher levels in the
Earth’s atmosphere and compare their multifractal characteristics with those of the lower troposphere.
A power-law mechanism can be distinguished from the inspection of the log(Fq(s)) plot against log(s)
(Figure 3d). Furthermore, hxy(q) decreases with increasing q (Figure 3e). Thus, hxy(q) depends on q,
which is a strong manifestation of multifractality. Moreover, hxy(q) > 0.5 for all values of q, which
implies the existence of positive persistence in accordance to the previous findings. Finally, the shape
of the multifractal spectrum (Figure 3f) verifies the existence of multifractality. However, a notable
distinction between Figure 3c,f is that the former is right truncated, i.e., the cross-correlations between
global CH4 and global mid-tropospheric temperature anomalies have a structure that displays a
greater sensitivity to the large local fluctuations. In addition, the spectral width in Figure 3f is smaller
(w = 0.757) when compared to the width estimated in Figure 3c (w = 0.887) (Table 1). From this finding,
it can be deduced that the temporal fluctuations of the cross-correlations between global methane and
global temperature anomalies possess richer multifractal properties and, therefore, greater complexity
in the LT than in the MT. This could be associated with the different degree of interaction between CH4

and temperature in the LT and MT as well as the above-mentioned different multifractal characteristics
of LT and MT temperature.

3.2.3. Origins of Multifractality

In the preceding section, we verified the multifractal structure of the global CH4 concentrations and
the global LT and MT temperature anomalies along with their cross-correlations. Herein, the possible
origins of the exhibited multifractality are investigated. Generally, multifractality stems either from
long-range correlations or a broad probability density function. The time series of CH4 and temperature
anomalies were randomly reordered prior to the implementation of MF-DFA and MF-DCCA to detect
the origins of the multifractal characteristics of the examined time series. The shuffling procedure
was repeated 100 times and the average values of the produced parameters were calculated. From
Figures 4a and 5a,d, it can be seen that the plot of log(Fq(s)) against log(s) consists of straight parallel
lines, which implies that the multifractal structure in the shuffled time series is destroyed. In addition,
the dependence of h(q) and hxy(q) on q is very small. Their values in all shuffled time series are close to
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0.5 (Figures 4 and 5b,e). This also highlights the absence of rich multifractal properties. Furthermore,
the width of the multifractal spectra is greatly reduced in the shuffled time series (Figures 4c and 5c,f).
In Table 2, the values of w and α0 for the shuffled time series are represented. Thus, while taking the
above findings into account, it is deduced that a random shuffling of the values of the two climate
parameters and their cross-correlations significantly weakens their multifractality. Consequently, it can
be assumed that multifractality mainly stems from different long-range correlations for small and large
fluctuations for the examined time scales.
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Figure 5. Multifractal Detrended Cross-Correlation Analysis (MF-DCCA) plots for the shuffled series
between global CH4 and global LT (left) and MT (right) temperature anomalies; (a,d) Plot of log(Fq(s))
against log(s); (b,e) Plot of hxy(q) against q; and, (c,f) Multifractal spectrum f (a) against a.
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Table 2. Multifractal characteristics for the shuffled time series of global CH4 and the temperature
anomalies of the global LT and MT and their cross-correlations (CC).

Parameter CH4
Temperature

Anomalies (LT)
Temperature

Anomalies (MT) CC (LT) CC (MT)

α0 0.508 0.527 0.508 0.524 0.500
w 0.288 0.265 0.280 0.229 0.317

4. Conclusions

In this work, global CH4 and remotely-sensed tropospheric temperature anomalies are analyzed
using the MF-DCCA to study the multifractality of their cross-correlations. Initially, the LT and MT
temperature anomalies were found to exhibit stronger multifractality when compared to global CH4.
Furthermore, the values of the exponents h(q) of CH4 and tropospheric temperature along with the
exponent hxy(q) of their cross-correlated time series, are all larger than 0.5 for all moments q, which is
a clear indication of their positive persistent behavior. This indicates that the impact of past events
has an influence on the succeeding values of the parameters. The spectral width is also indicative
of the multifractality of the examined time series. Another important finding is that the α0 value of
the cross-correlated time series lies between the α0 values of the two variables. Similarly, the value
of the spectral width of the cross-correlated time series is between the corresponding values of the
two parameters. This could be another sign of the interaction between the two climate variables
from a nonlinear perspective. The scaling behavior of the cross-correlation between CH4 and the
temperature anomalies of the global MT is weaker when compared to the LT. Finally, the outcome
of the shuffling procedure in the cross-correlated time series suggest that multifractality originates
mainly from different long-range correlations for small and large fluctuations.
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