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Abstract: This work aims at addressing two issues simultaneously: data compression at input space
and semantic segmentation. Semantic segmentation of remotely sensed multi- or hyperspectral
images through deep learning (DL) artificial neural networks (ANN) delivers as output the
corresponding matrix of pixels classified elementwise, achieving competitive performance metrics.
With technological progress, current remote sensing (RS) sensors have more spectral bands and
higher spatial resolution than before, which means a greater number of pixels in the same area.
Nevertheless, the more spectral bands and the greater number of pixels, the higher the computational
complexity and the longer the processing times. Therefore, without dimensionality reduction,
the classification task is challenging, particularly if large areas have to be processed. To solve this
problem, our approach maps an RS-image or third-order tensor into a core tensor, representative of
our input image, with the same spatial domain but with a lower number of new tensor bands using a
Tucker decomposition (TKD). Then, a new input space with reduced dimensionality is built. To find
the core tensor, the higher-order orthogonal iteration (HOOI) algorithm is used. A fully convolutional
network (FCN) is employed afterwards to classify at the pixel domain, each core tensor. The whole
framework, called here HOOI-FCN, achieves high performance metrics competitive with some
RS-multispectral images (MSI) semantic segmentation state-of-the-art methods, while significantly
reducing computational complexity, and thereby, processing time. We used a Sentinel-2 image data
set from Central Europe as a case study, for which our framework outperformed other methods
(included the FCN itself) with average pixel accuracy (PA) of 90% (computational time∼90s) and nine
spectral bands, achieving a higher average PA of 91.97% (computational time ∼36.5s), and average
PA of 91.56% (computational time ∼9.5s) for seven and five new tensor bands, respectively.

Keywords: fully convolutional network; semantic segmentation; spectral image; tensor decomposition

1. Introduction

Remote sensing RS images are of great use in many earth observation applications, such as
agriculture, forest monitoring, disaster prevention, security affairs, and others [1]. The recent and
upcoming availability of multispectral and hyperspectral satellites alleviates specific tasks, such as
detection, classification, and semantic segmentation. In semantic segmentation, also called pixel-wise
classification, each pixel in an RS image is assigned to one class [1]. This classification becomes easier
when higher dimensional spectral information is acquired [1]. Spectral systems split, by physical filters,
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the incoming radiance, and provide a vector with spectral reflectance values called spectral signatures.
The remotely sensed spectral signatures enable a precise interpretation and recognition of different
elements of interest covering the earth surface [2].

Supervised and unsupervised classification of RS images is a very active research area in spectral
analysis [3]. To reduce the data dimensionality, and to concentrate the information into a fewer
number of features, a once widely used approach was to define various indices to facilitate the
classification of diverse land cover [4]. For instance, normalized difference vegetation index (NDVI) [5]
and normalized difference water index (NDWI) [6] use a combination of visible to near infrared
(NIR) spectral reflectance respectively, to assess land cover, vegetation vitality, and water status [4].
Additionally, supervised machine learning techniques such as random forest [7], support vector
machine (SVM) [8,9], decision trees [10], and ANN [11] have been used for RS spectral image
classification and have achieved very high accuracy rates [12]. More recently, CNN has been used
for semantic segmentation of multispectral images (MSI), promising to be an alternative for solving
semantic segmentation issues [13].

The high spectral redundancy of spectral images produces a huge unnecessary number of
computations in classification/segmentation algorithms. It is therefore advisable to implement these
algorithms together with a dimensionality reduction preprocessing [14]. Spectral data are stored
as three-dimensional arrays, so it seems possible to use tensor decomposition (TD) methods [15]
for preprocessing, to reduce high redundancy while avoiding information loss [14]. Different to
matrix-based decomposition algorithms, such as principal components analysis (PCA) [16] and SVD,
TD approach allows to treat spectral data as third-order tensor preserving the spatial information,
which sustains the pixel-wise classification task.

In this work we aim addressing two main issues: data compression at input space, and semantic
segmentation; i.e., pixel-wise classification of RS imagery. We introduce a spectral data preprocessing
that preserves tensor structure and reduces information loss through tensor algebra [17], with the
ultimate aim of reducing processing time while keeping high accuracy in further semantic segmentation
CNNs. This will produce MSI compression, preserving the spatial domain while reducing the
spectral domain, decomposing the original tensor into a core tensor with same order but much lower
dimensionality multiplied by a matrix in each mode in the context of tensor algebra [17]. The core
tensor, with lower rank than the original data, is used as the input data to the semantic segmentation
ANN instead of the MSIs, decreasing the number of computations and in turn the execution time.
Previous experimental results demonstrate high performance in semantic segmentation with circa 10×
speed up in execution time [18].

The proposed framework can be applied to multispectral, hyperspectral, and even multitemporal
datasets. As a particular case, in this study we performed experiments using RS multispectral dataset
from the european space agency (ESA) program Sentinel-2 [19] with five classes (soil, water, vegetation,
cloud, and shadow).

1.1. Related Work

In recent years, spectral data for earth surface classification has been a very active research area.
Methods proposed by Kemker et al. [11,20], Hamida et al. [21], and López et al. [18] use CNNs for
RS-CNNMSI pixel-wise classification. Nevertheless, processing raw spectral data with deep learning
(DL) algorithms is computationally very expensive. Wang et al. [22] introduced a salient band selection
method for HSIs by manifold ranking, and Li et al. [23] proposed a band selection method from the
perspective of spectral shape similarity analysis of RS-HSIs to obtain less computational complexity.
However, some surface materials differentiate from each other in specific bands, so cutting off spectral
bands negatively affected further classification tasks.

More recently, the use of tensor approach for spectral images compression has been introduced;
see Zhang et al. [24]. Many authors adopted dimensionality reduction algorithms, such as PCA [16] and
singular value decomposition (SVD), for spectral image compression. Other authors have made efforts
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to reduce the computational cost in CNNs for image classification by using TD algorithms [25,26].
Astrid et al. in [25] proposed a CNN compression method based on CPD and the tensor power method
where they achieved significant reduction in memory and computational cost. Chien et al. in [26]
presents a tensor-factorized ANN, which integrates TD and ANNs for multi-way feature extraction
and classification. Nevertheless, although the idea is to compress data in order to reduce computational
cost and processing time, these works compress or decompose the data of the hyper-parameters within
the network, which causes the training of the semantic segmentation or classification network to be
slower due to the change of the weights in the tensor decomposition.

