
remote sensing  

Article

Identification of Dominant Factors Affecting Soil
Erosion and Water Yield within Ecological Red
Line Areas

Jiangbo Gao 1,* , Yuan Jiang 1,2, Huan Wang 3 and Liyuan Zuo 1,2

1 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences, Beijing 100101, China; jiangy.18s@igsnrr.ac.cn (Y.J.);
zuoly.17s@igsnrr.ac.cn (L.Z.)

2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
3 College of Urban and Environmental Sciences, Peking University, Beijing 100871, China;

1906593362@pku.edu.cn
* Correspondence: gaojiangbo@igsnrr.ac.cn

Received: 6 December 2019; Accepted: 22 January 2020; Published: 26 January 2020
����������
�������

Abstract: Soil conservation and water retention are important metrics for designating key ecological
functional areas and ecological red line (ERL) areas. However, research on the quantitative
identification of dominant environmental factors in different ecological red line areas remains
relatively inadequate, which is unfavorable for the zone-based management of ecological functional
areas. This paper presents a case study of Beijing’s ERL areas. In order to objectively reflect the
ecological characteristics of ERL areas in Beijing, which is mainly dominated by mountainous areas,
the application of remote sensing data at a high resolution is important for the improvement of model
calculation and spatial heterogeneity. Based on multi-source remote sensing data, meteorological and
soil observations as well as soil erosion and water yield were calculated using the revised universal
soil loss equation (RUSLE) and integrated valuation of ecosystem services and tradeoffs (InVEST)
model. Combining the influencing factors, including slope, precipitation, land use type, vegetation
coverage, geomorphological type, and elevation, a quantitative attribution analysis was performed
on soil erosion and water yield in Beijing’s ERL areas using the geographical detector. The power
of each influencing factor and their interaction factors in explaining the spatial distribution of soil
erosion or water yield varied significantly among different ERL areas. Vegetation coverage was the
dominant factor affecting soil erosion in Beijing’s ERL areas, explaining greater than 30% of its spatial
heterogeneity. Land use type could explain the spatial heterogeneity of water yield more than 60%.
In addition, the combination of vegetation coverage and slope was found to significantly enhance
the spatial distribution of soil erosion (>55% in various ERL areas). The superposition of land use
type and slope explained greater than 70% of the spatial distribution for water yield in ERL areas.
The geographical detector results indicated that the high soil erosion risk areas and high water yield
areas varied significantly among different ERL areas. Thus, in efforts to enhance ERL protection, focus
should be placed on the spatial heterogeneity of soil erosion and water yield in different ERL areas.

Keywords: ecological red line; soil erosion; water yield; remote sensing data; quantitative attribution;
geographical detector

1. Introduction

Ecosystem services refer to products and benefits obtained by humans from the ecosystem,
and constitute the basis for maintaining human survival and development [1,2]. In recent years,
research on ecosystem services has achieved marked progress, primarily in fields such as ecosystem
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service evaluation, trade-off and interaction mechanisms, ecological security patterns and payments
for ecosystem services [3–6]. Research on ecosystem services has been conducted in a wide variety
of areas, including ecologically vulnerable areas such as the Tibetan Plateau, the Loess Plateau,
and Karst areas [7–9], and various ecosystems, including wetlands [10], forests [11], and grasslands [12].
Additionally, research also focuses on animal and plant species protection areas, including nature
reserves [13] and national parks [14]. Soil erosion and water yield are important indicators for
measuring ecosystem services. Research on soil erosion and water yield has mainly focused on
spatio-temporal patterns using models and the identification of impact factors through correlation
analysis [15–20]. However, studies aimed at the quantitative identification of dominant factors and
interaction factors, and indicating high soil erosion risk areas and high water yield areas remain rare.

Currently, scientifically understanding the importance of ecosystems in areas of high ecological
functional levels and evaluating the impact of environmental factors on ecosystem services will
help to identify the leading ecological environment problems and foster ecological civilization
construction [21]. China is currently implementing an ecological red line system with an aim to prohibit
any industrialization and urbanization activity through strict management measures, and it is pushing
to protect and restore ecological functions in vulnerable ecological areas to ensure safety in people’s
living environments [22]. The delineation of the ecological red line constitutes spatial boundaries
and management limits that must be strictly protected to safeguard national ecological security and
to clarify key national or regional ecological security areas. Analyzing possible ecological problems
in these areas can provide a scientific basis for industrial distribution, environmental protection,
and prevent environmental degradation caused by human activities [23]. In Nationwide Major
Function Oriented Zoning, published by China in 2011, 25 national key ecological functional areas
were designated. Later, Opinions of the State Council of China on Strengthening Major Environmental
Protection Work stated that ecological red line would be designated in China’s key ecological functional
areas, terrestrial and marine vulnerable ecological areas. The Guide for Designating Ecological
Red Line, which was published by the Ministry of Ecology and Environment of China in 2017,
provided instructions for designating a national ecological red line. China has designated more
than a quarter of its territory, exceeding 2.4 million km2 in total, within ecological red line areas.
Now, the ecological red line has become a national policy and regional framework for ecological
protection and development. Although some studies have been conducted from an ecosystem service
perspective to designate, monitor, and analyze ERL areas at various scales [24,25], research on the
identification of dominant factors affecting metrics of great ecological significance, such as soil erosion
and water yield, particularly the quantitative identification of various environmental influencing factor
interactions, remains inadequate. This is unfavorable for the implementation of ecological red line
protection work, improvement, and enhancement of ecological functions noted in Several Opinions on
Designating and Strictly Maintaining Ecological Red Line.