Recently, three works close to our research [27–29] were published. In [27] An et al. proposed an
unsupervised tensor-based multiscale low rank decomposition (T-MLRD) method for hyperspectral
image dimensionality reduction, and Li et al. in [28] proposed a low-complexity compression approach
for multispectral images based on convolution neural networks CNNs with nonnegative Tucker
decomposition (NTD). Nevertheless, these methods reduce the tensor in every dimension, which
is self-defeating for a segmentation CNN. Besides, the non-negative decomposed tensor proposed
in [28] causes slower convergence in DL algorithms. In [29] An et al. proposed a tensor discriminant
analysis (TDA) model via compact feature representation, wherein the traditional linear discriminant
analysis was extended to tensor space to make the resulting feature representation more discriminant.
However, this approach still leads to a degradation of the spatial resolution, which disturbed the CNN
performance. See Table 1 for a summary of the related works.

Table 1. Related work in spectral imagery semantic segmentation.

Reference Input Decomposition Reduction Classifier

Li, S. et al. [23] (2014) HSI - Band selection SVM
Zhang, L. et al. [24] (2015) HSI TKD Spatial-Spectral -
Wan, Q. et al. [22] (2016) HSI - Band selection SVM/kNN/CART
Kemke, R. et al. [11] (2017) MSI - - CNN
Hamida, A. et al. [21] (2017) MSI - - CNN
Li, J. et al. [28] (2019) MSI NTD-CNN Spatial-spectral -
An, J. et al. [27] (2019) HSI T-MLRD Spatial-spectral SVM/1NN
An, J. et al. [29] (2019) HSI TDA Spatial-spectral SVM/1NN
Our framework (2019) MSI HOOI Spectral FCN

1.2. Contribution

The contribution of this work is summarized into three main points:

1. RS-CNNMSI or -HSI, or third order tensors are compressed in the spectral domain through TKD
preprocessing, preserving the pixel spatial structure and obtaining a core tensor representative
of the original. These core tensors, with less new tensor bands, which belong to subspaces of
the original space, build the new input space for any supervised classifier at pixel level, which
delivers the corresponding prediction matrix of pixels classified element-wise. This approach
achieves high or competitive performance metrics but with less computational complexity,
and consequently, lower computational time.

2. This approach outperforms other methods in normalized difference indexes, PCA, particularly
the same FCN with original data. Each core tensor is calculated using the HOOI algorithm,
which achieves high orthogonality degree for the core tensor (all-orthogonality) and for its
factor matrices (column-wise orthogonal); besides, it converges faster than others, such as
TUCKALS3 [17].

3. The efficiency of this approach can be measured by one or more performance metrics, e.g., pixel
accuracy (PA), as a function of the number of new tensor bands, orthogonality degree of the
factor matrices and the core tensor, reconstruction error of the original tensor, and execution time.
These results are shown in Section 6: Experimental Results.
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The remainder of this work is organized as follows. Section 2 introduces tensor algebra notation
and basic concepts to familiarize the reader with the symbology used in this paper. Section 3 presents
the problem statement of this work and the mathematical definition. In Section 4, CNN theory is
described for classification and semantic segmentation. Section 5 presents the framework proposed
for compression and semantic segmentation of spectral images. Experimental results are presented in
Section 6. Finally, Sections 7 and 8 present a discussion and conclusions based on the results obtained
in the experiments.

2. Tensor Algebra Basic Concepts

For this work we used the conventional tensor algebra notation [15]. Hence, scalars or zero order
tensors are represented by italic lowercase letters; e.g., a. Vectors or first order tensor are denoted by
boldface lowercase letters; e.g., a. Matrices or tensor of order two are denoted by boldface capital
letters, e.g., A, and three or higher order tensors by boldface Euler script letters, e.g., AAA. In a N-order
tensor AAA ∈ RI1×···×IN , where R represents the set of real numbers, In indicates the size of the tensor in
each mode n = {1, . . . , N}. An element of AAA is denoted with indices in lowercase letters, e.g., ai1 ...iN

where in denotes the n-mode of AAA [17]. A fiber is a vector, the result of fixing every index of a tensor
but one, and it is denoted by a:i2i3 , ai1 :i3 , and ai1i2—for column, row, and tube fibers respectively for
a third order tensor instance. A slice is a matrix, the result of fixing every index of a tensor but two,
and it is denoted by Ai1 ::, A:i2 :, and A::i3 , or more compactly, Ai1 , Ai2 , and Ai3 for horizontal, lateral,
and frontal slices respectively for a third order tensor instance. Finally, A(n) denotes a matrix element
from a sequence of matrices [17].

It is also necessary to introduce some tensor algebra operations and basic concepts used in later
explanations. These notations were taken textually from [17].

2.1. Matricization

The mode-n matricization is the process of reordering the elements of a tensor into a matrix along
axis n and it is denoted as A(n) ∈ RIn×∏m 6=n Im .

2.2. Outer Product

The outer product of N vectors XXX = a(1) ◦ · · · ◦ a(N) produces a tensor XXX ∈ RI1×···×IN

where ◦ denotes the outer product and a(n) denotes a vector in a sequence of N vectors
and each element of the tensor is the product of the corresponding vector elements; i.e.,
xi1i2 ...iN = a(1)i1

. . . a(N)
iN

.

2.3. Inner Product

The inner product of two tensors AAA,BBB ∈ RI1×···×IN is the sum of the products of their entries;
i.e., 〈AAA,BBB〉 = ∑I1

i1=1 · · ·∑
IN
iN=1 ai1 ...iN bi1 ...iN .

2.4. N-Mode Product

It means the multiplication of a tensor AAA ∈ RI1×···×IN by a matrix U ∈ RJ×In or vector u ∈ RIn in
mode n; i.e., along axis n. It is represented by BBB = AAA×n U, where BBB ∈ RI1×···×In−1×J×In+1×···×IN [17].

2.5. Rank-One Tensor

A tensor XXX ∈ RI1×···×IN is rank one if it can be written as the outer product of N vectors;
i.e., XXX = a(1) ◦ · · · ◦ a(N).
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2.6. Rank-R Tensor

The rank of a tensor rank(XXX) is the smallest number of components in a CPD; i.e., the smallest
number of rank-one tensors that generate XXX as their sum [17].

2.7. N-Rank

The n-rank of a tensor XXX ∈ RI1×···×IN denoted rankn(XXX), is the column rank of X(n); i.e., the
dimension of the vector space spanned by the mode-n fibers. Hence, if Rn ≡ rankn(XXX) for n = 1, . . . , N,
we can say that XXX has a rank− (R1, . . . , RN) tensor.

All the tensor algebra notation presented until this point is summarized in Table 2 for
simpler regarding.

Table 2. Tensor algebra notation summary

AAA, A, a, a Tensor, matrix, vector and scalar respectively
AAA ∈ RI1×···×IN N-order tensor of size I1 × · · · × IN .
ai1 ...iN An element of a tensor
a:i2i3 , ai1 :i3 , and ai1i2 : Column, row and tube fibers of a third order tensor
Ai1 ::, A:i2 :, A::i3 Horizontal, lateral and frontal slices for a third order tensor
A(n), a(n) A matrix/vector element from a sequence of matrices/vectors
A(n) Mode-n matricization of a tensor. A(n) ∈ RIn×∏m 6=n Im

XXX = a(1) ◦ · · · ◦ a(N) Outer product of N vectors, where xi1i2 ...iN = a(1)i1
. . . a(N)

iN
〈AAA,BBB〉 Inner product of two tensors.
BBB = AAA×n U n-mode product of tensor AAA ∈ RI1×···×IN by a matrix U ∈ RJ×In along axis n.

2.8. Tucker Decomposition (Tkd)

The TKD can be seen as a form of higher-order PCA [17]. This method decomposes a tensor
XXX ∈ RI1×···×IN into a core tensorGGG ∈ RJ1×···×JN multiplied by a matrix along each mode n = 1, . . . , N as

XXX ≈ GGG×1 U(1) · · · ×N U(N) (1)

where the core tensor preserves the level of interaction for each factor or projection matrix
U(n) ∈ RIn×Jn . These matrices are usually, but not necessarily, orthogonal, and can be thought of as the
principal components in each mode [17] (see Figure 1). Jn represents the number of components in the
decomposition; i.e., the rank− (R1, . . . , RN). We compute rank− (R1, . . . , RN), where rankn(XXX) = Rn

for every n-mode, which generally does not exactly reproduce XXX. Starting from (1), the reconstruction
of an approximated tensor can be given by where X̂̂X̂X is the reconstructed tensor. Then, we can acquire
the core tensor GGG by the multilinear projection

GGG = XXX×1 U(1)T · · · ×N U(N)T, (2)

where U(n)T denotes the transpose matrix of U(n) for
n = 1, . . . , N. The reconstruction error ξ can be computed as

ξ(X̂̂X̂X) = ||XXX− X̂̂X̂X||2F, (3)

where || · ||F represents the Frobenius norm. To effectively compress data, the reconstructed lower-rank
tensor X̂̂X̂X should be close to the original tensor XXX; this can be reached by an algorithm as HOOI, which
is iterative, and it is described in Section 5.1.

X̂̂X̂X = GGG×1 U(1) · · · ×N U(N), (4)
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Core Tensor

Projec�on matrices

Figure 1. Tucker decomposition for a third-order tensor.

3. Problem Statement and Mathematical Definition

Spectral images are third-order arrays, which provide not only spatial, but also spectral features
from RS scenes of interest. These properties aid CNNs to easily find features to characterize
the behaviors of different materials over the earth’s surface. However, the large amount of
spectral data causes huge computational load, and therefore, large processing time using machine
learning algorithms.

It is important to preserve the three-dimensional array structure of the RS spectral input image,
in order to effectively classify each pixel of the image. In RS multi- or hyperspectral images, the spectral
bands are highly correlated, and contain lot of redundancy. Therefore, we propose a TKD-based method
as a preprocessing step to provide a better suited input for the semantic segmentation based on CNN.
This will also considerably reduce high number of parameters, and in turn, processing time during
training and testing. Our problem statement for RS spectral images can be described as follows.

3.1. Problem Statement

Given a pair (XXX, Y), where tensor XXX ∈ RI1×I2×I3 denotes a CNNMSI or HSI, and Y ∈ RI1×I2 its
corresponding ground truth matrix for a specific number of classes C, find another pair (GGG, Ŷ), where
the tensor GGG ∈ RJ1×J2×J3 , used for classification, is representative of XXX, and Ŷ is its associated matrix
of predicted classes; preserving the spatial-domain J1 = I1, J2 = I2 but with fewer new tensor bands,
i.e., J3 < I3, achieving higher or competitive performance metrics for pixel-wise classification, reducing
the dimensionality, and therefore, decreasing computational complexity in the classification task.

3.2. Mathematical Definition

We can describe the problem stated in previous subsection mathematically as the following
optimization problem

min
GGG,U(1),U(2),U(3)

||XXX−GGG×1 U(1) ×2 U(2) ×3 U(3)||2F

subject to U(n) ∈ StIn×Jn and StIn×Jn ≡ {U(n) ∈ RIn×Jn | U(n)TU(n) = I(n)},
J1 = I1, J2 = I2 preserving the pixel domain,

J3 < I3 reducing spectral dimensionality

ξ(X̂̂X̂X) ≤ ψ mesaure of how representative of X̂̂X̂X G isG isG is

(5)

where ψ denotes an error threshold defined depending on the accuracy or performance metrics
required for each application and StIn×Jn represents the Stiefel manifold [30]. Embedding GGG into the
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objective function, as Lathhauwer proved in [31] Theorems 3.1, 4.1, and 4.2, (5), can be written by
the equivalent under the same constraints as (5).

max
U(1),U(2),U(3)

||XXX×1 U(1)T ×2 U(2)T ×3 U(3)T||2F (6a)

where GGG = XXX×1 U(1)T ×2 U(2)T ×3 U(3)T (6b)