The available research primarily focuses on the overall evolution of the characteristics in key
ecological functional areas and ERL areas [23,26–28]. For example, Zhai [23] analyzed the changes of
soil and water conservation and biodiversity threat level in Hainan Island of China. In comparison,
there is little research aimed at the quantitative identification of dominant factors affecting soil erosion
and water yield within and across ERL areas. Multisource remote sensing data are advantageous
due to their heterogeneity, dynamics, and high accuracy, and they have become core basic data for
evaluating regional scale ecosystem services and analyzing the underlying mechanisms of ecosystem
services. With the development of remote sensing technology, high resolution remote sensing data
can meticulously reflect the situation of the land surface. Combined with RUSLE and InVEST
model, it can accurately simulate soil erosion and water yield in ecological red line areas. In this
study, soil erosion and water yield in Beijing’s ERL areas were simulated using RUSLE and InVEST
model based on multi-source remote sensing data as well as meteorological and soil observations.
Additionally, the geographical detector was employed for the quantitative attribution of environmental
factors affecting key ecosystem services in the soil conservation and water retention ERL areas.
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The dominant factors affecting soil erosion and water yield were identified by the geographical detector
with the goal of providing scientific support for ecological protection and management work in
ERL areas.

2. Materials and Methods

2.1. Study Area

Beijing’s ERL areas are distributed predominantly in the western and northern mountainous areas
and encompass a total area of 4290 km2, representing 26.1% of Beijing’s total area. Based on their dominant
ecological function, Beijing’s ERL areas are categorized into four types, specifically: soil conservation ERL
areas (primarily distributed in the Xi Mountain area in the west); water retention ERL areas (primarily
distributed in the Jundu Mountain area in the north, namely Miyun Reservoir, Huairou Reservoir and the
upstream of Guanting Reservoir); biodiversity maintenance ERL areas (primarily distributed in the Baihua
and Dongling Mountain in the west, the Song, Yudu and Haituo Mountain in the northwest, and the
Labagoumen area in the north); important river and wetland ERL areas distributed in important rivers,
lakes and wetlands, including the primary rivers (Yongding, Chaobai, Beiyun, Daqing and Jiyun River),
three reservoirs (Miyun, Huairou and Gongting Reservoirs) and one channel (Beijing-Miyun Diversion
Channel). The Beijing ERL areas map was obtained by Beijing Municipal Ecological Environment Bureau
(sthjj.beijing.gov.cn), and obtained Figure 1 by digitization. In this study, Beijing’s ERL areas, with soil
conservation and water retention being the dominant functions, were selected for dominant factors affecting
soil erosion and water yield (Supplementary: Table S1).
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Figure 1. The spatial distribution of Beijing and ERL areas.

2.2. Data Sources

Remote sensing data include digital elevation model (DEM) data, land use data, normalized
difference vegetation index (NDVI) data, and geomorphological type data (Supplementary Figure S1).
DEM, NDVI, and land use data were all used for model calculation. NDVI data for the study area
were obtained using the following method. Landsat 8 OLI images of 24 scenes were selected as the
data source. These remote sensing images were preprocessed (radiometric calibration, atmospheric
correction and orthorectification). Then, NDVI was calculated by a linear combination of reflectance

sthjj.beijing.gov.cn
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values in the near-infrared and red band. Finally, NDVI data were obtained after such postprocessing
treatments (outlier processing, data mosaicking, target area cropping, projection transformation).
In addition, taking the GF-1 images as the main data source, images have been preprocessed (projection
transformation, geometric correction, image fusion) to improve the applicability of remote sensing data
and the ability to identify ground objects. Then, according to the object-oriented classification method,
land use type data were extracted through the processes (image segmentation, attribute calculation,
feature selection, object classification). The interpretation data were verified based on the sample data
collected on the land surface. As a result, the accuracy of the interpretation results was recognized by the
Beijing Municipal Bureau of Ecology and Environment with the resolution of 15 m. Daily meteorological
data from 35 meteorological stations in Beijing and its surrounding areas were acquired (Supplementary
Figure S2). Precipitation data were interpolated using professional interpolation software of ANUSPLIN
(Supplementary Figure S3). For ANUSPLINE software, the SPLINE command was first executed
to generate a list file, residual file, optimal parameter file, surface coefficient file, and covariate
error information. Then LAPGRD command was used to generate the surface coefficient file and
covariate error information, thereby obtaining the precipitation interpolation file and the standard
error surface file. Mechanical composition data for soil were extracted from the China Soil Database
(Version 1.1) of the Harmonized World Soil Database (HWSD) which were used to model calculation.
Watershed distribution and soil depth data were also used to model calculation. In addition to the
above data, we used geomorphological type data for the quantitative attribution of environmental
factors. The data requirements and description are shown in Table 1.

Table 1. Data requirements and description.

Data Sources Resolution

DEM Google Earth 9 m
Watershed Beijing Municipal Ecological Environment Bureau

Geomorphological Type Resource and Environment Data Cloud Platform
(http://www.resdc.cn) 1:1,000,000

Landsat 8 OLI images (2015, 2018) USGS (https://glovis.usgs.gov/) 30 m

GF-1 images (2015, 2018) China Centre for Resources Satellite Data and
Application (http://www.cresda.com/CN/) 8 m

Meteorological (2015, 2018) National Meteorological Information Center of China
(http://data.cma.cn/) Monthly

Mechanical Composition Cold and Arid Regions Sciences Data Center at
Lanzhou (http://westdc.westgis.ac.cn/) 1 km

Soil Depth Soil Data Center, National Science & Technology
Infrastructure of China (http://soil.geodata.cn) 1 km

2.3. Method

2.3.1. RUSLE Model

The RUSLE model [29] is a simulation model developed by the United States Department of
Agriculture for predicting annual average soil erosion, one of the most widely used soil erosion
prediction models in the world. The RUSLE model is expressed as follows:

A = R×K × LS×C× P (1)

where A is annual soil erosion rate
(
t ha−1yr−1

)
, R is precipitation erosivity factor

(
MJ mm ha−1h−1yr−1

)
,

K is erodibility factor
(
t ha h MJ−1mm−1ha−1

)
, LS is slope length and steepness factor, C is vegetation

cover land management factor, and P is the conservation and supporting factor.

http://www.resdc.cn
https://glovis.usgs.gov/
http://www.cresda.com/CN/
http://data.cma.cn/
http://westdc.westgis.ac.cn/
http://soil.geodata.cn
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The soil erodibility factor quantitatively describes the extent of soil erodibility. In this study,
the soil erodibility factor was calculated using the erosion productivity impact proposed by Williams
et al. [30].