The subtensorsGGGin of the core tensorGGG satisfy the all-orthogonality property [32], which establishes
that two subtensors GGGin=α and GGGin=β are all-orthogonal

〈GGGin=α,GGGin=β〉 = 0 (7)

for all possible values of n, α, and β subject to α 6= β, and the ordering property:

‖GGGin=1‖F ≥ ‖GGGin=2‖F ≥ · · · ≥ ‖GGGin=IN‖F. (8)

Our optimization problem can be solved by several algorithms. In this work, the HOOI algorithm
was selected (described in Section 5.1), due to its convergence and orthogonality performance. Once
a tensor GGG is obtained, a classifier f that belongs to the hypothesis space H maps input data GGG into
output data Ŷ; that is

Ŷ = f (GGG) (9)

where f is a pixel-wise classifier. In this paper, a FCN for semantic segmentation was used as classifier
due to the need of classify each pixel of the input image and to its performance in pixel accuracy.
The FCN used in this work is described in Section 4.

4. Convolutional Neural Networks (CNNs)

CNNs are supervised feed-forward DL-ANNs for computer vision. The idea of applying a sort of
convolution of the synaptic weights of a neural network through the input data yields to a preservation
of spatial features, which alleviates the hard task of classification and in turn semantic segmentation.
This type of ANN works under the same linear regression model as every machine learning (ML)
algorithm. Since images are three dimensional arrays, we can use tensor algebra notation to describe
the input of CNNs as a tensor AAA ∈ RI1×I2×I3 , where I1, I2, and I3 represent height, width, and depth
of the third order array respectively; i.e., the spatial and spectral domain of an image. We can write
generally the linear regression model used for ANNs as

ŷ = σ (Wg + b) (10)

where ŷ represents the output prediction of the network; σ denotes an activation function; g is the
input dataset; W and b are the matrix of synaptic weights and the bias vector, respectively. These
parameters are adjustable; i.e., their values are modified every iteration looking for convergence to
minimize the loss in the prediction through optimization algorithms [33]. For simplicity, the bias vector
can be ignored, assuming that matrix W will update until convergence independently of another
parameter [33]. Considering that the input dataset to a CNN is a multidimensional array, we can
represent (9) and (10) using tensor algebra notation as

ŶYY = σ (WWWGGG) (11)

where ŶYY represents the prediction output tensor of the ANN (in our case, a second order tensor or
matrix Ŷ),GGG is the input dataset, andWWW is a K1×K2× F1 tensor called filter or kernel with the adaptable
synaptic weights. Different to conventional ANN, in CNNs, WWW is a shiftable square tensor is much
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smaller in height and width than the input data, i.e., K1 = K2 and Ks << Is for s = 1, 2; F1 denotes the
number of input channels; i.e., F1 = I3. For hidden layers, instead of the prediction tensor ŶYY, the output
is a matrix called activation map M ∈ RI1×I2 , which preserves features from the original data in
each domain. Actually, it is necessary to use much kernels WWW( f2) as activation maps, with different
initialization values to preserve diverse features of the image. Hence, we can also define activation
maps as a tensor MMM ∈ RI1×I2×F2 where F2 denotes the number of activation maps produced by each
filter (see Figure 2). Kernels are displaced through the whole input image as a discrete convolution
operation. Then, each element of the output activation map mi1i2 f2 is computed by the summary of the
Hadamard product of kernel WWW( f2) and a subtensor from the input tensor GGG centered in position (i, j)
and with same dimensions of WWW, as follows

mi1i2 f2 = σ

[
K1

∑
k1=1

K2

∑
k2=1

F1

∑
f1=1

wk1,k2, f1 gi1+k1−o1,i2+k2−o2, f1

]
(12)

where mi1i2 f2 denotes the value of the output activation map f2 at position i1, i2; σ represents the
activation function; and o1 and o2 are offsets in spatial dimensions which depend on the kernel size,
and equal K1+1

2 and K2+1
2 respectively (see Figure 2).

Input image

Kernel

Ac�va�on maps

ReLU

Figure 2. Convolutional layer with a K1 × K2 × F1 × F2 kernel. Input channels F1 must equal the
spectral bands I3. To preserve original dimensions at the output, zero padding is needed [18]. Output
dimensions also depend on stride S = 1 to consider every piece of pixel information and to preserve
original dimensions.

An ANN is trained by using iterative gradient-based optimizers, such as Stochastic gradient
descent, Momentum, RMSprop, and Adam [33]. This drive the cost function L(WWW) to a very low
value by updating the synaptic weights WWW. We can compute the cost function by any function that
measures the difference between the training data and the prediction, such as Euclidean distance or
cross-entropy [10]. Besides, the same function is used to measure the performance of the model during
testing and validation. In order to avoid overfitting [33], the total cost function used to train an ANN
combines one of the cost functions mentioned before, plus a regularization term.

J(WWW) = L(WWW) + R(WWW), (13)

where J(WWW) denotes the total cost function and R(WWW) represents a regularization function. Then, we
can decrease J(WWW) by updating the synaptic weights in the direction of the negative gradient. This is
known as the method of steepest descent or gradient descent.

WWW′ =WWW− α∇WWW J(WWW), (14)
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where WWW′ represents the synaptic weights tensor in next iteration during training, α denotes the
learning rate parameter, and ∇WWW J(WWW) the cost function gradient. Gradient descent converges when
every element of the gradient is zero, or in practice, very close to zero [10].

CNNs has been successfully used in many image classification frameworks. This variation in
architecture from other typical ANN models yields the network to learn spatial and spectral features,
which are highly profitable for image classification. Besides, FCNs, constructed with only convolutional
layers are able to classify each element of the input image; i.e., they yield pixel-wise classification, or in
other words, semantic segmentation.

5. Hooi-Fcn Framework

In this work we propose a TKD-CNN-based framework called HOOI-FCN, which maps the
original high-correlated spectral image into a low-rank core tensor, preserving enough statistical
information to alleviate image pixel-wise classification. The aim is to improve performance while
reducing processing time in semantic segmentation ANNs by compressing CNNMSI third-order
tensors. Applying TD methods, relevant information is preserved, mainly acquired from the
spectral domain, convenient for the classification FCN. This novel framework is in summary, a two
step structure composed by an HOOI TD and a FCN for semantic segmentation described below
(see Figure 3).

5.1. Higher Order Orthogonal Iteration (HOOI) for Spectral Image Compression

Quoting Kolda, “The truncated higher order singular value decomposition (HOSVD) is not
optimal in terms of giving the best fit as measured by the norm of the difference, but it is a good
starting point for an iterative alternating least square algorithm” [17]. HOOI is an iterative algorithm to
compute a rank-(R1, . . . , RN) TKD. Let XXX ∈ RI1×···×IN be an N-th order tensor and R1, . . . , RN be a set
of integers satisfying 1 ≤ Rn ≤ In, for n = 1, . . . , N; the rank− (R1, . . . , RN) approximation problem
is to find a set of In × Rn matrices U(n) column-wise orthogonal and a R1 × · · · × RN core tensor GGG
by computing

min
GGG,U(1),...,U(N)

||XXX−GGG×1 U(1) · · · ×N U(N)||2, (15)

and from matrices U(n), where U(n)TU(n) = I(n), the core tensor GGG is found to satisfy (2) [34]. For a
third-order tensor decomposition, we can rewrite (4) as

X̂̂X̂X = GGG×1 U(1) ×2 U(2) ×3 U(3) (16)

where X̂̂X̂X denotes the reconstruction approximation of the input spectral image XXX, GGG is the J1 × J2 × J3

core tensor, and U(1) ∈ RI1×J1 , U(2) ∈ RI2×J2 and U(3) ∈ RI3×J3 are the projection matrices. Algorithm 1
shows HOOI for a third order tensor decomposition, but the extension to higher order tensors is
straightforward. Thus, with Algorithm 1 we compute the tensor GGG with rank-(J1, J2, J3) for each
spectral image as third-order tensor.
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Projec�on matrices

MSI input

Core Tensor

Seman�c Segmenta�on

HOOI Tucker 
Decomposi�on
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Figure 3. The big picture of the fast semantic segmentation framework proposed, with a
fully convolutional network encoder-decoder architecture and a preprocessing HOOI tucker
decomposition stage.

Algorithm 1: HOOI for MSI. ALS algorithm to compute the core tensor GGG.

Function HOOI(XXX, R1, R2, R3):
initialize U(n) ∈ RIn×Rn for n = 1, 2, 3 using HOSVD;
repeat

for n = 1, 2, 3 do
DDD← XXX×1 U(1)T ×2 U(2)T ×3 U(3)T

U(n) ← Rn leading left singular vectors of D(n)

end
until fit ceases to improve or maximum iterations exhausted;
GGG← XXX×1 U(1)T ×2 U(2)T ×3 U(3)T

Output: GGG, U(1), U(2), U(3)

5.2. Fcn for Semantic Segmentation of Spectral Images

We use a FCN model for semantic segmentation based on the proposed by Badrinarayanan et al.
in [35] called Segnet. Each core tensor GGG obtained after decomposition, is the input to the SegNet
for training and testing the network. Hence, the feature activation maps MMM ∈ RI1×I2×F2 for each
hidden layer of the SegNet encoder-decoder FCN are computed by displacing the filters WWW through
the whole input core tensor in strides S = 1. It is worth noting that kernel WWW is a four-order tensor
WWW ∈ RK1×K2×F1×F2 , where K1 and K2 represent its spatial dimensions height and width; F1 its depth,
i.e., the spectral domain; and F2 denotes the number of filters used to produce F2 activation maps
(Figure 2). We express this convolution operation as

M( f2) = σ (WWW�GGG) , (17)

where M( f2) represents each activation map for f2 = 1, . . . , F2, and each value mi1i2 f2 is computed as
in (12). σ denotes the rectified linear unit (ReLU) [33] function; i.e., σ(z) = max {0, z}. Symbol � is
used in this paper to represent the convolution; i.e., the whole operation applied in convolutional
layers (see Figure 2). These activation maps are the input for the subsequent layer in the SegNet FCN.

The last layer is used the softmax activation function [33] to produce a distribution probability,
and so, predict values relating each pixel to one of the C classes of interest. Hence, for the last layer we
rewrite (17) as

Ŷ = δ (WWW�MMM) , (18)

where Ŷ represents the output prediction, MMM is the feature activation maps at previous layer, δ the
softmax activation function, and WWW the filter or kernel tensor with the adaptable synaptic weights.

The output of the FCN is a matrix Ŷ with the same spatial dimensions as the input, with a value
of the most likely class for each pixels. Figure 4 shows the architecture of the SegNet model used in
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this work. Experiments present the behavior of this FCN with and without data compression in the
spectral domain.

Conv + ReLU + Batch Norm

Pooling

Upsampling

So�max

Figure 4. SegNet FCN. Encoder-decoder architecture with convolutional, pooling, and upsampling
layers with their corresponding activation functions and batch normalization [33].

6. Experimental Results

6.1. Our Data

As case study, a CNNMSI dataset with 100 RS images was used for training and 10 for testing,
all of them from central Europe with 128× 128 pixels. These images are partitions of the original
Sentinel-2 images without modification and all semi-manually labeled, and with abundant presence of
the elements of interest. In Table 3 the 10 scenarios correspond to our 10 images for testing. We used
only nine from the 13 available spectral bands from visible, NIR to SWIR wavelengths. Bands 2, 3, 4,
and 8 have 10 m resolution, and bands 5, 6, 7, 11, and 12 have 20 m (oversampled to 10 m [18]). These
bands provide decisive information for discrimination of different classes. Bands 1, 9, and 10 were
dismissed because of their lower spatial resolution of 60 m. Band 8A, also with 20 m spatial resolution,
was dismissed due to wavelength overlapping with band 8. It is worth mentioning that the framework
proposed in this work can be applied to any kind of spectral image and multitemporal datasets [36].