K =
{
0.2 + 0.3e[0.0256Wd(1−Wi/100)]

}
×

( Wi
Wi+Wt

)0.3
×

[
1− 0.25Wc

Wc+e(3.72−2.95Wc)

]
×

[
1− 0.7Wn

Wn+e(−5.51+22.9Wn)

] (2)

Wn = 1−
Wd
100

(3)

where Wd is sand fraction (%), Wi is silt fraction (%), Wt is clay fraction (%), and Wc refers to the content
of soil organic carbon (%).

The precipitation erosivity factor describes the extent of potential precipitation impact on soil
erosion. In this study, the precipitation erosivity factor was calculated using Arnoldus [31] modified
version of the precipitation erosivity equation proposed by Wischmeier.

R =
12∑

i=1

(
1.735× 101.5×log

P2
i

P −0.8188
)

(4)

where Pi and P represent monthly mean and annual average precipitation, respectively, and i represents
the month, with the values of 1, 2, ..., 12.

The slope length and steepness factor affects soil erosion mainly in two areas, namely, slope length
(L) and slope (S). In this study, the LS factor was calculated based on 9-m DEM data downloaded from
Google Earth, using Zhang’s [32] modified version of the method proposed by McCool [33,34] for
calculating the LS factor as follows:

LS =
(
λ

22.13

)α
(5)

α =

(
β

β+ 1

)
(6)

β =
sinθ

3× (sinθ)0.8 + 0.56
(7)

S =


10.8× sinθ+ 0.03(θ < 9%,λ > 4.6m)

16.8× sinθ− 0.5(θ ≥ 9%,λ > 4.6m)

3× (sinθ)0.8 + 0.56 (λ ≤ 4.6m)

(8)

where λ is the slope length, α is the variable length-slope exponent, β is the coefficient of variation
with slope gradient, and θ is the slope.

Vegetation is the most sensitive factor affecting soil erosion [35]. Vegetation coverage has a
relatively strong inhibiting effect on soil erosion. Thus, vegetation coverage is strongly correlated with
the vegetation cover land management (C) value. In this study, C value was calculated based on 30 m
NDVI data using the method proposed by Cai [36] which has been used in Hebei Province, North
China plain, and Chaobai River Basin in Beijing, China [37–39].

C =


1 f = 0

0.6508− 0.3436lg f 0 < f ≤ 78.3%
0 f > 78.3%

(9)

f =
NDVI −NDVImin

NDVImax −NDVImin
(10)
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where f is the vegetation coverage (%), C is the vegetation cover and management factor, NDVI is the
normalized vegetation index, and NDVImax and NDVImin are the maximum and minimum values of
the normalized vegetation index.

Different soil and water conservation measures have different value of conservation and supporting
factor (P), P є[0, 1]. In this case, 0 means no erosion, and 1 means no water and soil conservation
measures. There is no unified calculation method and standard for the P value. In this study, P value
was assigned to each land use type based on the study by Xu [39] which is suitable in North China
plain. Table 2 summarizes the assigned p values.

Table 2. p value of different land use types in Beijing.

Land Use
Type

Paddy
Field

Dry
Land

Garden
Plot Grassland Forest Waste

Grassland Water Construction
Land

Bare
Land

p Value 0.35 0.6 0.8 1 1 1 0 0 1

2.3.2. InVEST Model

The widely used InVEST model can comprehensively and dynamically evaluate ecosystem service
functions on multiple scales [40]. Based on the Budyko coupled water–energy balance assumption [41],
the water-yield module uses annual average precipitation data to calculate the water yield. Based on
such factors of the study area as climate, soil depth, and land use type, water yield was calculated by
subtracting the actual evapotranspiration from the precipitation in a specific grid cell as follows:

Y(x) =
(
1−

AET(x)
P(x)

)
· P(x) (11)

where AET(x) and P(x) are the actual annual evapotranspiration and actual precipitation in the grid
cell x, respectively. AET(x)/P(x) was calculated using the Budyko coupled water–energy balance
assumption equation as follows:

AET(x)
P(x)

= 1 +
PET(x)

P(x)
−

[
1 +

(
PET(x)

P(x)

)ω]1/ω

(12)

where AET(x)/P(x) is the Budyko dryness index, which is defined as the ratio of potential
evapotranspiration PET(x) to precipitation P(x), and PET(x) is the annual potential evapotranspiration
(unit: mm) in each grid cell x, which is calculated using the standard Penman–Monteith equation.

PET(x) = Kc(lx) · ET0(x) (13)

ω(x) = Z
AWC(x)

P(x)
+ 1.25 (14)

where ET0(x) is the reference evapotranspiration in pixel x, Kc(lx) is the plant evapotranspiration
coefficient associated on pixel x, which is largely determined by vegetative characteristic, while Z is a
seasonality parameter that represents seasonal precipitation distribution and other hydrogeological
characteristics. AWC(x) is the plant-available water content.

2.3.3. Geographical Detector

Geographical detector is a statistical method for studying spatial heterogeneity and determining
relevant influencing factors, and is currently extensively used in such fields as the natural [42],
social [43] and environmental science [44] and human health [45]. The basic principle of geographical
detector is that if the sum of variances in the subareas of an area is smaller than the total variance of the
area, then there is spatial heterogeneity in the area, which may be measured using the q-statistic [46].
Geographical detector is capable of objectively reflecting the extents of impact for natural geographic
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elements on geographic phenomena. This method can reveal the driving forces behind soil erosion
and water yield by detecting spatially heterogeneity in geographic phenomena. Geographical detector
includes the factor detector, interaction detector, ecological detector and risk detector.