6.1.1. The Training Space

For training, the input data ws a tensor XXX ∈ R128×128×9×100, where 128 × 128 is the spatial
dimensions, 9 is the number of spectral bands, and 100 is the number of images used for training.
Although the number of images seems low, taking into account that we work at pixel-domain, the real
number of training points or vectors is high. Indeed, our FCN for semantic segmentation was trained
with 128× 128× 100 = 1638400 samples or vectors. To test whether the size of the data for training
was sufficiently high, a smaller subtensor of XXX, XXXp ∈ R128×128×9×80, equivalent to 1310720 points or
vectors, was used for a second training obtaining, for the same test set, an average PA of 91.48%;
i.e., only 0.08% less than with 100 images, 91.56%. We also tested these results by a third training
with an extended dataset of 120 images, XXXq ∈ R128×128×9×120 equivalent to 1966080 vectors, and we
found only a slight variation of +0.01% in the PA (91.57%), while the execution time for the training
increased significantly.

6.1.2. The Labels

Our labels were acquired using the scene classification algorithm developed by the ESA [19],
and subsequently modified, semi-manually, misclassified pixels.
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6.1.3. The Testing Space

For testing, our input data were a 128 × 128 × 9 × 10 tensor; i.e., 10 different scenarios for
pixel-wise classification, whose results are shown in Table 3. That is, the framework classifies
128 × 128× 10 = 163, 840 pixels.

6.1.4. Downloading Data

Due to the big size of the data, format npy was used. Data are available in the link Dataset.

• The training dataset is in the file S2_TrainingData.npy.
• Labels of the training dataset are in the file S2_TrainingLabels.npy.
• A true color representation of the training dataset can be found in S2_Trainingtruecolor.npy.
• The testing dataset and the corresponding labels are in the file S2_TestData.npy.
• Labels of the test dataset are in the file S2_TestLabels.npy.
• Last, a true color representation of the test data can be found in S2_Testtruecolor.npy.

Code will be delivered by the corresponding author upon request for research purposes only.

6.2. Classes

The CNNMSI dataset has been semi-manually labeled for supervised semantic segmentation of
C = 5 classes; vegetation, water, cloud, cloud shadow, and soil. These classes were selected according
to their impact in RS research areas such as agriculture, forest monitoring, population growth analysis,
and disaster prevention. It is worth mentioning that the detection of clouds and cloud shadows is an
important prerequisite for almost all RS applications.

6.3. Metrics

6.3.1. Pixel Accuracy (PA)

We used the PA metric to compute a ratio between the amount of correctly classified pixels and
the total number of pixels as

PA =
∑C

c=0 pcc

∑C
c=0 ∑D

d=0 pcd
(19)

where we have a total of C classes and pii is the amount of pixels of class c correctly assigned
to class c (true positives), and pcd is the amount of pixels of class c inferred to belong to class d
(false positives). We can see in Table 3 the PA values for our proposed framework in comparison with
other state-of-the-art methods. From Table 3, we can see that:

• Indexes NDI are important references for pixel-wise classification but they show one of the lowest
PAs and the highest computational time.

• Classic PCA with five components shows the lowest PA, although the computational time is
similar to HOOI-FCN with five tensor bands.

• Due to the poor results of NDI and classical PCA, FCN (with raw data and nine components) is a
good reference in terms of performance and computational time, and HOOI-FCN with seven and
five tensor bands achieves the highest PA and the lowest computational time.

The PA and the computational times for FCN and HOOI-FCN with different numbers of tensor
bands are shown in Figure 5.

https://cinvestav365-my.sharepoint.com/:f:/g/personal/deni_torres_cinvestav_mx/EnooDpgKei5IuXQtPQoAoboB0T3XybbSoL0iXwAAU1zGig?e=gUUmN7
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Figure 5. Box and whiskers plot of the pixel accuracy (PA) for the 10 testing scenarios shown in Table 3.

6.3.2. Relative Mean Square Error (rMSE)

In order to compute the reconstruction error of the tensor XXX for the implementation of HOOI,
the rMSE was used:

rMSE
(
X̂XX
)
=

1
Q

Q

∑
q=1

∥∥∥X̂XXq −XXXq

∥∥∥2

F∥∥XXXq
∥∥2

F

, (20)

where XXXq represents the q-th CNNMSI from our dataset with Q MSIs and X̂XXq its corresponding
reconstruction computed by (4).

Figure 6a shows the behavior of the reconstruction rMSE for our 100 training images for
J3 = 1, . . . , I3. With this metric we can quantify how good the decomposition represents the input
data. The rMSE is also one of the decisive parameters to set the value of the rank3(XXX) = J3. To preserve
a high performance in the pixel-wise classification task, we set the threshold ψ to a value for which the
rMSE error is less than or equal to 0.05%, since deeper decomposition decrease the PA to less than 90%,
as we can see in Figure 5. For a rank decomposition (128, 128, 5) our rMSE is 0.04%, which means that
we reduce the dimensionality of our input data to almost half with a very low loss in performance.
Besides, comparing this error with matrix based methods as PCA, we can see that our tensor-based
decomposition produces lower rMSE for every value of J3 except for the first one.

6.3.3. Orthogonality Degree of Factor Matrices and Tensor Bands

A way to analyze the algorithm HOOI efficiency is computing the orthogonality degree of the core
tensor GGG and the projection matrices U(n). As we mentioned in Section 3, we use the all-orthogonality
property proposed in [32] and described in (7) and (8) to evaluate the orthogonality degree of our core
tensors. Table 4 shows the results of the inner products between each tensor band with the others from
one of our training images. We can see that these values are practically zero, which means that our
bands are orthogonal. Furthermore, we can see in Figure 6b that (8) is fulfilled.

It is also important to know the orthogonality degree in our projection matrices. From Theorem 2
in [32] we start from the condition U(n)TU(n) = I(n); then, we create a vector ô where the components
are the trace of each resulting matrix, i.e., tr(I(n)), and compute the MSE with respect to a vector rank
o = (J1, J2, J3) as

MSE(ô) =
3

∑
q=1

∥∥oq − ôq
∥∥2

F . (21)

Using this orthogonality analysis, we obtain MSE values very close to zero, e.g., in order of 10−20,
which means that projection matrices present a high orthogonality degree.
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Table 3. Quantitative results for 10 test MSIs running in a NVIDIA GeForce GTX 1050 Ti GPU, Intel
core i7 processor, 8 Gb RAM, SSD 128 Gb, and HDD 1 Tb. Values in blue and red represent the highest
PA and the lowest time, respectively.