The factor detector detects the extent to which X (environmental factors) explains the spatial
heterogeneity of Y (soil erosion or water yield), namely explanatory power, measured by q value:

q = 1−

∑L
h=1 Nhσ

2
h

Nσ2 = 1−
SSW
SST

(15)

SSW =
L∑

h=1

Nhσ
2
h, SST = Nσ2 (16)

where h = 1, . . . , L is the stratification (i.e., classification or zoning) of the variable Y or factor X, Nh
and N are the numbers of units in the layer h and the entire area, respectively; σ2

h and σ2 are the
variances of the layer h and the entire area, respectively; SSW and SST are the sum of the intralayer
variances and the total variance of the entire area; and q є[0, 1]. The higher the q value, the higher
explanatory power of the influencing factor for the spatial heterogeneity of soil erosion and water yield.
Additionally, the dominant factors affecting soil erosion and water yield are identified based on the
q value.

The interaction detector is a unique advantage of geographical detector, capable of identifying the
interactions of various factors. Whether two factors interact with one another and, if so, the intensity and
direction of their interaction and whether their interaction is linear or nonlinear, can be determined by
calculating and comparing the q value of each factor and the q value of the superposition in two factors [46].
The superposition of two factors is not only limited to a multiplication relation, but also includes other
relations (Table 3). The interaction detector can detect the interaction of two factors if it exists.

Table 3. Types of interaction between two covariates.

Description Interaction

q(X1∩X2) < Min(q(X1), q(X2)) Weaken, nonlinear
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) Weaken, single factor nonlinear

q(X1∩X2) > Max(q(X1), q(X2)) Enhance, double factors
q(X1∩X2) = q(X1) + q(X2) Independent
q(X1∩X2) > q(X1) + q(X2) Enhance, nonlinear

The ecological detector determines whether there is a significant difference in the impact of various
factors on spatial distribution of soil erosion and water yield and is measured using the F statistic.
The risk detector is used to determine high soil erosion risk and high water yield areas. The risk factor
compares differences in layer 1 and layer 2 (soil erosion and water yield) of environmental factors
to determine whether the impact of an influencing factor in each subarea significantly differs when
the study area is stratified by a potential risk environmental factor and examines significance using
t statistic [47]. The environmental factor using t statistic compares differences in Yd1, Yd2 and Yd3 of
factor D to check whether the soil erosion and water yield in each subarea is statistically different
when ERL areas are stratified by factor D (environmental factors). It is assumed that soil erosion and
water yield occur independently and identically over space. The greater the difference in significance,
the higher the t statistic, the higher soil erosion risk and higher water yield areas.

tyh=1−yh=2
=

Yh=1 −Yh=2[
Var(Yh=1)

nh=1
+

Var(Yh=2)
nh=2

] 1
2

(17)
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where Yh represents the mean value of attributes in sub-area h, such as soil erosion or water yield, nh
represents the number of samples in sub-area h, and Var represents variance. This statistic is distributed
approximately as t statistic with a number of degrees of freedom (df ) equal to:

d f =

Var(Yh=1)
nh=1

+
Var(Yh=2)

nh=2

1
nh=1−1

[
Var(Yh=1)

nh=1

]2

+ 1
nh=2−1

[
Var(Yh=2)

nh=2

]2 (18)

The null hypothesis is H0: Yh=1 = Yh=2. If H0 is rejected under a significant level α (usually 5%),
it indicates that there is a significant difference between the soil erosion and water yield of subareas.

3. Results

3.1. Simulation and Pattern Analysis of Soil Erosion and Water Yield in Beijing and ERL Areas

Based on the RUSLE model, Beijing’s average soil erosion in 2015 was 5.46 t·ha−1 a−1, which is
consistent with the average soil erosion range of 1.53–8.18 t ha−1 a−1 in the mountainous areas of Beijing
obtained through simulation by Zhou [48]. Soil erosion in Beijing was determined to exhibit spatial
heterogeneity with relatively severe soil erosion of the Xi Mountain area in the west. This outcome
agrees with the spatial distribution of soil erosion in Beijing calculated by Lu [49] based on Geographic
Information System (GIS). Based on the RUSLE model, the range of soil erosion calculated for Beijing’s
ERL areas was 0–571.74 t·ha−1 a−1, with an average soil erosion of 7.72 t·ha−1 a−1. Evidently, the average
soil erosion was higher in the ERL areas than Beijing. The high value area of soil erosion included
not only the soil conservation ERL areas, but also other dominant functional ERL areas. Based on
the InVEST model, Beijing’s total annual water yield in 2015 was calculated to be approximately
2.761 billion m3, which is close to the total amount of Beijing’s water resources in 2015 (2.676 billion
m3), as reported in the 2015 Beijing Water Resources Bulletin. Additionally, the water yield of the
Beiyun, Chaobai, Daqing, Jiyun, and Yongding Rivers in Beijing were also simulated. The simulated
value of water yield was approximately equivalent to the statistic reported in the 2015 Beijing Water
Resources Bulletin, and the simulated trends were the same as those reported in the Beijing Water
Resources Bulletin. Based on the InVEST model, the water yield of Beijing’s ERL areas in 2015 were
calculated to be in the range of 0–639.94 mm. Soil erosion and water yield in Beijing and its ERL areas
exhibited high spatial heterogeneity (Figure 2). Soil erosion in Beijing was primarily distributed in the
mountainous areas, with low values in the plain. High water yield areas in Beijing were primarily
distributed in the Beiyun River. The water yield of the Beiyun River catchment area was higher than
that of other catchment areas. Regarding ERL areas, the Xi ERL area, with a significantly higher
average elevation than other ERL areas, had relatively low vegetation coverage. The SW ERL area,
with the highest average slope among the ERL areas, had the lowest precipitation and vegetation
coverage. The BDL ERL area had the highest precipitation but lower slope and elevation than other
ERL areas. The MY ERL area and SZL ERL area had the highest vegetation coverage. The JD ERL area
and BE ERL area had relatively high vegetation coverage and precipitation. Soil erosion and water
yield differed significantly among ERL areas. Due to the combined action of multiple factors, such as
geomorphological type, slope, precipitation and vegetation coverage, the Xi ERL area had the highest
soil erosion among the ERL areas, and the BDL ERL area had the highest water yield (Supplementary:
Table S2).
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Figure 2. Distribution of soil erosion (a), water yield (b) in Beijing and Beijing ERL areas(c).

3.2. Quantitative Attribution of Single Factor Affecting Soil Erosion and Water Yield in ERL Areas

The factor detector can determine the dominant factor affecting soil erosion and its explanatory
power. The results of the factor detector were shown in Figure 3a, the dominant factor of soil erosion
in Beijing was slope, with an explanatory power of 26.96%, and the dominant factor in Beijing ERL
areas was vegetation coverage, which explained 36% of the spatial heterogeneity in soil erosion.
The relatively significant difference and heterogeneity of slope in Beijing weakened the explanatory
power of vegetation coverage for soil erosion. In comparison, as a result of the relatively insignificant
difference in slope and the relatively significant difference in vegetation coverage, the latter was found to
have a higher explanatory power for soil erosion than the slope in Beijing’s ERL areas. The explanatory
power of precipitation for soil erosion in Beijing and its ERL areas was insignificant. The explanatory
power of geomorphological type for the spatial distribution of soil erosion differed between the ERL
areas. The explanatory power for Beijing was 10.66%, and the explanatory power for the ERL areas
was less than 3%. Compared to its ERL areas, there is a richer variety of geomorphological type and
more significant heterogeneity in geomorphological type in Beijing. Land use type and elevation were
found to have similar explanatory power, which did not exceed 10%. The ecological detector results
revealed that the impact of precipitation, vegetation coverage and slope on the spatial distribution of
soil erosion in Beijing differed significantly from other factors, and the impact of vegetation coverage
on soil erosion in the Xi ERL area and SW ERL area differed significantly from other factors.

Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 18 

 

spatial distribution of water yield in Beijing differed significantly from other factors. In comparison, 
the impact of land use type on the spatial distribution of water yield in the ERL areas differed 
significantly from other factors. 

 

Figure 3. Statistics of q value affecting soil erosion (a) and water yield (b) in Beijing and ERL areas. 

3.3. Identification of Interactions Factors Affecting Soil Erosion and Water Yield in ERL Areas 

The interaction detector was primarily used to determine the explanatory power about the 
interaction of every two environmental influencing factors for soil erosion. The explanatory power of 
every two interaction factors for soil erosion in Beijing and its ERL areas was higher than that of the 
corresponding individual factors. The dominant interaction differed between different ERL areas. 
Table 4 summarizes the statistics of interactions, including the three with highest explanatory power. 
In both Beijing and its ERL areas, the interaction of vegetation coverage and slope had the highest 
explanatory power which was above 55% and was the main controlling factors for soil erosion. The 
area with high vegetation coverage can effectively reduce soil erosion, and the steep slope is prone 
to soil erosion. The superposition of vegetation coverage and slope greatly enhanced the 
interpretation of soil erosion. Each secondary dominant interaction was the superposition of 
vegetation coverage and another influencing factor. For Beijing, it was the interaction of vegetation 
coverage and geomorphological type; for the Xi ERL area and SW ERL area, it was the combination 
of vegetation coverage and precipitation. Beijing has a rich variety of geomorphological types which 
includes six types: plain, platform, hill, low relief mountain, middle relief mountain and high relief 
mountain. Environmental factors such as precipitation and slope differed relatively significantly 
between different geomorphological types. The superposition of vegetation coverage and 
geomorphological types enhanced the explanatory power for the spatial distribution of soil erosion. 
Precipitation is one of the primary driving forces for soil erosion and will aggravate soil erosion in 
the ERL areas. Beijing and its ERL areas were found to differ in the third dominant interaction of 
influencing factors and their explanatory powers were all more than 30%. 

The dominant interactions for water yield with the top three highest explanatory powers were 
determined which differed among the ERL areas (Table 5). In Beijing and its ERL areas, highest 
interaction factors were the superposition of land use type and another influencing factor. All of the 
dominant interactions had an explanatory power exceeding 60%, and there was little difference in 
explanatory power among the dominant interactions. The combination of land use type and 
precipitation could explain 81.1% of spatial distribution for water yield in the JD ERL area. Average 
precipitation was high in Beijing and the JD ERL area, with significant difference in precipitation. The 
superposition of land use type and precipitation significantly increased the explanatory power for 
water yield in Beijing and the JD ERL area. BE ERL area has a rich variety of geomorphological types. 
In this area, the superposition of land use type and geomorphological type enhanced the explanatory 
power for the spatial distribution of water yield. In the SZL ERL area, there was a relatively significant 
stratified heterogeneity in slope, and the superposition of slope and land use type explained 85.57% 
of the spatial distribution on water yield. Land use type and vegetation coverage were the top two 
dominant factors affecting water yield in the BDL ERL area and their superposition was found to 
significantly increase the explanatory power for the spatial distribution of water yield. Elevation 

Figure 3. Statistics of q value affecting soil erosion (a) and water yield (b) in Beijing and ERL areas.

The significance of each environmental factor in affecting water yield differed among ERL areas,
as shown in Figure 3b. Land use type had the highest explanatory power among environmental
factors for water yield, exceeding 60% in each ERL area. Vegetation coverage had the second highest
explanatory power for water yield in all areas except the JD ERL area. In the JD ERL area, precipitation
was relatively abundant and exhibited high heterogeneity which had a higher explanatory power than
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vegetation coverage for water yield. Geomorphological type and slope both had low explanatory power
for water yield in the ERL areas. The ERL areas have different natural conditions and differ relatively
significantly in geomorphological type and elevation. A significant difference about explanatory power
was found in elevation and precipitation for water yield in the ERL areas. The impact of land use type,
vegetation coverage, elevation and precipitation on the spatial distribution of water yield in Beijing
differed significantly from other factors. In comparison, the impact of land use type on the spatial
distribution of water yield in the ERL areas differed significantly from other factors.