Scenarios
NDI FCN9 PCA-FCN5 HOOI-FCN7 HOOI-FCN5

PA (%) Time (s) PA (%) Time (s) PA (%) Time (s) PA (%) Time (s) PA (%) Time (s)

1 88.20 363.03 91.05 101.21 85.12 9.85 91.12 37.84 90.63 9.13
2 84.75 412.89 92.21 87.54 84.60 9.83 90.12 36.54 89.23 9.06
3 92.34 307.56 93.67 93.45 88.32 10.00 93.75 36.02 93.22 9.03
4 90.08 382.31 91.72 98.92 86.08 9.73 92.85 36.79 92.18 8.93
5 87.14 400.12 89.91 103.57 86.36 9.12 92.13 35.88 91.84 9.67
6 89.75 312.15 90.95 95.21 87.65 10.15 92.95 37.23 92.71 10.09
7 85.73 373.84 89.92 107.13 88.47 9.63 93.06 35.56 92.59 9.55
8 91.49 308.00 90.17 95.45 85.78 9.76 90.23 36.34 90.12 9.14
9 89.38 397.92 90.74 80.33 87.91 10.26 92.50 37.09 92.18 10.11

10 90.01 352.66 88.52 112.85 84.32 9.88 91.17 35.53 90.97 9.85

Average 88.87 361.04 90.88 97.56 86.46 9.82 91.97 36.48 91.56 9.45

(a) (b)

Figure 6. TD metrics (a) Reconstruction error computed by the relative mean square error (rMSE) for
J3 = 1, ..., I3 and (b) norm of each subtensor GGGin , relative to the norm of the first tensor band GGGi1 .

(a)

(b) (c)

Figure 7. Box and whiskers plots of the behavior of five classes of interest: (a) in the original spectral
domain, (b) the tensor band domain after decomposition for nine bands, and (c) the new tensor band
domain for five bands.
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6.4. Fcn Specifications

We used hyperparameter search [33] to set the learning rate to 1 × 10−3. The model was
run 100 epochs introducing 100 CNNMSI from our dataset. We used the Adam optimizer as our
optimization algorithm. Xavier initialization was used for setting the initial values of the weights in
the model. The Segnet FCN was used as the base model, since it achieves very high performance
metrics in semantic segmentation [35].

6.5. Hardware/Software Specifications

Our framework was implemented using Python 3.7 with Tensorflow-GPU version 1.13.
Experiments were run with a NVIDIA GeForce GTX 1050 Ti GPU. The processor used was an
Intel core i7 with 8GB RAM, 128 GB SSD, and 1 TB HDD.

Table 4. Inner products of each tensor band with the others from one image of our dataset decomposed
by HOOI.

Tensor Band 1 2 3 4 5 6 7 8 9

1 - 2.7× 10−4 8.0× 10−5 7.0× 10−5 4.1× 10−5 9.7× 10−6 2.0× 10−5 2.6× 10−5 8.6× 10−5

2 - - 3.1× 10−7 8.5× 10−6 4.9× 10−6 3.2× 10−6 3.6× 10−6 6.0× 10−6 4.8× 10−6

3 - - - 8.4× 10−7 3.9× 10−7 4.4× 10−7 4.1× 10−7 1.8× 10−9 1.0× 10−6

4 - - - - 5.0× 10−8 2.6× 10−7 1.2× 10−8 5.3× 10−8 1.2× 10−7

5 - - - - - 3.7× 10−9 8.3× 10−9 2.6× 10−8 8.9× 10−9

6 - - - - - - 1.4× 10−8 7.2× 10−8 2.1× 10−7

7 - - - - - - - 1.2× 10−8 1.3× 10−9

8 - - - - - - - - 1.6× 10−7

Figure 8. Comparison of the PA and the computational time of FCN with the proposed HOOI-FCN
(seven and five bands) for semantic segmentation. See Table 3.
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Cloud Vegeta�onSoil WaterShadow

(a) (b) (c)

(d) (e) (f)

(g)

Figure 9. Qualitative results testing a scene of interest with abundant vegetation, and presence of
shadows and clouds. (a) Original true color scenario of 128× 128 pixels, in Central Europe: (b) five
classes semi-manually labeled ground truth of the MSIs, (c) classification with an unsupervised
normalized difference index (NDI) fusion algorithm, and (d) output prediction after 100 epochs in the
FCN used for this work without data compression. (e) PCA-FCN framework output; (f) prediction
of the whole framework HOOI-FCN proposed in this work; and (g) PA behavior of the HOOI-FCN
versus number of tensor bands.

Cloud Vegeta�onSoil WaterShadow

(a) (b) (c)

(d) (e) (f)

(g)

Figure 10. Qualitative results testing a scene of interest with abundant vegetation, and presence of
shadows and clouds. (a) Original true color scenario of 128× 128 pixels, in Central Europe: (b) five
classes semi-manually labeled ground truth of the MSIs, (c) classification with an unsupervised
normalized difference index (NDI) fusion algorithm, and (d) output prediction after 100 epochs in the
FCN used for this work without data compression. (e) PCA-FCN framework output; (f) prediction
of the whole framework HOOI-FCN proposed in this work; and (g) PA behavior of the HOOI-FCN
versus number of tensor bands.
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Cloud Vegeta�onSoil WaterShadow

(a) (b) (c)

(d) (e) (f)

(g)

Figure 11. Qualitative results testing a scene of interest with abundant presence of soil. (a) Original true
color scenario of 128× 128 pixels, in Central Europe: (b) five classes semi-manually labeled ground
truth of the MSIs, (c) classification with an unsupervised normalized difference index (NDI) fusion
algorithm, and (d) output prediction after 100 epochs in the FCN used for this work without data
compression. (e) PCA-FCN framework output; (f) prediction of the whole framework HOOI-FCN
proposed in this work; and (g) PA behavior of the HOOI-FCN versus number of tensor bands.