3.3. Identification of Interactions Factors Affecting Soil Erosion and Water Yield in ERL Areas

The interaction detector was primarily used to determine the explanatory power about the
interaction of every two environmental influencing factors for soil erosion. The explanatory power
of every two interaction factors for soil erosion in Beijing and its ERL areas was higher than that
of the corresponding individual factors. The dominant interaction differed between different ERL
areas. Table 4 summarizes the statistics of interactions, including the three with highest explanatory
power. In both Beijing and its ERL areas, the interaction of vegetation coverage and slope had the
highest explanatory power which was above 55% and was the main controlling factors for soil erosion.
The area with high vegetation coverage can effectively reduce soil erosion, and the steep slope is
prone to soil erosion. The superposition of vegetation coverage and slope greatly enhanced the
interpretation of soil erosion. Each secondary dominant interaction was the superposition of vegetation
coverage and another influencing factor. For Beijing, it was the interaction of vegetation coverage and
geomorphological type; for the Xi ERL area and SW ERL area, it was the combination of vegetation
coverage and precipitation. Beijing has a rich variety of geomorphological types which includes six
types: plain, platform, hill, low relief mountain, middle relief mountain and high relief mountain.
Environmental factors such as precipitation and slope differed relatively significantly between different
geomorphological types. The superposition of vegetation coverage and geomorphological types
enhanced the explanatory power for the spatial distribution of soil erosion. Precipitation is one of the
primary driving forces for soil erosion and will aggravate soil erosion in the ERL areas. Beijing and
its ERL areas were found to differ in the third dominant interaction of influencing factors and their
explanatory powers were all more than 30%.

Table 4. The dominant interactions of factors affecting soil erosion in soil conservation ERL areas.

Beijing Xi ERL Area SW ERL Area

Dominant interaction1 vegetation coverage ∩
slope

vegetation coverage ∩
slope

vegetation coverage ∩
slope

q value 0.579 0.682 0.586

Dominant interaction2 vegetation coverage ∩
geomorphological type

vegetation coverage ∩
precipitation

vegetation coverage ∩
precipitation

q value 0.325 0.463 0.440

Dominant interaction3 slope ∩
geomorphological type slope ∩ precipitation vegetation coverage ∩

land use type
q value 0.303 0.446 0.437

The dominant interactions for water yield with the top three highest explanatory powers
were determined which differed among the ERL areas (Table 5). In Beijing and its ERL areas,
highest interaction factors were the superposition of land use type and another influencing factor.
All of the dominant interactions had an explanatory power exceeding 60%, and there was little
difference in explanatory power among the dominant interactions. The combination of land use
type and precipitation could explain 81.1% of spatial distribution for water yield in the JD ERL
area. Average precipitation was high in Beijing and the JD ERL area, with significant difference
in precipitation. The superposition of land use type and precipitation significantly increased the
explanatory power for water yield in Beijing and the JD ERL area. BE ERL area has a rich variety of
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geomorphological types. In this area, the superposition of land use type and geomorphological type
enhanced the explanatory power for the spatial distribution of water yield. In the SZL ERL area, there
was a relatively significant stratified heterogeneity in slope, and the superposition of slope and land
use type explained 85.57% of the spatial distribution on water yield. Land use type and vegetation
coverage were the top two dominant factors affecting water yield in the BDL ERL area and their
superposition was found to significantly increase the explanatory power for the spatial distribution of
water yield. Elevation varies significantly in the MY ERL area, and elevation indirectly affects such
factors as precipitation and vegetation coverage. As a result, the superposition of land use type and
elevation explained 80.36% of the spatial distribution for water yield in this area.

Table 5. The dominant interactions of factors affecting water yield in water retention ERL areas.

Beijing BDL ERL
Area

MY ERL
Area

SZL ERL
Area

JD ERL
Area

BE ERL
Area

Dominant interaction1 LU ∩
precipitation LU ∩ VC LU ∩

elevation LU ∩ slope LU ∩
precipitation LU ∩ GT

q value 0.792 0.848 0.804 0.856 0.811 0.779

Dominant interaction2 LU ∩
elevation LU ∩ slope LU ∩ GT LU ∩

elevation
LU ∩

elevation LU ∩ slope

q value 0.654 0.834 0.791 0.855 0.739 0.778

Dominant interaction3 LU ∩ GT LU ∩ GT LU ∩ slope LU ∩ VC LU ∩ slope LU ∩
elevation

q value 0.634 0.788 0.770 0.851 0.735 0.768

LU: land use type. VC: vegetation coverage. GT: geomorphological type.

3.4. Distribution of High Soil Erosion Risk Areas and High Water Yield Areas

The risk detector can be used to judge the most important types or ranges of environmental
factors in high soil erosion risk areas and identify high soil erosion risk areas (at a confidence level of
95%). In addition, it can also be used to detect whether there is a significant difference of its spatial
distribution according to the impact on the average value of different influencing factor types, and thus
the percentage of stratified combinations with significant differences can be counted (Table 6). High soil
erosion risk areas were found to differ significantly between different areas. Unused land was found to
have suffered the most severe soil erosion. This is because the surface of unused land is heavily exposed
and the soil is unprotected by vegetation, and thus prone to erosion. Soil erosion differed between
different ERL areas and increased with slope. Areas with slope greater than 35◦ were at high risk of soil
erosion. No significant positive or negative correlation was found between precipitation and the spatial
distribution of soil erosion. Furthermore, there was no significant correlation between vegetation
coverage and the spatial distribution of soil erosion in Beijing. However, soil erosion in the Xi ERL area
and SW ERL area was found to decrease with increasing vegetation coverage. Geomorphological type
serves as background where soil erosion occurs. The formation of geomorphological type is complex
and affects by a multitude of factors. The geomorphological type in high soil erosion risk areas were
found to differ between different ERL areas. In Beijing, high relief mountainous areas at relatively high
elevation were at high risk of soil erosion. In the Xi ERL area and SW ERL area, plain and platform at
relatively low elevation were at high risk of soil erosion. The percentage of significant differences in
each natural influencing factor affecting soil erosion differed relatively significantly between different
areas (Figure 4a). The strata difference in vegetation coverage was at maximum (100%) in the Xi ERL
area. The strata difference in slope reached 100% in Beijing. The strata difference in elevation was 80%
in the SW ERL area. The strata differences in each of land use, precipitation, and geomorphological
type reached relatively insignificant.
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Table 6. High soil erosion risk in soil conservation ERL areas.