Cloud Vegeta�onSoil WaterShadow

(a) (b) (c)

(d) (e) (f)

(g)

Figure 12. Qualitative results testing a scene of interest with abundant presence of clouds. (a) Original
true color scenario of 128× 128 pixels, in Central Europe: (b) five classes semi-manually labeled ground
truth of the MSIs, (c) classification with an unsupervised normalized difference index (NDI) fusion
algorithm, and (d) output prediction after 100 epochs in the FCN used for this work without data
compression. (e) PCA-FCN framework output; (f) prediction of the whole framework HOOI-FCN
proposed in this work; and (g) PA behavior of the HOOI-FCN versus number of tensor bands.

7. Discussion and Comparison with Other Methods

Original spectral bands (Figure 7a) were transformed or mapped into new tensor bands
(Figure 7b,c) which preserved features of our classes of interest within the first tensor bands, avoiding
the use of all the original spectral bands, thereby reducing computational load in further applications.

From Figure 7b,c, we can see that, for the classes of interest in this case study, the error margin
selected ψ is indeed a good parameter to restrict the rank in the third mode, since the spectral
information for differentiation of these five classes is a greater proportion than the first elements of the
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spectral domain. Nevertheless, if a smaller value for J3 were used, there would be a trade off in the
performance of the semantic segmentation.

Quantitative results in Figures 8–12 and Table 3 present a comparison of the processing
time and PA from our proposed framework with a model without any preprocessing data
decomposition algorithm and with a normalized differentiation index based method in different
scenarios. The accuracy values obtained by the proposed HOOI-FCN framework are better in
overall than those obtained by the other methods under same conditions and scenarios, but with
a quite significant decrease of the processing time, in the order of 10 times. It is worth noting that
our HOOI-FCN framework with seven and five tensor bands outperforms in PA to the same FCN
with the original nine bands. This means that the decomposition produces better features for the
classification ANN.

In the confusion matrix presented in Figure 13, we can see the accuracy of the framework proposed
HOOI-FCN for each class and the overall accuracy. Rows correspond to the output class or prediction
and the columns to the truth class. Diagonal cells show the correctly classified pixels. Off-diagonal cells
show where the errors come from. The rightmost column shows the accuracy for each predicted class,
while the bottom row shows the accuracy for each true class. It is important to note that vegetation
and cloud classes are close to 95% accuracy, while for water and cloud shadows have less than 90%
accuracy. The latter can be caused by the lack of samples with a greater contribution of these elements
in the training dataset as well as the similarity of these elements to others in the scenes.

Figure 13. Confusion matrix of the proposed framework. The main diagonal indicates the pixel
accuracy for each class in % for the ten selected scenarios.

8. Conclusions

Any RS-MSI or -HSI or third-order tensor image is mapped by the TKD to another tensor, called
core tensor representative of the original, preserving its spatial structure, but with fewer tensor bands.
In other words, a new subspace embedded in the original space was found and it was be used as the
new input space for the task of pixel-level classification or semantic segmentation. Due to the success
of DL for image processing, our approach employs an FCN network as the classifier, which delivers
the corresponding prediction matrix of pixels classified element-wise.

The efficiency of the proposed higher order orthogonal iteration (HOOI)-FCN framework is
measured by metrics such as pixel accuracy (PA) or recall as a function of the number of new tensor
bands, which is defined by the reconstruction error computed by the rMSE. Another important
parameter in the TKD is the orthogonality degree of each component, i.e., the core tensor and the factor
matrices, computed by the inner products of each band with the others.
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Our experimental results for a case study show that the proposed HOOI-FCN framework for
CNNMSI semantic segmentation reduced the number of spectral bands from nine to seven or five
tensor bands, for which PA values converge or are very close to the maximum.

State-of-the-art methods, such as normalized difference indexes, PCA with five principal
components, and the same FCN network with nine original bands, with an average pixel accuracy
90% (computational time ∼90s), were outperformed by the HOOI-FCN framework, which achieved a
higher average pixel accuracy of 91.97% (and computational time ∼36.5s), and average PA of 91.56%
(computational time 9.5s) for seven and five new tensor bands respectively.

These results are very promising in RS, since the use of other algorithms for the calculation
of core tensors and a deeper data analysis of weights and initialization of the convolutional neural
network (CNN) can increase performance metrics of the segmentation for RS spectral data. Some
limitations for a better validation of this approach are: denoising is not included; there is a need for
new cases to enhance the input space; use of a greater number of classifiers is needed.

Finally, this research allows us to emphasize two main, relevant points. (1) RS images are
characterized by a large number of bands, high correlation between neighbor bands, and high data
redundancy; (2) besides, they are corrupted by several noises. Some issues related to our approach
remain open.

Open Issues

• Compression affects not only the input data, but also the CNN network to reduce
overall complexity and/or create new ANN architectures for specific RS-CNNMSI or HSI
image applications.

• Instead of the HOOI algorithm, use greedy HOOI and other algorithms that determine the core
tensor for a broad comparison.

• For classification purposes, use other machine learning algorithms, such as a SVM or
random forest.

• Increase the input data with more scenarios and their corresponding ground truth to a deeper
study of the behaviors of several classifiers, including those based on ANN, and the scope of the
TD methods.

• Denoise the original input data for an improvement of the new subspace of reduced dimensionality.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN artificial neural network
CNN convolutional neural network
CPD canonical polyadic decomposition
ESA european space agency
DL deep learning
FCN fully convolutional network
GPU graphics processing unit
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HSI hyperspectral image
HOOI higher order orthogonal iteration
HOSVD higher order singular value decomposition
MSE mean square error
ML machine learning
MSI multispectral image
NIR near-infrared
NTD nonnegative Tucker decomposition
NDVI normalized difference vegetation index
NDWI normalized difference water index
PA pixel accuracy
PCA principal components analysis
ReLU rectified linear unit
rMSE relative mean square error
RS remote sensing
SVD singular value decomposition
SWIR short wave infrared
SVM support vector machine
T-MLRD tensor-based multiscale low rank decomposition
TD tensor decomposition
TDA tensor discriminant analysis
TKD tucker decomposition
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