Beijing Xi ERL Area SW ERL Area

Elevation (m) 1783–2007 229–451 7–229
Geomorphological type High relief mountain Plain Platform

Precipitation (mm) 507–530 530–553 576–599
Land use type Unused land Unused land Unused land

Slope (◦) >35 >35 >35
Vegetation coverage 0.3–0.4 0.5–0.6 0.4–0.5Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 18 
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The risk detector was used to explain the difference in the significance of each influencing
factor between areas and identify high water yield areas. High water yield areas differed relatively
significantly between different areas (Table 7). In all ERL areas except BDL ERL area, construction land
was found to have high water yield. The construction land has a large area of impervious layers which
is easy to form surface runoff. However, low coverage grassland had high water yield in the BDL ERL
area. With the difference in root depth and coefficient of evapotranspiration, low coverage grassland
had significant influence for water yield. Unused land had high water yield in Beijing. Unused land
has a low coefficient of evapotranspiration and is weak for soil and water conservation. which has high
potential for the formation of runoff. Slope is one of the most important factors reflecting underlying
surface properties. A negative correlation was found between water yield and slope in Beijing and
MY ERL area. No significant correlation was found between water yield and slope in other ERL
areas. No significant positive or negative correlation was found between precipitation, elevation and
vegetation coverage and the spatial distribution of water yield. Additionally, the ranges of these
three factors resulting in high water yields also differed. The geomorphological type serves as an
important background where runoff occurs and is affected by many factors. As a result, high water
yield areas in different ERL areas were found to differ in geomorphological type. The impact factors in
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the different ERL areas had significant combined percentage differences in the amount of water yield
(Figure 4b). The strata difference in precipitation differed relatively significantly between different
ERL areas and reached 94.44% in Beijing, 52.38% in the JD ERL area, and 0 in all other ERL areas.
The strata difference in elevation differed relatively significantly in Beijing and all ERL areas except the
BE ERL area. Land use type differed significantly among areas. The strata difference in land use type
reached 81.29% in Beijing and over 20% in the ERL areas. The strata difference in geomorphological
type reached 100% in Beijing and was relatively insignificant in the ERL areas. The strata differences in
slope and vegetation coverage were low.

Table 7. High water yield areas in water retention ERL areas.

Beijing BDL ERL
Area

MY ERL
Area

SZL ERL
Area

JD ERL
Area

BE ERL
Area

Elevation (m) 7–229 229–451 7–229 673–895 229–451 7–229
Geomorphological

type Plain Plain Hill Hill High relief
mountain Plain

Precipitation (mm) 668–691 645–668 576–599 622–645 645–668 553–576

Land use type Unused
land

Low
coverage
grassland

Construction
land

Construction
land

Construction
land

Construction
land

Slope (◦) 0–5 >35 0–5 30–35 >35 5–10
Vegetation coverage 0.1–0.2 0.1–0.2 0.3–0.4 0.4–0.5 0.4–0.5 0.4–0.5

4. Discussion

Important ecological functional areas are essential for fostering national ecological civilization
development, establishing an ecological security pattern, containing the deteriorating trend of ecosystem
services and facilitating the harmonious coexistence of humans and nature. Soil erosion and water
yield are key metrics for evaluating ecological environments in key ecological functional areas. In this
study, Beijing’s ERL areas were found to differ significantly in the spatial distribution and quantitative
attribution characteristics of soil erosion and water yield. A quantitative attribution analysis was
performed on soil erosion and water yield in Beijing and its ERL areas in 2015–2018 (each of four years)
to analyze the impact of climate and land use changes on attribution analysis results (Supplementary
Tables S3–S6). The results for these four years were found to be consistent. Vegetation coverage was
found to be the dominant factor affecting the spatial distribution of soil erosion in Beijing’s ERL areas,
with an explanatory power exceeding 30%. Land use type was the dominant factor affecting the
spatial distribution of water yield in Beijing’s ERL areas that the explanatory power exceeded 30%.
These results confirmed that this study’s findings were applicable to the ERL areas and could provide
the reference for the protection of ERL areas.

Vegetation coverage was found to be the dominant factor affecting the spatial distribution of soil
erosion in Beijing’s soil conservation ERL areas. Interception by vegetation canopies can effectively
reduce raindrop energy and increase rainwater infiltration. Plant roots can enhance soil’s resistance
to erosion. Therefore, vegetation coverage is a sensitive factor affecting soil erosion [50]. In terms
of the water yield in Beijing’s ERL areas, land use type was found to be the dominant factor, having
the highest explanatory power among the factors. Land use changes underlying surface conditions
and affects precipitation interception, infiltration and runoff processes. Different land use types differ
relatively significantly in hydrological effects [51]. Elevation and precipitation were found to differ
relatively significantly in the explanatory power for water field in the ERL areas. This difference may
be due to significant differences among ERL areas in geomorphological type and climatic factors.

The interaction detection results indicated that vegetation coverage and slope had a combined
explanatory power over 55% for soil erosion, suggesting that steep slope with relatively low vegetation
coverage is extremely prone to soil erosion. Zhang [52] noted that soil erosion was primarily distributed
on steep slope in the Xi Mountain area of Beijing and found aggravated soil erosion in areas with
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large slope and relatively low vegetation coverage. This finding agreed with the finding of this
study that the superposition of vegetation coverage and slope will enhance the controlling effect on
soil erosion. High soil erosion risk areas and the critical value of each influencing factor differed
between Beijing’s ERL areas. Unused land was found to be associated with a high risk of soil erosion.
Transforming unused land by implementing such projects as afforestation and greening the barren hill
can effectively curb soil erosion. Forest and grassland were found to have a low risk of soil erosion
in the Xi ERL area and SW ERL area, respectively. The interaction detector was used to detect the
interactions of factors affecting water yield. The results indicated that the most significant interactions
for water yield were superposition of land use type and another influencing factor. Owing to their
relatively significant difference in natural conditions such as geomorphological type and climate,
the factor superposed with land use type varied between different ERL areas. For example, Wu [53]
pointed out that climate and land use changes were the primary causes of change in the water yield of
Guanting Reservoir in Beijing. Similar conclusions were derived from this study. The combination
of land use type and precipitation in the JD ERL area was found to enhance the controlling effect on
water yield and have an explanatory power as high as 81.1% for water yield.

ERL is the base of regional ecological security in China. Monitoring, evaluation and attribution
analysis of dominant ecosystem services in ERL areas will effectively help maintain and improve
ecological functions and facilitate sustainable social economic development. In this study, the RUSLE
and InVEST models were employed to simulate Beijing’s ERL areas and calculate soil erosion
in Beijing’s soil conservation ERL areas and water yield in Beijing’s water retention ERL areas.
Additionally, geographical detector was used to examine the dominant factors affecting the
spatial distribution of soil erosion and water yield in Beijing’s ERL areas and their interactions.
Moreover, a quantitative attribution analysis was performed on soil erosion and water yield. The results
can provide the reference for accurately managing ERL areas. The LS, C, and P factors in the RUSLE
model were calculated using 9-m DEM data, 30-m NDVI data and 15-m land use data, respectively,
which significantly improved simulation accuracy. However, the P factor more suitable for Beijing
which relies on field investigation and observation of experimental station should be further explored in
the future work. Ecosystem services are inseparable from human activity. Human disturbances such as
the construction of terraced fields, slope farmland, and fish-scale pit have a relatively significant impact
on soil erosion. In future investigations, focus should be directed to the impact of human factors on soil
and water conservation and the correction of the related models based on human influencing factors.
Additionally, it is also necessary to quantitatively study different ecosystem services in ERL areas and
to identify the dominant influencing factors for their trade-off or synergy interactions. These efforts
will help to ensure environmental quality and ecosystem integrity and stability in ERL areas.

5. Conclusions

In this study, ERL areas in Beijing are mainly located in deep and shallow mountains, which
have strong spatial heterogeneity because of the complicated terrain. Compared with the ecological
environment of the plain, mountainous areas remain more complex because the vertical zonality of
the ecological environment. Using high resolution remote sensing data is important for reflecting the
spatial heterogeneity. The RUSLE and InVEST models were employed to calculate soil erosion and
water yield in Beijing and its ERL areas. Additionally, geographical detector was used to examine the
dominant factors affecting the spatial distribution of soil erosion and water yield in Beijing’s ERL areas
and their interactions, and to identify high soil erosion risk and high water yield areas. The following
conclusions were drawn and were expected to provide the reference for controlling and managing key
ecological functional areas.

Factors were found to affect soil erosion and water yield in Beijing and its ERL areas to vary
extents. Due to its significant difference in Beijing, slope had an explanatory power of 26.96% for
the spatial distribution of soil erosion in Beijing. In the soil conservation ERL areas, primarily at
relatively high elevation and with relatively steep slope, vegetation coverage had an explanatory
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power exceeding 36% for soil erosion which the reason may be canopy interception reducing erosion
dynamic and root distribution which can consolidate of soil and prevent soil erosion. Land use type
had the highest explanatory power for water yield which was exceeding 60% in Beijing, as well as the
water conservation ERL areas.

Relative to the explanatory power of individual factors, the interaction of any two impact
factors was found to increase the explanatory ability for soil erosion and water yield. The dominant
interactions for soil erosion and water yield differed between different ERL areas. The superposition
of vegetation coverage and slope was found to significantly enhance the explanatory power for soil
erosion, explaining more than 50% of its spatial distribution. This suggested that implementation
of such programs as “Grain for Green” and “Natural Forest Protection Program” could effectively
prevent and control soil erosion. In terms of water yield, the superposition of land use type and another
influencing factor was found to slightly enhance the explanatory power. The explanatory power of
this superposition differed between areas due to area differences in natural geographical background
which were above 70% in all ERL areas.

In the control and management of ERL areas, it is necessary to comprehensively consider the
natural geographical backgrounds in different ERL areas. In this study, based on the spatial distribution
characteristics of soil erosion and water yield, as well as the identified dominant factors, high soil
erosion risk areas in different soil conservation ERL areas and high water yield areas in different
water retention ERL areas were identified. The following areas were identified as key control and
management areas: slopes greater than 35◦, areas at elevations below than 450 m in the soil conservation
ERLs of Beijing. The key areas for different water retention ERLs are slightly different: slopes of
0–10◦, areas at elevations below 250 m in the MY ERL area and BE ERL area, slopes greater than 30◦,
elevations below than 450 m in the BDL ERL area, SZL ERL area, and JD ERL area.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/3/399/s1,
Figure S1. The spatial distribution of meteorological stations and precipitation in Beijing of 2015; Figure S2.
Geomorphological types of Beijing; Figure S3. Spatial distribution of monthly precipitation in ERL areas; Table S1:
Beijing’s ERL areas; Table S2: Statistics of soil erosion, water yield and environmental factors in Beijing and ERL
areas; Table S3: Statistics of q value about factors affecting soil erosion in soil conservation ERL areas; Tables S4–S6.
Statistics of q value about factors affecting water yield in water retention ERL areas of 2016, 2017 and 2018.
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